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Abstract. A model of a local neuron population is 
considered that contains three subsets of neurons, one 
main excitatory subset, an auxiliary excitatory subset 
and an inhibitory subset. They are connected in one 
positive and one negative feedback loop, each contain- 
ing linear dynamic and nonlinear static elements. The 
network also allows for a positive linear feedback loop. 
The behaviour of this network is studied for sinusoidal 
and white noise inputs. First steady state conditions 
are investigated and with this as starting point the 
linearized network is defined and conditions for stabi- 
lity is discovered. With white noise as input the stable 
network produces rhythmic activity whose spectral 
properties are investigated for various input levels. 
With a mean input of a certain level the network 
becomes unstable and the characteristics of these limit 
cycles are investigated in terms of occurence and 
amplitude. An electronic model has been built to study 
more closely the waveforms under both stable and 
unstable conditions. It is shown to produce signals that 
resemble EEG background activity and certain types 
of paroxysmal activity, in particular spikes. 

1. Introduction 

During the last few years there has been a stimulating 
activity in developing new methods for the analysis of 
electroencephalograms by means of computers. Of 
special interest are those methods that are based on 
mathematical models of the EEG signals which often 
take the form of noise generators followed by fairly 
simple spectral forming linear filters. It has been 
proved that such models can generate signals that 
closely resemble normal background EEG activity 
(Zetterberg, 1973; Zetterberg and Ahlin, 1975; 
Isaksson and Wennberg, 1975). This is of fundamental 
importance for the analysis but it also raises the 
question whether it is possible formulate models based 

on neurophysiological facts that describe the genera- 
tion of EEG signals. If this is the case it may indicate 
how data processing of EEG signals should be further 
developed. It may lead to definition of appropriate 
information carrying parameters for normal back- 
ground activity and it may allow the analysis to be 
extended to cover various forms of paroxysmal 
activity. 

There are many verbal descriptions of the basic 
neuronal activity and its relation to the observed EEG 
signals of which we mention the following that have 
influenced our thinking, Stevens (1966), Andersen and 
Andersson (1968) and the survey edited by Creutzfeld 
(1974). It shows how rich and variable the observed 
phenomena are and how complex the reIation is 
between activity on the cellular level and measured 
potential differences in the cortex. But it also makes 
clear the intimate relation between the slow postsynap- 
tic potentials, PSP, and the EEG. It is interesting to 
notice that several attempts have been made to formal- 
ize these neurophysiological facts into mathematical 
models that describe the electrical activity within local 
populations of neurons such as Levy and Etevenon 
(1972) and Etevenon and Levy (1973). Our paper is 
directly based on such works carried out by Wilson 
and Cowan (1972) and by Freeman (1972). Both 
publications deal with the interaction within and 
between a set of excitatory and a set of inhibitory 
neurons. Wilson and Cowan (1973) extended their 
model to hold for a population of neurons distributed 
on a surface and hence allowed both temporal and 
spatial interaction to occur. Freeman (1975) has writ- 
ten an extensive survey on how neurons may interact 
in simple and complex configurations. Expressed in 
engineering terms the main interest of Freeman is the 
transfer function and the impulse response of the stable 
(linearized) system while Wilson and Cowan are in- 
terested in the response to constant or pulsed stimulus 
and to the occurence of instabilities or limit cycles. 

0340-1200/78/0031/0015/$02.40 



16 

Based on the paper by Wilson and Cowan (1972) a 
simple lumped circuit model was formulated that 
interconnected the excitatory and inhibitory subsets in 
a negative feedback loop. Each subset was described 
by a linear dynamic element, related to the postsynap- 
tic potential, and a nonlinear static element relating 
the average membrane potential within the cell popu- 
lation to the pulse rate of action potentials (Zetterberg, 
1973; Lopes da Silva et al., 1974). The analysis was 
carried out for a linearized approximation of the 
network in order to express the transfer function of the 
network and the power spectrum of the average mem- 
brane potential. Numerical data of the postsynaptic 
potentials were taken from measurements on cells in 
thalamus in which case the network produced rhyth- 
mic activity consistent with the alpha activity. 

