November 24, 2004 The NEURON Book: Chapter 12

Chapter 12

hoc, NEURON's interpreter

Much of theflexibility of NEURON is dueto its use of a built-in interpreter, called
hoc (pronounced "hoak"), for defining the anatomical and biophysical properties of
models of neurons and neuronal networks, controlling simulations, and creating a
graphical user interface. In this chapter we present a survey of hoc and how it isused in
NEURON. Readers who seek the most up-to-date list of hoc keywords and
documentation of syntax are referred to the online Programmer's Reference (see link at
ht t p: // v neur on. yal e. edu/ neur on/ docs/ docs. ht m). This can also be downloaded
as apkzip archive for convenient offline viewing with any WWW browser. The standard
distribution for M SWindows includes a copy of the Programmer's Reference which is
current as of the date of the NEURON executable that it accompanies (see the
"Documentation” item in the NEURON program group).

NEURON's hoc is based on the floating point calculator by the same name that was
developed by Kernighan and Pike (1984). The original hoc has a C-like syntax and is
very similar to the bc calculator. The latest implementation of hoc in NEURON contains
many enhancements and extensions beyond its original incarnation, both in added
functions and additions to the syntax. Despite these enhancements, for the most part
programs written for versions as far back as 2.x will work correctly with the most recent
release of NEURON.

One important addition to hoc is an object-oriented syntax, which first appeared in
version 3 of NEURON. Although it lacks inheritance, hoc can be used to implement
abstract data types and encapsulation of data (see Chapter 13). Other extensions include
functions that are specific to the domain of neural simulations, and functions that
implement a graphical user interface. Also, the user can build customized hoc
interpreters that incorporate special functions and variables which can be called and
accessed interactively. As aresult of these extensions, hoc in NEURON has become a
powerful language for implementing and exercising models.

NEURON simulations are not subject to the performance penalty often associated
with interpreted (as opposed to compiled) languages because computationally intensive
tasks are carried out by highly efficient, precompiled code. Some of these tasks are
related to integration of the cable equation, and others are involved in the emulation of
biological mechanisms that generate and regulate chemical and electrical signals.

In this context, several important facts bear mention. First, alarge part of what
constitutes the NEURON simulation environment is actually writtenin hoc. This
includes the standard run system (an extensive library of functions for initializing and
controlling simulations--see Chapters 7 and 8), and almost the entire suite of GUI tools
(the sole exception being the Print & File Window Manager, which isimplemented in C).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 12 November 24, 2004

Second, the GUI tools for building models of cells and networks (which are, of course, al
written in hoc) actually work by constructing hoc programs.

Finally, and perhaps most important, all of the hoc code that defines the standard run
system and GUI toolsis provided in plain text files ("hoc libraries") that accompany the
standard distribution of NEURON. Under UNIX/Linux these are located in
nrn-x. x/ share/ nrn/li b/ hoc/,andin MSWindowsthey arein
c:\nrnxx\1ib\hoc\.Userscan readily review the implementational details of the
functions and procedures that are defined in the standard libraries, and, if necessary,
modify and replace them. Since hoc isan interpreter, it is easy to make such changes
without having to alter the actual files that contain the standard libraries themselves.
Instead, just write hoc code that defines functions or procedures with the same names as
the ones that are to be replaced, and put thisin anew file. The only caveat isto be sureto
load the alternatives after the standard library. For example, to replacethei ni t ()
procedure (see Examples of custom initializations in Chapter 8), the text of the new
procedure should occur sometime after the statement | oad_fi | e(" nrngui . hoc") . If
the new definition isread prior to loading the library version, the library version will
overwrite the user version instead of the other way around.

The interpreter

The hoc interpreter has served as the genera input/output module in many kinds of
applications, and as such is directly executed under many different names, but we will
confine our attention to its usein NEURON. The simplest interface between hoc and
domain-specific problems consists of aset of functions and variables that are callable
from hoc. Thiswasthe level of implementation of the the original CABLE program
(NEURON version 1). NEURON version 2 broke from this style by introducing neuron-
specific syntax into the interpreter itself. This allowed users to specify cellular properties
at alevel of discourse more appropriate to neurons, and helped relieve the confusion and
reduce the mental energy required to constantly shift between high level neural concepts
and their low level representation in the computer. NEURON version 3 added object
syntax to allow much better structuring of the conceptual pieces that must be assembled
in order to build and use a model.

Installing NEURON under UNIX or Linux results in the construction of several
programs, but the principal one that we are concerned with in this book isnr ni v, which
islocated in nrn/ i 686/ bi n. Thisisthe main executable, which contains the hoc
interpreter with all of its extensions. Since the bulk of the code needed by NEURON isin
shared libraries, nr ni v and the various "special" executables created by nr ni vnod!l (see
Adding new mechanisms to theinterpreter below) are very small.

