Orbifold Blow-ups without breaking hypercharge

Patrick K. S. Vaudrevange
LMU München

June 18, 2009

Based on:
Outline

Motivation

Orbifold MSSMs
\[\mathbb{Z}_6 \text{-II Mini-Landscape} \]
Full Blow-up

Non-local GUT Breaking
\[\mathbb{Z}_2 \times \mathbb{Z}_2 \text{ Orbifold} \]
Examples

Conclusion
Motivation

- Heterotic orbifold MSSMs
- Study their connection to Calabi-Yau compactifications
- What is generic to orbifold MSSMs?
Orbifold MSSMs
\mathbb{Z}_6-II Mini-Landscape

$\mathcal{O}(100)$ \mathbb{Z}_6-II orbifold models with

- $\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)_Y$ times hidden sector
- 3 generations of quarks and leptons + vector-like exotics
- exotics decouple
- (potentially) realistic flavor structure, e.g. heavy top

- see talks by:
 R. Kappl, H. P. Nilles, S. Ramos-Sanchez and M. Ratz
Relation to other Constructions

- Can these models be obtained from a CY construction?

 ⇒ No, at least not easily!

 ⇒ talks by M. Trapletti and S. Groot Nibbelink

- \mathbb{Z}_6-II Mini-Landscape at special (symmetry enhanced) point in moduli space:

 - Wilson line breaks GUT to SM (locally) at fixed points
 - In full blow-up, SM gauge group (e.g. hypercharge) broken at these fixed points
 - (fixed points with only SM charged states ⇒ blow-up mode breaks SM)

- Important: full blow-up of Mini-Landscape models not necessary
Can MSSM orbifold models have a corresponding CY description in principle?

or

Can MSSM orbifold models be blown-up completely?
Non-local GUT Breaking
Non-local GUT Breaking

- One possibility: GUT broken to SM non-locally: freely acting orbifold
- In this talk: $\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold with freely acting twists
 R. Donagi and K. Wendland 2008
- Gauge coupling unification and M_{GUT} vs. M_{string}
 (anisotropic compactification \Rightarrow talk by R. Kappl on gauge-top unification)
 A. Hebecker and M. Trapletti 2004
Z₂ × Z₂ Orbifold with Freely Acting Twist

(1-1) \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) orbifold by Donagi, Wendland:

- \(T^6 = T^2 \times T^2 \times T^2 \) spanned by orthogonal lattice \(e_i, \ i = 1, \ldots, 6 \)
- \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) generated by

\[
\begin{align*}
v_1 &= \left(0, \frac{1}{2}, -\frac{1}{2}\right) \\
v_2 &= \left(-\frac{1}{2}, 0, \frac{1}{2}\right)
\end{align*}
\]

- freely acting twist: \(\tau = \left(\frac{1}{2}e_2, \frac{1}{2}e_4, \frac{1}{2}e_6\right) \)

R. Donagi and K. Wendland 2008
$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold with freely acting twist

T^6 torus
$\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold with Freely Acting Twist

twist v_1 acting on T^6 torus

$\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold with Freely Acting Twist

Twist ν_1 acting on T^6 torus

\Rightarrow 16 fixed points
$\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold with Freely Acting Twist

twist v_2 acting on T^6 torus
\(\mathbb{Z}_2 \times \mathbb{Z}_2 \) Orbifold with Freely Acting Twist

twist \(v_2 \) acting on \(T^6 \) torus

\(\Rightarrow \) 16 fixed points
$\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold with Freely Acting Twist

twist $v_1 + v_2$ acting on T^6 torus
\(\mathbb{Z}_2 \times \mathbb{Z}_2 \) Orbifold with Freely Acting Twist

Twist \(v_1 + v_2 \) acting on \(T^6 \) torus

⇒ 16 fixed points
freely acting twist \(\tau \) acting on \(T^6 \) torus

\[\Rightarrow \text{half the number of fixed points: } \frac{(16 + 16 + 16)}{2} = 24 \]
 action of freely acting twist in 2d:

\[T^2 / \mathbb{Z}_2 \]

\[\Rightarrow \] half the number of fixed points: \(4/2 = 2 \)
$\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold with Freely Acting Twist

- setup:

$\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold with 6 generations of SU(5)

freely acting \mathbb{Z}_2

3 generations of SU(3) × SU(2) × U(1)

- where freely acting Wilson line induces GUT breaking
- Potentially: one SM singlet per fixed point \Rightarrow full blow-up
Example 1

