Jet Signals for Low Mass Strings at the LHC

Tomasz Taylor
Northeastern University
Q: Can LHC help?
A: No, unless:

- Low String Mass Scale
- Weak String Coupling
- Large Extra Dimensions
So what’s the problem?
Difference between theory and “models”

• Problem appears in “compactification” d=10 → d=4
• d=4 particle spectrum depends on the shape and size of extra dimensions (moduli)
• Billions of possible compactifications but no selection principle thus no predictions
 → Billions of “models”

CONCLUSION OF THIS TALK: SUPERSTRING THEORY MAKES PRECISE, MODEL-INDEPENDENT PREDICTIONS (valid for all compactifications).
CAN BE TESTED AT THE LHC… provided that…
IN THIS WAY, THE LANDSCAPE PROBLEM CAN BE RELEGATED TO THE NEXT GENERATION OF STRING THEORISTS
Outline

I. \textit{D-branes and all that: general setup}

II. \textit{Jet tests at LHC: model-independent signals of TeV-scale (super)strings}

L. Anchordoqui, H. Goldberg, S. Nawata, TRT: 0712.0386, 0804.2013
L. Anchordoqui, H. Goldberg, TRT: 0806.3420
St. Stieberger, TRT: hep-th/0607184, hep-th/0609175, 0708.0574

D. Luest, St. Stieberger, TRT:

\textbf{“The LHC String Hunter’s Companion”}

This talk: A.G.L.N.S.T: 0808.0497, 0904.3547

Work in progress: Oliver Schlotterer’s talk
D-branes and all that I

Regge Trajectories of Vibrating Strings:

\[J = J_0 + \alpha' m^2 \]

Regge Slope \(\alpha' \) determines the fundamental mass scale

\[M^2 = \frac{1}{\alpha'} \]

String “Threshold”
D-branes and all that

Extra Dimensions

Universal Parameters: mass M, coupling g

Model-dependent:
Calabi-Yau, D-brane configurations
\rightarrow volume V_6, moduli VEVs...

Strength of Gravitational Interactions: $M_{\text{Planck}}^2 = \cdots \frac{M^2}{g^2} \times \frac{V_6}{(\alpha')^3} \approx 10^{38}$ GeV2

$M \sim 1$ TeV possible for “large” V_6 with typical $R \sim 1$ nm – 1 mm

Lykken; Antoniadis, Arkani-Hamed, Dimopoulos, Dvali
Standard Model (and a little BSM) Fields

Intersecting Branes

- “Stack” of N D-branes $\rightarrow U(N) = SU(N) \times U(1)$ gauge group
- Gauge bosons from strings ending on **ONE** stack e.g. $U(3)$ baryonic stack yields the gluon octet g AND a C-boson (anomalous, needs recycling)
- $SU(3) \otimes SU(2) \otimes U(1)_Y$ \rightarrow at least 3 stacks but easier with 4

Chiral matter from strings stretching between **TWO** stacks of D-branes intersecting at angle:

- e.g. $U(3) \cap U(2)$ intersection \rightarrow (3, 2) left-handed quark doublets etc

Blumenhagen, Kors, Lüst, Stieberger
Particle ZOO

• Kaluza-Klein excitations from large extra dimensions
 masses $\sim \frac{1}{R_\perp}$, can be as low as 10^{-3} eV, but harmless because sterile

• Kaluza-Klein excitations along D-branes
 masses $\sim \frac{1}{R_\parallel}$, should be near string scale M

• Regge Recurrences
 masses $\sim M$, hopefully near 1 TeV

• Black Holes
 masses $\sim \frac{M}{g^2} > M$ if $g < 1$ \textit{(weak string coupling)}

Typical LHC-testable parameters:

\begin{align*}
g^2 & \approx 0.2 \quad M_{KK}^{QCD} \approx M \quad M_{KK}^{E-W} \approx 0.70M \\
M & < 3.5 - 6.8 \text{ TeV}
\end{align*}

Cullen, Perelstein, Peskin; Meade, Randall; Dimopoulos, Landsberg
LHC Jet Factory
XXIst Century Superstring Collider

600 million collisions per second
Jet Signals for M \sim 1 \text{ TeV} Strings
Effects of Regge Recurrences in Parton Collisions

- **Weak string coupling** - leading order: Disk diagrams
- Encompass all Regge recurrences at **tree** level (in effective field theory):

\[
\sum_{M_J} = M_J
\]