Under Linux, nr ni v can add new mechanisms and functions to hoc by dynamically
loading shared objects that have been compiled from model description files (see Adding
new mechanisms to theinterpreter; also see Chapter 9). For example, the demonstration
program that comes with NEURON is started by executing neur ondeno. Thisis actually
ashell script that starts nr ni v with acommand line that makes it load a shared object
that contains additional biophysical mechanisms. Under non-Linux UNIX thereis great

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

variation in how, or evenif it is possible, to dynamically load shared objects. Thereforein
those environments neur ondeno is a complete duplicate of nr ni v plus the extra
mechanisms needed by the demonstration.

Under MSWindows, the program that correspondsto nr ni v isnr ni v. exe. Thereis
also aprogram called neur on. exe, which isashort stub that starts a Cygwin terminal
window (seehtt p: // cygw n. com) and then runsnr ni v. exe inthat window. Itis
neur on. exe that isthetarget of icons and shortcuts used to start NEURON. As with the
Linux version, nr ni v. exe can load new mechanisms dynamically (see next section).

Adding new mechanisms to the interpreter

To add new mechanisms, you first write a specification of the mechanism properties
in the NMODL language (see Chapter 9), and then you compileit. To compile under
UNIX and Linux, you execute the shell script nr ni vnodl , which islocated in
nrn/i 686/ bi n. Most often, nr ni virod! is called with no file name arguments, which
resultsin compilation of all "nod files' in the current working directory (i.e. files that
have the suffix . nod).

It can also be called with one or more file name arguments, e.g.
nrnivrodl filel file2 .

compiles the model descriptionsdefinedinfil el. nod, fil e2. nod, etc.. Regardless of
how nr ni viod! isinvoked, the first step in the processis trandation of the model
descriptions from NMODL into C by the nocnodl trandator.

Under Linux, the end result is a shared object located in a subdirectory
.1 686/ .1i bs of the current working directory, aswell as a shell script called speci al
inthe. i 686 subdirectory that starts nr ni v and makes it load the shared object. Under
non-Linux UNIX, the result is a complete executable caled speci al .

The MSWindows version of nr ni vnod! iscaled mknr ndl | . It compiles and links
the models into a dynamically loadable library called nr nmech. dI | . neur on. exe
automatically looks in the current working directory for anr nmech. dl | file, and if one
exigts, loadsit into memory and makes the mechanisms available to the interpreter. More
thanonedl | file can beloaded by listing them after the - dI | argument to neur on. exe
whenitisrun.

The stand-alone interpreter

The rest of this chapter describes general aspects of the interpreter that are common to
al applications that contain it. Although for concreteness we use nr ni v or neur on. exe,
all the examples and fragments can be typed to any program that contains the interpreter,
such asoc.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 12 November 24, 2004

Starting and exiting the interpreter

Under UNIX and Linux, hoc is started by typing the program name in aterminal
window

nrniv [filenames] [-]

where the brackets indicate optional e ements. When there are no file name arguments,
hoc takes its commands from standard input and printsits results to standard output.
With file name arguments, the files are read in turn and the commands executed. After
the last file is executed, hoc exits. The - signals that commands are to be taken from
standard input until an EOT character (* D) is encountered. One can also exit by executing
quit().

When starting hoc with argumentsit is easy to forget the final - and be surprised
when the program quickly exits. Generaly the - is omitted only when running the
interpreter in batch mode under control of a shell script.

With the MSWindows version (neur on. exe), omitting the trailing - does not cause
the program to exit. This makes it more convenient to attach neur on. exe to hoc files so
that one can start the program and read ahoc file by merely clicking on the fileésnamein
afile manager such as Windows Explorer. Also, neur on. exe starts a Cygwin terminal
window into which one can type hoc commands. Exiting can be done by typing 2D or
qui t () a theinterpreter's oc> prompt. If the NEURON Main Menu is present, one can
also exit by selecting File / Quit; thisworks under al operating systems.