Later the analysis was extended to take into ac- 
count a first approximation of the nonlinear behaviour 
(Lopes da Silva et al., 1976). In an attempt to simulate 
the hippocampal theta rhythm the same reference 
argued for the inclusion of also a positive feedback 
loop through a third set of neurons. Freeman (1975) 
also includes such loops for models of parts of the 
olfactory system. 

We will reformulate our previous model starting 
from Wilson and Cowan (1972) but this time also take 
into account the presence of the neuronal refractory 
period. The basic model is extended to include both 
positive and negative feedback loops. A steady state 
analysis is carried out which is used to establish the 
operating conditions for the linearized network. It will 
make the transfer function depend on the input level 
and it will show for what values of input level and 
parameter values that the network is stable or un- 
stable. Next the network is analyzed when it is unstable 
and the characteristics of these oscillations, limit cy- 
cles, are established. They also depend upon input level 
and network parameters. 

An electronic realization of the network has been 
built and experiments were carried out for both si- 
nusoidal and noise inputs with the network in stable or 
unstable conditions. We have been able to imitate both 
background EEG activity and certain types of parox- 
ysmal activity. It is of special interest that we can 
establish the presence of spikes as a boarderline case 
between stability and instability. 

2. Formulation of a Lumped Circuit Neuron Model 

2.1. Basic Equations 

A population of neurons will be considered that 
contains two subsets, an excitatory and an inhibitory 
subset. Later a third subset will be added. The popu- 
lation is well localized and each subset behaves homo- 

geneously and hence no spatial variables will be 
introduced. Following Wilson and Cowan (1972) the 
variables E(t) and I(t) are defined, which will measure 
respectively the proportion of excitatory and inhi- 
bitory cells firing per unit of time at time t. The action 
potentials will spread through axons and reach synap- 
tic contacts where they will be transformed into synap- 
tic potentials. These will propagate through the den- 
drites and reach other cells with a certain delay and 
attenuation. These potentials will sum linearly to form 
a cell membrane potential which may cause the cell to 
fire. 

Essential variables are the average membrane pot- 
entials Ve(t) and V~(t) in the excitatory and inhibitory 
cell populations respectively. The potentials may be 
expressed as follows 

o9  

V~(t) = S [c'aE(t - z) + P ( t -  z)]h~(z)dz 
0 

oo 

- (. c ' f l( t- 'c)hi(z)dz (2.1.1) 
0 

Vi(t ) = ~ [c ' lE( t -  z) + Q(t - r)]he(z)dz 
0 

-- ~ c'4I(t-- z)hi(z)dz (2.1.2) 
0 

! t The constants c a and c 2 may be interpreted as the 
average number of excitatory and inhibitory synapsis 
per excitatory cell and correspondingly c' 1 and c~, are 
defined for the inhibitory cell population. Hence c'3E(t ) 
and c'2I(t ) are the average number of synapsis of an 
excitatory cell that will receive an action potential 
from the population itself during one time unit and P(t) 
should be interpreted as the average number of exci- 
tatory pulses from outside per cell and time unit. 
Correspondingly Q(t) is defined. The functions he(z ) 
and hi(z ) are essentially the excitatory and inhibitory 
postsynaptic potentials, EPSP and IPSP respectively, 
but they may also include attenuation and delay due to 
pulse transmission and passive spread of the postsyn- 
aptic potentials. 

Expressions (2.1.1) and (2.1.2) are essentially the 
same as derived by Wilson and Cowan (1972) but he(z ) 
and hi(z ) need not be identical. It is now assumed that 
the fraction E(t) of excitatory cells that will fire during 
a time unit at time t will be proportional to the 
probability that the membrane potential of a cell is 
above a threshold and at the same time it is in an 
excitatory state, i.e. it should not be in its refractory 
period. 