- N-gluon amplitudes (also with one quark-antiquark pair) are **universal**: do **NOT** depend on compactification details and are exactly the same with or without SUSY. **Reason:** Momentum conservation in compact directions parallel to D-brane

For more than 2 fermions, amplitudes are model-dependent (KK propagating in intermediate channels)

- These **universal amplitudes** are **almost everything** that you need to study the dominant contributions to parton scattering: 4 and more fermions are suppressed by color factors (however, valence qq \(\rightarrow qq \) can be important, see later…)

- **Universal** deviations from the standard model expected in jet distributions if \(M \sim 1 \) TeV: higher-dimensional operators relevant below string threshold; then resonance effects near string threshold – starting from massive spin 0, 1, 2 at \(\hat{s} \sim M^2 \)

Jets are the “smoking gun” of low mass strings
Gluon Disk Amplitudes

- Universal SUSY (same as N=4 of tree-level QCD) ⇒ helicity selection rules: MHV, NMHV, ...
- String effects inside Veneziano-Virasoro-Shapiro formfactors
- Example: Four-gluon amplitude (pure MHV)

\[V_t = \frac{\Gamma(1 - \frac{s}{M^2})\Gamma(1 - \frac{u}{M^2})}{\Gamma(1 + \frac{t}{M^2})} = 1 - \frac{\pi^2}{6} \frac{su}{M^4} + \ldots \]

poles at \(s = nM^2 \)

\[\mathcal{M}(g_1^-, g_2^-, g_3^+, g_4^+) = 8 g^2 \langle 12 \rangle^4 \times \]

\(\left(\frac{V_t}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle} \right) [d^{a_1 a_2 a_3 a_4} + \frac{1}{12} (f^{a_1 a_4 n} f^{a_2 a_3 n} - f^{a_1 a_2 n} f^{a_3 a_4 n})] \]

\(+ \frac{V_s}{\langle 14 \rangle \langle 42 \rangle \langle 23 \rangle \langle 31 \rangle} [d^{a_1 a_2 a_3 a_4} + \frac{1}{12} (f^{a_2 a_4 n} f^{a_3 a_1 n} - f^{a_2 a_3 n} f^{a_1 a_4 n})] \]

\(+ \frac{V_u}{\langle 13 \rangle \langle 34 \rangle \langle 42 \rangle \langle 21 \rangle} [d^{a_1 a_2 a_3 a_4} + \frac{1}{12} (f^{a_3 a_4 n} f^{a_1 a_2 n} - f^{a_3 a_1 n} f^{a_2 a_4 n})] \)

- First resonance at \(s = M^2 \): \(\mathcal{M} \approx 32g^2 \sum_a d^{a_1 a_2 a} d^{a_3 a_4 a} \frac{M^2}{s - M^2} \)

\((J = 2 \) resonance in t-channel)
Table 6: Gluon-quark scattering.

| subprocess | $|\mathcal{M}|^2/g^4$ |
|------------|-------------------|
| $gq \rightarrow qq$ | $\frac{s^2 + u^2}{t^2} \left[V_s V_u - \frac{4}{9} \frac{1}{s u} (s V_s + u V_u)^2 \right]$ |
| $gq \rightarrow Aq$ | $-\frac{1}{3} Q_A^2 \frac{s^2 + u^2}{s t^2} (s V_s + u V_u)^2$ |
| $gq \rightarrow Bq'$ | $-\frac{1}{6} |t_{qg'}|^2 \frac{s^2 + u^2}{s u} V_t^2$ (*nej*) |

Table 7: Quark-quark scattering.

| subprocess | $|\mathcal{M}|^2/g^4$ |
|------------|-------------------|
| $qq \rightarrow qq$ | $\frac{2}{9} \frac{1}{t^2} \left[\left(s F_{uu}^{bb} \right)^2 + \left(s F_{ut}^{cc} \right)^2 + \left(u G_{ts}^{bb} \right)^2 + \left(u G_{ts}^{cc} \right)^2 \right] + \frac{2}{9} \frac{1}{u^2} \left[\left(s F_{ut}^{bb} \right)^2 + \left(s F_{ut}^{cc} \right)^2 + \left(t G_{us}^{bb} \right)^2 + \left(t G_{us}^{cc} \right)^2 \right] - \frac{4}{27} \frac{s^2}{t u} \left(F_{uu}^{bb} F_{ut}^{bb} + F_{tu}^{cc} F_{ut}^{cc} \right)$ |
| $qq' \rightarrow qq'$ | $\frac{2}{9} \frac{1}{t^2} \left[\left(s F_{uu}^{bb} \right)^2 + \left(s G_{tuu}^{cc} \right)^2 + \left(u G_{ts}^{bb} \right)^2 + \left(u G_{ts}^{cc} \right)^2 \right]$ |
Lowest Massive Regge Excitations (n=1)

- Gluonic resonances: G^*, C^* : $J = 0, 1, 2$

Table 1: Partial and total widths, in GeV, of the lowest Regge excitation of the $U(3)$ gauge bosons. All quantities are to be multiplied by M/TeV.