- **Shifts and Wilson lines**

\[
V_1 = \left(\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, -\frac{3}{4}, -\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, 1, 0^7 \right)
\]

\[
V_2 = \left(\frac{3}{4}, 1, -\frac{1}{4}, \frac{1}{4}, -\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, 1, 0^7 \right)
\]

\[
A_1 = 0
\]

\[
A_2 = \left(-\frac{5}{4}, \frac{3}{4}, -\frac{3}{4}, \frac{9}{4}, -\frac{7}{4}, -\frac{3}{4}, \frac{5}{4}, \frac{3}{4}, -\frac{1}{4}, \frac{11}{4}, \frac{3}{4}, \frac{3}{4}, -\frac{7}{4}, -\frac{3}{4}, \frac{5}{4}, \frac{3}{4} \right)
\]

\[
A_3 = \left(-1, -1, 0, -2, 0, -2, 2, -3, -\frac{7}{4}, -\frac{1}{4}, \frac{3}{4}, -\frac{1}{4}, -\frac{5}{4}, 1, 1, 5 \right)
\]

\[
A_5 = \left(\frac{1}{4}, \frac{9}{4}, -\frac{13}{4}, \frac{11}{4}, \frac{11}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{11}{4}, -\frac{3}{4}, \frac{3}{4}, -\frac{3}{4}, \frac{1}{4}, -\frac{5}{4}, \frac{3}{4} \right)
\]

\[
A_6 = A_4 = A_2
\]
Example 1

- 4d gauge group: \(\text{SU}(5) \times \text{U}(1)^4 \times [\text{SU}(4)^2 \times \text{U}(1)^2] \)
- massless spectrum

<table>
<thead>
<tr>
<th></th>
<th>(5, 1, 1)</th>
<th>9</th>
<th>(\overline{5}, 1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(10, 1, 1)</td>
<td>56</td>
<td>(1, 1, 1)</td>
</tr>
<tr>
<td>12</td>
<td>(1, 4, 1)</td>
<td>12</td>
<td>(1, \overline{4}, 1)</td>
</tr>
<tr>
<td>12</td>
<td>(1, 1, 4)</td>
<td>12</td>
<td>(1, 1, \overline{4})</td>
</tr>
<tr>
<td>2</td>
<td>(1, 6, 1)</td>
<td>2</td>
<td>(1, 1, 6)</td>
</tr>
</tbody>
</table>

- 6 generations of SU(5) \(\Rightarrow \) 3 generations SM by freely acting Wilson line \(A_\tau = \frac{1}{2} A_2 \)
- one blow-up mode per fixed-point \(\Rightarrow \) potentially full blow-up
- however: unbroken \(\text{U}(1)_{B-L} \) at low energies
 (cf. M. Ambroso and B. Ovrut 2009)
Example 2

Shifts and Wilson lines

\[
\begin{align*}
V_1 &= \left(\frac{1}{2}, \frac{1}{2}, 0^{14} \right) \\
V_2 &= \left(\frac{5}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 1, 1, 1, 1, 1, 0^6 \right) \\
A_1 &= 0 \\
A_2 &= \left(-1, -1, 0, -1, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{3}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{3}{4}, 1, 1, 1, -\frac{3}{4}, -\frac{1}{4} \right) \\
A_3 &= \left(1, -1, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{3}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4} \right) \\
A_5 &= \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, \frac{1}{2}, \frac{1}{2} \right) \\
A_6 &= A_4 = A_2
\end{align*}
\]
Example 2

- 4d gauge group: $\text{SU}(5) \times \text{U}(1)^4 \times [\text{SU}(4)^2 \times \text{U}(1)^2]$
- massless spectrum

<table>
<thead>
<tr>
<th></th>
<th>(5, 1, 1)</th>
<th>9</th>
<th>($\overline{5}, 1, 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(10, 1, 1)</td>
<td>52</td>
<td>(1, 1, 1)</td>
</tr>
<tr>
<td>6</td>
<td>(1, 4, 1)</td>
<td>6</td>
<td>(1, 4, 1)</td>
</tr>
<tr>
<td>8</td>
<td>(1, 1, 4)</td>
<td>8</td>
<td>(1, 1, 4)</td>
</tr>
<tr>
<td>2</td>
<td>(1, 1, 6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- freely acting Wilson line $A_T = \frac{1}{2} A_2 \Rightarrow 3$ generations SM
- properties (preliminary)
 - vector-like exotics decouple (at trilinear order)
 - Higgs-pair from untwisted sector: potentially $\mu \sim \langle W \rangle \sim m_{3/2}$
 - D_4 family symmetry: third generation: singlet; first/second: doublet
 - heavy top / all extra U(1)'s broken (at high scale)
 - however: 3 empty fixed points \Rightarrow blow-up mode? \Rightarrow full blow-up?
Conclusion
Summary

- \mathbb{Z}_6-II Mini-Landscape at special (symmetry enhanced) point, but full blow-up not necessary
- $\mathbb{Z}_2 \times \mathbb{Z}_2$ with freely acting twist \Rightarrow non-local GUT breaking
- Examples: promising models (potentially also in full blow-up)