The probability that an excitatory cell is excitable 
may be written 

1 -  i E(t')dt' (2.1.3) 
t - ~ ' e  



with r e the absolute refractory period. Assumptions 
made by Wilson and Cowan (1972) imply that the 
conditional probability that a cell will fire given that it 
is in an excitatory state only depends upon the average 
potential in the subset, i.e. upon Ve(t ) for the excitatory 
subset. As a result 

E(t)=)~e[1- t i E(t')dt'lJ(Ve(t)) (2.1.4) 

and similarly for the inhibitory subset 

I( t)=2i[1- t!r I(t')dt']J(Vi(t)) (2.1.5) 

The proportionality constants ~-e and 2 i measure 
the maximum average firing rate of a cell in the two 
subsets. At most 2 e and 2~ can be r~-t and r71 
respectively but likely they are less. The function J(x) 
must be monotone and increasing from 0 to 1 as x 
increases from its lowest to its highest value. The curve 
is often assumed to have an S-shaped form and it is 
then said to be a sigmoid curve. 

Now the refractory periods r e and rg are about 1- 
2ms (Wilson and Cowan, 1972, 1973) which is short 
compared to the time constants of the entire network 
and hence to the period or correlation time of the 
processes we are primarily interested in. Hence it is 
reasonable to replace the integrals in (2.1.4) and (2.1.5) 
with the expressions reE(t ) and riI(t ) respectively. They 
may then be solved for E(t) and I(t) 

ke/(Ve(t)) 
E(t) = 1 + 2ZeJ(Ve(t)) =-2ege(Ve(t)) (2.1.6) 

2iJ(Vi(t)) I(t) = = 2igi(V~(t)) (2.1.7) 
1 +~,iriJ(Vii(t)) 

The new functions ge(X) and gi(x) also have a 
sigmoid shape but with less slope than J (x). It is seen 
that E(t) and I(t) have their largest attainable values 
2e(1 +,~ere )- * and 2/(1 + ~iri) - 1 respectively. 

It is interesting to notice that the presence of a 
refractory period has been taken into account through 
a transformation of the nonlinear function from J(x) 
into either g~(x) or gJx). 

2.2. Block Diagram Representation and Generalization 
It is convenient to draw a functional block diagram of 
the basic Eqs. (2.1.1), (2.1.2), (2.1.6), and (2.1.7) as in Fig. 
la. It contains linear dynamic blocks (filters) whose 
impulse response he(v ) or h~(z) represent the postsynap- 
tic potentials, EPSP and IPSP respectively. The cell 
somas of each neuron subpopulati0n is reproduced by 
a summation unit where the EPSP and IPSP are 
summed with positive and negative sign respectively. 

Pit) 

I(t) 

) + , i  
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Fig. la and b. Block diagram of systems to model a local neuron 
population a system with one excitatory and one inhibitory subset of 
neurons, b system with two excitatory and one inhibitory subset of 
neurons 

The nonlinear blocks marked 2ege(x ) and 2igi(x ) ex- 
press the generation of action potentials while the 
outputs E(t) and I(t) denote the intensity of action 
potentials. 

The two neuron populations are interconnected 
through c 2 and viewed from the excitatory subset it 
forms a negative feedback loop. The model includes 
also a linear feedback loop for each subset controlled 

t t through constants c 3 and c 4. The neurophysiological 
counterpart is short connections (collaterals) from the 
axon to the soma for individual cells. Notice that the 
sign is preserved for the linear feedback loops. 

The previously analyzed model (Lopes da Silva et 
al., 1972) excluded the linear feedback loops, i.e., c; and 
c 4 were put equal to zero and furthermore 2ege(x) and 
2igi(x ) were replaced by J(x). 

The model to be analyzed in this paper is shown in 
Fig. lb. The main excitatory neurons interact with 
inhibitory interneurons giving negative feedback and 
with a third set of excitatory neurons giving positive 
feedback. It also allows for a linear positive feedback 
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loop through cs for the main excitatory subset to 
represent collateral connections. As can be seen from 
the figure two types of excitatory impulse responses 
hle('C) and h2~(v ) are introduced. They are distinguished 
through different delays with h2,('c ) having the longer 
delay. Hence we may write 

h2e('C) = h 1 e( "c - -  "C d) (2.2.1) 

Different inputs are being fed to the two impulse 
response blocks with Pl(t) called specific input and 
P2(t) non-specific input using neurophysiological 
terminology. 

The model in Fig. lb was proposed to describe the 
behaviour of a local population in cortex in which case 
the main excitatory neurons were identified as pyra- 
midal cells (meeting at the Neurophysiological 
Institute in Vienna). However, the model may also be 
seen as a fairly general network that covers several 
previously considered cases of neuronal models. It 
should therefore be of interest to study the behaviour 
of such a network. 