On startup, NEURON prints a banner that reports the current version and last change
date.
NEURON -- Version 5.6 2004-5-19 23:5:24 Main (81)

by John W Moore, M chael Hines, and Ted Carneval e
Duke and Yal e University -- Copyright 2001

oc>

The oc> prompt at the beginning of aline means the interpreter iswaiting for a
command. Thisis sometimes called "immediate mode" to signify that commands are
evaluated and executed (if valid) immediately, as shown in the following listing (user
entries are bol d while the interpreter's output is pl ai n).

oc>2

2
oc>1+2

3
oc>x=2
first instance of x
oc>X

2
0C>X* X

4
oc>

The interpreter has a"history function” that alows scrolling through previous
commands by pressing the keyboard's up and down arrow keys. This facilitates repeating
prior commands, with or without modification. For example, in

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

oc>proc foo() { print x"3 }
oc>f oo()

oc>proc foo() { print x"4 }
oc>f oo()
16

oc>

line 1 defines a new procedure that prints the value of the cube of x, line 2 calls this
procedure, and line 3 shows the numeric result. The fourth line was created by pressing
the up arrow key twice, to recall thefirst line. Then the left arrow key was pressed twice
to move the editing cursor (blinking vertical line on the monitor) just to the right of the 3.
At this point, pressing the backspace key deleted the 3, and pressing the numera 4 on the
keyboard changed the exponent to a4. Finaly thereturn ("enter") key was pressed, and
the interpreter responded with an oc> prompt. Now typing the command f oo()

produced a new numeric result.

In immediate mode, each statement must be contained in asingle line. Very long
statements can be assembled by using the continuation character \ (backslash) to
terminate all but thelast line. Thusin

oc>proc foo() { print x*4 \
oc>, X }

oc>f oo()

16 2

oc>

the interpreter merges the first and second linesinto the single line
proc foo() { print x* , x }

Quoted strings that are constructed with continuation characters have a limit of 256
characters, and each continuation character becomes an embedded newline (line break).

Error handling

Thisisone of many areas where hoc falls short. Debugging large programsis
difficult, so it is best to practice modular programming, breaking code into short
procedures and functions.

hoc isimplemented as a stack machine. This means that commands are first parsed
into a more efficient stack machine representation, and subsequently the stack machineis
interpreted.

Errors found during parsing are called parse errors. These range from invalid syntax

oc>1++1 _
nrniv: parse error near line 3
1++1
N
oc>
to the use of undefined names

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 12 November 24, 2004

oc>print x[5], "hello"
nrniv: x not an array variable near line 9
print x[5], "hello"

N

Such errors are usually easy to fix since they stop the parser immediately, and the error
message, which aways refers to a symptom, generally pointsto the cause. Error
messages specify the current line number of the file being interpreted and print the line
along with a carat pointing to the location where the parser failed. Thisis usualy an
important clue, but failure may not occur until several tokens after the actual mistake.
One common parse error in apparently well-formed statements results from using a name
of the wrong type, e.g. specifying a string where a scalar variable is required.

Errors during interpretation of the stack machine are called run-time errors:

oc>sqgrt(-1)
sqrt: DOVAIN error
nrniv: sqrt argunent out of domain near line 5

sqgrt(-1)

Generaly, run-time error messages are more pertinent to that actual problem than are
syntax error messages, athough logic errors can be very difficult to diagnose. These
errors usually occur within a function, and the error message prints the call chain

oc>proc p() {execute("sqrt(-1)")}

oc>p()
sqrt: DOVAIN error

nrniv: sqrt argunent out of domain near line 8
{sart(-1)}

execute("sqgrt(-1)")
p
nrniv: execute error: sqgrt(-1) near line 8
N

oc>

Unfortunately there is no trace facility to help debug run-time errors, and the line number
isof no help at al because it refersto the last line that was parsed, instead of the location
of the offending statement.

Interpretation of ahoc program may be interrupted by typing one or two ~C at the
terminal. For example if the interpreter isin an infinite loop, asin

oc>while(1) {}
asingle~Cwill stop it
ACnrniv: interrupted near line 2
while(l) {}
oc>

Generdly one~Cis preferred, because this allows the interpreter to reach a safe place
before it halts execution. Two ~Cwill interrupt the interpreter immediately, evenif itisin
the middle of updating an internal data structure. There are two situations in which the
second A C may be necessary:

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

1. if the program is waiting inside a system call, e.g. waiting for console inpui.

2. if the program is executing a compiled function that is taking so long that program
control doesn't reach a known safe place in areasonable time.

Syntax

Names

A name isastring that starts with an alpha character and contains fewer than 100
aphanumeric characters or the underscore _. A user-created name can be associated with
any one of the following:

global scalar (availableto al procedures/functions)
local scalar (created/destroyed on procedure entry/exit)
array

string

function or procedure

template (class or type)

object reference

User-created names must not conflict with keywords or built-in functions. Names
have global scope except if al ocal declaration isused to create alocal scalar within a
procedure or function, or when the name is declared within atemplate (i.e. class
definition, although one then speaks of visibility instead of scope, and the distinction is
between public and private).