From Anchordoqui, Goldberg, TRT: 0806.3420.

<table>
<thead>
<tr>
<th>channel</th>
<th>$J = 0$</th>
<th>$J = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G^*</td>
<td>C^*</td>
</tr>
<tr>
<td>GG</td>
<td>41.6</td>
<td>133.3</td>
</tr>
<tr>
<td>GC</td>
<td>33.3</td>
<td>–</td>
</tr>
<tr>
<td>CC</td>
<td>–</td>
<td>16.7</td>
</tr>
<tr>
<td>$q\bar{q}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>75.0</td>
<td>150.0</td>
</tr>
</tbody>
</table>

$J = 1$ is special: does not couple to gg. Accessible in $q\bar{q}$ only. VERY narrow: $\Gamma \approx 8.3$ GeV $\times M$/TeV.

- Quark resonances: q^* : $J = 1/2, 3/2$

 - All decay widths are universal: same for all D-brane configurations and compactifications
 - Spin encoded in angular distributions
Brute force bump-hunting (CTEQ6D)

Left panel: $d\sigma/dM$ (units of fb/GeV) vs. M (TeV) is plotted for the case of SM QCD background (dashed line) and (first resonance, $M_s = 2$ TeV) string signal + background (solid line). The dot-dashed lines indicate the different contributions to the string signal ($gg \rightarrow gg$, $gg \rightarrow q\bar{q}$, $qg \rightarrow qg$, and $q\bar{q} \rightarrow gg$).

Right panel: $pp \rightarrow$ dijet signal-to-noise ratio for three integrated luminosities.
Dijet angular distributions

QCD parton-parton cross sections are dominated by t-channel exchanges that produce dijet angular distributions which peak at small center of mass scattering angles. In contrast, non-standard contact interactions or excitations of resonances result in a more isotropic distribution. In terms of rapidity variable for standard transverse momentum cuts, dijets resulting from QCD processes will preferentially populate the large rapidity region, while the new processes generate events more uniformly distributed in the entire rapidity region. To analyze the details of the rapidity space the DØ Collaboration introduced

$$R = \frac{d\sigma/dM |(|y_1|,|y_2|<0.5)}{d\sigma/dM |(0.5<|y_1|,|y_2|<1.0)}$$
Precision Tests: Signals of extra dimensions in valence quark scattering

$M_s = 5.0$ TeV, $M_{KK} = 3.5$ TeV

$3 \text{ TeV} < M < 3.5 \text{ TeV}$

tail of the Regge excitation: $S/\sqrt{B} = 100/48 = 2\sigma$

KK modes: $S/\sqrt{B} = 290/48 = 6\sigma$
Early Discovery?

$$\sqrt{s} = 10 \text{ TeV} \quad \int \mathcal{L} \approx 10 \text{ pb}^{-1}$$

$$S/\sqrt{B} = 204/19 > 10\sigma \text{ for } M_s = 2 \text{ TeV}$$
Concluding Remarks

- If Nature gracefully chose weakly coupled strings with $M \sim 1 \text{ TeV}$, LHC will find them . . .
- LHC searches should focus on Regge resonances: string theory gives precise predictions for masses, spins, production rates and decays
- Jet distributions are particularly suitable for string searches because in the leading approximation (disk diagrams) they are universal, i.e. completely model-independent: do not depend on the compactification details, same with or without supersymmetry
- $M_s \sim 3.5 - 6.8 \text{ TeV}$ can be reached with sufficient patience and energy
- For $M_s < 3.5 \text{ TeV}$, corroborative evidence from monojet, trijet, and dilepton plus jet configurations from $pp \rightarrow Z^0 + \text{jet channel}$
- Early discovery possible for $M_s < 3.0 \text{ TeV}$
- It is possible that Nature made a different choice – we will know it very soon . . .