The average membrane potential g l e ( t  ) of the main 
excitatory cells may be thought of as the main output 
since it fairly closely follows the measured extracellular 
potential. The latter is essentially equal to V~e(t ) with 
the DC component removed. The variables E,(t), E2(t), 
and I(t) also have interest as indicators of the network 
and its behaviour. 

2.3. SpeciJic Assumptions 

Wilson and Cowan (1972, 1973) use the simplest 
possible expression for the EPSP and IPSP, namely 

h('c)=Aexp{-a'c} ; z>=O (2.3.1) 

with h(z) = 0 for z < 0. The next level of sophistication is 
the following expression which takes better account of 
the interaction within the subpopulation (Zetterberg, 
1973 ; Freeman, 1975). 

h(v) = A[exp { -  a z } -  exp { -  bz}] (2.3.2) 

with b >a.  In both cases the wave form has a steep 
increase and a slow decay. Only the last form will be 
used in the numerical analysis for which the following 
parameters are chosen, see also Lopes da Silva et al. 
(1974, 1976). 

Excitatory subset : Inhibitory subset : 
a~= 55s -1 ai=27.5 s -1 
b e = 605 s- 1 b i = 55 S- 1 
A =  1.6mV A = 3 2 m V  

For later reference it is convenient to have an ex- 
pression for the Laplace transform of (2.3.2) available, 

also called the transfer function of the PSP network 

(b - a) A 
H(s)-- (2.3.3) 

(s + a) (s + b)" 

In this way Hle(S ), H2~(s ), and Hi(s ) are defined with 

Hz~(s ) = H le(S ) exp { -  sze}. (2.3.4) 

Various hypotheses have been put forward con- 
cerning the non-linear function J(x) introduced in 
Sect. 2.1. Freeman (1975) argues for the following form 

J(v)= I j~176 ; v<v~ (2.3.5) 
[Jo[3-2exp{ -? ' ( v -vo )} ]  ; V>Vo 

with 7 '= 0.25 to 2.0 (mV)-1. Based on this assumption 
9(v) has been calculated according to (2.1.6) and (2.1.7) 
with 2~r~ =2Fi =0.75. As a reasonable compromise the 
following function 9(v) is chosen for both g~(v) and 

gi(v) . 

g(v)= ~ g~176 ; v<v~ (2.3.6) 
[90[2-exp{-v(V-Vo)}] ; v>vo 

with 7=0.34 (mV)-1. In the following numerical cal- 
culations v 0 = 6 mV and 2go2 e= 2go2 i= 50 s- ~ are 
being used. 

3. Linear Analysis 

3.1. Steady State Analysis 

For the linear analysis it is assumed that the input 
signals Pl(t) and P2(t) present only small variations 
around the steady state values t51 and t5 2. As a result 
the membrane potentials Vie(t), V2e(t), and Vi(t ) in- 
troduced in Fig. lb will also show only small va- 
riations around their steady state values Vle, V2e, and 
V/. The same applies to the related variables E~(t), 
E2(t), and 1(0 with their steady state values denoted El, 
E2, and L 

With inputs Pl(t)=P~ and Pz(t)=/52 the equilib- 
rium equations will be 

{ P_I~ = (P~_+ P2 + csE~ + c~;~2)H~(O)- cfiHi(O) 
V2e =c3E1Hte(O) (3.1.1) 

P//= cl/~lHle(0), 

I =,Zig(V~). 

There is always at least one solution to these 
equations but there may be several, in fact three 
solutions for the assumed nonlinearity (2.3.6). This is 
interesting since it indicates the possibility for the 
system to jump between two stable operating points. 
However for the case c 1 =c  3, c 5 fairly small, and C2• i 



> c42 e there is only one solution. These conditions will 
make the negative feedback loop to dominate at all 
input levels. The conclusion is valid in general that 
with a dominating negative feedback loop there is only 
one steady state solution. 

3.2. Linearized Equations and Stability 

With the steady state values subtracted from the 
system variables the result will be new variables de- 
noted vie(t), V2e(t), vi(t), el(t), e2(t), and i(t). The corre- 
sponding Laplace transforms are denoted Vie(s), V2e(s), 
Vi(s), El(s), E2(s), and I(s). Next the nonlinearities are 
linearized around the operating points defined by 
(3.1.1) and (3.1.2). 

el(t)~dl~vt~(t) 
ez(t ) g d2evze(t) (3.2.1) 

i(t)~divi(t). 

Similar relations hold for the Laplace transformed 
variables. 

I 
g i (s) = d l e V1 e(S) 

E2(s ) = d2eV2e(S ) (3.2.2) 
I(s)=dy,(s). 

This last set of equations together with the following 
set define equilibrium equations 

I Vle(s ) = (nl(s) + csEa(s))Ule(S) 
+ (P2(s) + c4E2(s))H2e(S) - c2I(s)Hi(s ) 

V2e(S ) = c3EI(S)  Hle(S  ) (3.2.3) 

Vii(S ) • C 1 E l(S) H 1 e(S). 

When these equations are solved for El(s ) the result 
will be 

dleHle(S) dleHze(S) 
El(s)= N ( ~  Pl(s)+ N(s) P2(s) (3.2.4) 

with 

N(s) = 1 - D eeH le(S)H2e(S ) - D e l l  1 e(S) 

q- DeiH 1 e(S) Hi(s) (3.2.5) 

�9 and 

I 
Dee = c3c4dled2e 
D e=csdle (3.2.6) 

D ei = clczdled i . 

These last constants serve as coupling coefficients for 
the feedback loops�9 

Expressions dleHl~(S)/N(s ) and dleHze(s)/N(s ) de- 
fine transfer functions between the input variables and 
the output El(s ). They differ only through the delay 
factor in (2.3.4). 
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It is now of interest to find out when the linearized 
system is stable which requires that the poles of 
Hle(S)/N(s ) are located in the left half of the s-plane. 
Only the case rd=0 is considered, i.e. Hze(s)=Hle(S), 
which will make Hle(s)/N(s ) a rational function with a 
denominator of fifth degree. A Hurwitz stability test 
has been applied which imposes restrictions on the 
coupling coefficients. Results are shown in Fig. 2 for 
different system configurations where input level 
P = P t  +/52 and parameter c 2 have been selected as 
variables. For each combination of these the values of 
the coupling coefficients are shown and the region of 
stability is indicated. Figure 2a applies for the case of 
only a negative feedback loop and hence values of Dei 
are shown. Figure 2b describes the situation with the 
negative feedback loop and the positive loop defined 
by c 5. In this case values of D~i and D e are shown. 
Figure 2c, finally, covers the case with the negative 
loop and the positive loop defined by c 3 and c 4. To 
simplify the analysis c3=c 1 which implies that the 
configuration can be reduced to contain only two 
nonlinearities. 

The stability region has about the same shape for 
all three configurations. When the input level is in- 
creased from a low value it will drive the system into 
instability except when c 2 is small. A further increase 
of 15 will make the system pass the instability region 
and once more become stable. This is natural since low 
and high input levels will cause the system to operate 
with low amplification around the feedback loops 
while intermediate values will make it operate in the 
steep part of the nonlinearities which may cause 
instabilities. An interesting observation can be made 
from the diagrams, namely that a decrease of c 2 may 
drive the system from stability into instability if the 
input level is sufficiently large. 

3.3. The TransJer Function 

With the system in stable condition it will function 
essentially as a linear filter for small variations of the 
input signal. It is of special interest to apply a signal of 
white noise added to/5 which will serve as a model of 
variations in the pulse intensity from receptor neurons. 
In this case the system will shape the spectrum of the 
output signal. To study the situation we have calcu- 
lated the absolute value of the transfer function 
dl~[Hle(jco)/N(jo))[ for various sets of parameters. 

Figure 3a shows a set of curves that apply for the 
system with only the negative feedback loop con- 
nected. An increase of/5 will shift the peak frequency 
to higher values and sharpen the peak. The shape is 
determined by Dei only and Fig. 2a can be used to find 
the locus for identical transfer functions. The scale of 
the abscissa has been normalized in the most con- 
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Fig. 2a-e. Stability diagrams for system in Fig. lb with a negative 
feedback loop only, b negative and linear positive feedback loops c 
negative and positive nonlinear feedback loops 

venient way by the programmer. Actually the absolute 
amplitude will increase strongly with an increase of/5. 
The diagram is intended to show only changes in the 
shape. 

Calculations have been done with either one of the 
positive feedback loops included in addition to the 
negative one and similar changes in shape were observ- 
ed for increasing values of P (Zetterberg et al., i[977). 

A set of curves in Fig. 3b shows how the extra delay 
~ defined in (2.3.4) will affect lhe performance when 
the network has a positive feedback loop through c s 
and er while c s =0. The result of increasing ve in the 
range 0 to 30ms is a decrease in peak amplitude and 
only a small change in peak frequency. Other calcu- 
lations show that for large delays the peak frequency is 
also changed. 

4. Limit Cycle Analysis 

4.1. General Relations 

Previously it was found that the network will become 
unstable for certain parameter values and input levels 
P. The behaviour of the system under these conditions 
will be investigated in this section by means of describ- 
ing functions technique, see for example Siljak (1969). 
it is then assigned that periodic oscillations will appear 
in the network such that the signal at the input to a 
nonlinearity is essentially sinusiodaL The nonli- 
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nearities will produce  harmonics  but  these will be 
a t tenuated  in the filters following the nonlinearities. It  
is then essential that  the filters are of  low pass type 
which is the case for the actual  system. 

The  configurat ion of p r imary  interest is the one 
with only the negative feedback loop present. The 
more  general case with a positive feedback loop also 
connected can be treated fairly easily for the case 
c 3 = c, which makes  the system equivalent  to that  with 
one feedback loop only if the filters are appropr ia te ly  
changed. The  case with c a = c 4 = 0 but  c s > 0 can also 
be handled fairly easily. In all cases the system will 
include two nonlinearit ies of the same functional form 
written g(v) according to (2.3.6). 

Let  the input  to one of the nonlinearit ies be 
denoted 

u(t) = u o + l/1 C O S  ( c o t  - ~  ( p ) .  ( 4 . 1 . 1 )  

After passing the nonlineari ty  the signal may  be 
writ ten 

y(t) = Yo + Yl cos(cot + (p) + Y2 cos(2cot + 2~0) + . . . .  

(4.1.2) 

The  coefficients in this Four ier  series are functions of 
u 0 and  u 1 which m a y  be expressed explicitly 

rc 

1 ! g(Uo+Ul c o s x ) d x ,  (4.1.3) Y~176 U l )  = re 

2 !g(Uo+UlCOSX)COsnxdx" (4.1.4) Y.(Uo'UO= re 

Numer ica l  integrat ion of (4.1.3) and (4.1.4) have been 
used to establish the d iagrams in the following. 

4.2. Ne twork  with only a Negat ive  Feedback Loop 

The assumpt ion  is that  c 3 = cr = c 5 = 0 and for this case 
the equil ibrium equations will be established for the 
steady state componen t  and the first harmonic.  For  
nota t ions  see Fig. lb. Let  

Vle(t) = VlO + Vl l COS(COt + Cp), (4.2.1) 

el(t) = elo + el 1 cos(cot + c#), (4.2.2) 

with 

elo=2eYo(VlO, V l l ) ;  e l l  =)~eYl(Vl0, Vll). (4.2.3) 

F r o m  el ( t  ) the function vi(t ) is found by a linear filter 
opera t ion  

vi(t ) = rio + V~l cos (cot + (o + ~P~e) 

=eloclHlr  

+ e 1 ~c~ [H:~(jco)[ cos(cot + (p + ~Pl ~), (4.2.4) 
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Fig. 3a and b. a Plot of normalized transfer function for system with 
negative feedback loop only with input level/5 as parameter, b plot 
of transfer function for system with negative and nonlinear positive 
feedback loops with delay parameter r~ as parameter 

with V)lr Next  the expression for i(t) will 
be stated 

i(t) io + i  1 cos(cot+q0+q01e ) (4.2.5) 

with 

i 0 - . , ~ iYo(e  i oClHle(O), e 1 lCl [Ule(l'co)[), (4.2.6) 

i I )~iYl(eloclHle(O), e 1 lcl[Hle(jco)[ ). (4.2.7) 

After another  filter opera t ion th rough  hi(z ) the result 
will be 

ioc2Hi(O)+ilcz[Hi(jco)[cos(cot+q)+~le+*Pi ). (4.2.8) 

The equil ibrium equations may  now be writ ten 

v t o = !~H t ~(0)-  ioc2Hi(O), 

vt i = - ilc2[Hi(Jc~ c~176 + ~i), (4.2.9) 

0 = sin(~le + ~i)- 

The last two equat ions will require tpl , + tpi 
= (2m + 1) rt for some integers m and hence 

tan p 1 e = - tan p~. (4.2.10) 

With these functions calculated from (2.3.3) the result 
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Fig. 4a and h. Limit cycle analysis of system with negative feedback 
loop only a amplitude of first harmonic vll for excitatory subset, h 
amplitude of first harmonic vii for inhibitory subset 

will be a relation that determines co = coo 

co2 = aib i( a e + be) + a eb e( al + b i) (4.2.11) 
a e + b e + a i + b  i 

The formula will give J0 = l l .3Hz.  
Hence for the configuration considered the period 

of the oscillations is determined by the EPSP and IPSP 
filters only. The amplitudes may be found from the first 
two equations (4.2.9) 

Vlo =/SH i e(0 ) -- ioc2H~(O), 
(4.2. 12) 

V l 1 = il c2lH i(jcoo)l . 

Variables i o and i I are expressed in terms of vlo and 
Vx 1, through (4.2.6), (4.2.7), and (4.2.3). 

Numerical results are shown in Fig. 4a and b for 
vl,  and vi~ respectively as a function of/5 with c 2 as a 
parameter. Oscillations occur within a certain range of 
/5 which coincides with values found in Fig. 2a. As 
soon as oscillations start Vlo and vl, will be changed 
and hence the operating point for the two non- 
linearities but, the changes are small for small ampli- 
tudes vl~ and vii. 

4.3. N e t w o r k  with a Nega t i ve  
and a Posi t ive  Feedback  Loop  

Only the case with a positive feedback loop through 
the nonlinear loop defined by c 3 and c 4 is considered 

for c 3 = c  1. The analysis in the last section will apply 
when c2H~(s ) is replaced by c2Hi(s ) -  c4H2e(s). Also this 
time the resonance frequency is determined solely by 
the filters involved. Results are found in Zetterberg et 
al. (1977) for the case c1=c3=36 ,  c4=5 and several 
values of c 2, In all cases ~d=0, i.e. H2e(S)=Hle(S  ). 
Qualitatively results are similar to those in the last 
section but amplitudes are larger and oscillations 
occur for smaller values of/5. 

5. Electronic Circuit Model 

5.1. Circuit  

An electronic circuit has been built based on the block 
diagram of Fig. lb. The linear filters are realized as 
simple active RC-circuits, Zetterberg et al. (1977), with 
no extra delays, ~, involved and hence hze('C)=hle('C). 
DC voltages are applied to attain the appropriate 
operating points. The nonlinearities are constructed 
with diodes and the result is a nonlinear function that 
closely resembles g(v) of (2.3.6) with 7=0.34 and 
Vo=6mV. In the circuit the coefficients cl, c2, c3, and 
c 4 may be adjusted by means of potentiometers while 
c 5 =0. 

5.2. M e a s u r e m e n t s  

First the network is studied under stable conditions 
with white noise as input. The situation will resemble 
that analyzed in Sect. 3 but nonlinear effects will be 
taken into account. Figure 5 show recorded signals 
and analyzed spectral densities for the network with 
only the negative feedback loop connected. The dia- 
grams refer to three different input levels, Vii, = 5, 7, and 
10V corresponding to /5=180, 260, and 360. The 
spectral plots are calculated with a Kalman filter 
program for model order p = 7  and q = 6  and time 
increment 1.6s between successive curves (Isaksson, 
1977). A similar set of curves applies to the network with 
both a positive and a negative feedback loop for which 
c1=36, c2=2.5, c3=36, and c4=5, Zetterberg et al. 
(1977). In both sets of curves there is a shift of the main 
resonance frequency to higher values and more stable 
waves as/5 increases. This is in accordance with results 
from Sect. 3.3. It is noticed that the network produces 
activity also at low frequencies, g-activity, which be- 
comes stronger as /5 increases. There is also contri- 
butions, from higher frequencies around the second 
harmonic of the main resonance frequency. This is 
produced by the nonlinearity and it may be one 
plausible mechanism for the generation of/?-activity. 
The spectral analysis indicates considerable variations 
in parameters for each analyzed segment and hence the 
processes are not particularly stationary. 
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F i g .  5a-e. Recorded signals and calculated spectra for electronic 
system with negative feedback loop only. Input levels a t3= 180, b 
/5=260, c/5---360 

Next some results will be stated for the network 
when it is forced into selfoscillations. Experiments with 
two feedback loops and various coupling coefficients 
show that with weak coupling in the positive feedback 
loop, c1=36, c2=1, c3=36, and c4=3, the signal is 
essentially sinusoidal. Increasing the coupling coef- 
ficient Dee by increasing c~ will increase the amplitude 
and make it deviate more and more from the si- 
nusoidal shape. This is still more the case for the 
parameters shown in Fig. 6a where the signal has a 
spiky form. By slowly changing the input level V 0 the 
network may pass from stable to unstable behaviour 
and back again as shown in Fig. 6b. This case was 
considered to illustrate a possible interaction between 
several local populations of neurons. 

Furthermore a set of recordings is shown in Fig. 7a 
and b for which the network is put in a stable state close 
to the stability border and then it is fed with white noise 
as input. As can be seen from the recordings occasional 
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Fig. 6a and b. Recorded signals during limit cycle behavior for electronic system with negative and positive feedback loops a fixed input level 
/5 b slowly varying input level/5 
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Fig. 7a and b. Recorded signals during limit cycle behavior for electronic system with negative and positive feedback loops. Input P fixed level 
plus white noise a fixed level 180 b fixed level 90 and 180 

instabilities occur which may produce spikes or sus- 
tained oscillations depending on the conditions. 

Based on these and many other recordings it may 
be concluded that the electronic network may be used 
to produce signals that resemble those recorded from 
the brain. With the network operating in stable con- 
ditions with white noise as input the result is similar to 
normal background EEG activity. With the network in 

unstable condition the waveforms are alike some of 
those produced in epileptic states. To illustrate this 
more specifically, Fig. 8a has been reproduced which 
shows a recording from the rabbit brain made at the 
Neurophysiological Institute in Vienna, see also 
Petsche and Sterc (1968). The uncovered cortex is 
electrically stimulated and the result is periodically 
interrupted oscillations. We have tried to imitate that 
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Fig. 8a and b. a Recordings from uncovered rabbit cortex stimulated by electrical signals, b simulations on electronic model with input signal 
sinusoidal plus white noise 

signal by driving the network with an external sinusoi- 
dal signal of  high ampli tude which forces the network 
into oscillations for par t  of the period, see Fig. 8b. The 
recordings have a fair similarity. Similar results have 
been achieved by stimulating the rabbit  brain with 
penicillin. However  it has not  been possible to repro- 
duce all wave forms that appear  in these created 
epileptic situations. 

C o m m e n t s  

The model  as formulated in Fig. lb  is shown to 
produce signals that  resemble background  E E G  ac- 
tivity. This means that  the linear analysis should apply 
fairly well. The model  is less accurate for describing 
seizure activity as expressed in the occurence of limit 
cycles. This is due to the approximat ions  involved in 
going from (2.1.4) and (2.1,5) to (2.1.6) and (2.1.7). 
However  the condit ion under which limit cycles occur 
should still be relevant and the main characteristics of 
limit cycles as shown in'Fig. 4 should still hold true, A 
recent paper  by Kaczmarek  and Babloyantz  (1977) 
gives further insight into the mechanism of seizure 
activity. 

Experiments performed with our  model  has 
brought  up the hypothesis that  epileptic spikes are 
generated in a popula t ion  of neurons that  operate 
close to instability. If this is true spikes may  be viewed 
as borderlike cases between normal  background  ac- 
tivity and seizure activity. 
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