Keywords

The hoc interpreter in the current version of NEURON has many keywords that have
been added over the years. It is helpful to have a general idea of what these are useful for,
and specific knowledge of where they are declared. Thisfirst table presents the most
basic keywords, built-in constants, and functions of the hoc interpreter with object
extensions and elementary functionality for neuronal modeling; the authoritative list isin
nrn-x.x/src/oc/hoc_init.c.

General declar ation

pr oc func | ocal

doubl e st rdef iterator

eqn depvar

Flow control

return br eak st op conti nue
if el se for whil e
iterator

Built-in constants
PI E GAMVA DEG
PHI FARADAY R

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 12

Page 8

Built-in variables
fl oat _epsilon

Built-in functions
sin

| og

i nt

use ntell _ran4
vari abl e_domai n
pr mat

sred

chdir

ropen

| oad_proc

load file
getstr

printf
ivoc_style
save_sessi on
xpanel

xbut t on

Xmenu

xval ue
doEvent s
numar g
object_id

al | obj ectvars
bool ean_di al og
pwran_pl ace
execut e

machi ne_narme

show_errnmess_al ways

checkpoi nt

Miscellaneous
print
em

Object-oriented
begi ntenpl at e
public

obj ectvar

Neur on-specific
create
access

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

hoc_ac_

cos
l 0g10

abs

ncell _rand
units

sol ve

xred

get cwd
wopen

| oad_func
| oad_j ava

strcmp
fprint

print_session
xcheckbox

xstat ebutton

x| abel

xpval ue
doNot i fy
synbol s

obj ect _push

al | obj exts
conti nue_di al og
startsw
executel
saveaudi t
coredunp_on_error
system

read
debug

endt enpl at e
ext er nal
obj ref

connect
set poi nter

November 24, 2004

at an

exp

erf

ncell _rand_init
eqinit

neur onhome
xopen
| oad_tenpl ate

fscan

xr adi obut t on
xvar | abel
xfi xedval ue

obj ect _pop
name_decl ar ed
string_di al og
st opsw
retrieveaudit

qui t

del et e

new

sqrt
erfc

xsl i der

November 24, 2004 The NEURON Book: Chapter 12

i nsert uni nsert
forall i fsec forsec secnane

The following functions and variables are specific to modeling neurons; the
authoritative list of theseisinnr n- x. x/ sr ¢/ nrnoc/ neur on. h.

Variables

t dt secondor der st oprun
cel si us di am _changed

Functions

pt 3dcl ear pt 3dadd p3dconst

x3d y3d z3d di anBd
n3d arc3d

defi ne_shape

spi ne3d set Spi neAr ea get Spi neAr ea

initnrn di st ance area

t opol ogy ri

i ssection i smenbr ane secti onnane psection
di sconnect del et e_secti on

pop_section push_section

this_section t hi s_node

parent _secti on par ent _node parent _connecti on
section_orientation

ion_style ner nst ghk

finitialize fadvance

batch_run bat ch_save

fit_praxis attr_praxis

st op_praxi s pval _praxis

Mechanism types and variables are defined in nr n- x. x/ sr ¢/ nrnoc by capac. c,
ext cel I n. c, hh. nod, and pas. nod. Thisdirectory also contains several nod files that
define neuron-specific point process classes such as| C anp, SECl anp, and
Al phaSynapse.

There are also several other built-in object classes, including neuron-specific
exampleslike Sect i onLi st, Sect i onRef , and Shape, and more generic classes such
asLi st, G aph, HBox, Fi | e, Random and Vect or . The Programmer's Reference (see
link at htt p: // ww neur on. yal e. edu/ neur on/ docs/ docs. ht m)

Variables

Double precision variables are defined when a nameis assigned avaluein an
assignment expression, e.g.

var = 2
Such scalars are available to all interpreted procedures and functions, i.e. they have
global scope.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 12 November 24, 2004

There are several built-in variables that should be treated as constants:

FARADAY coulombs/mole

R molar gas constant, joules/mole/deg-K
DEG 180/ PI , i.e. degrees per radian

E base of natural logarithms

GAMVA Euler constant

PHI golden ratio

Pl circular transcendental number

fl oat _epsilon resolution for logical comparisonsand i nt ()

Arbitrarily dimensioned arrays are declared with the doubl e keyword, asin
doubl e vector[10], array[5][6], cube[first][second][third]

Array elements areinitialized to 0. Array indices are truncated to integers and run from O
to the declared value minus 1. When an array name is used without an index, the index is
assumed to be 0. Arrays can be dynamically re-dimensioned within procedures.
String variables are declared with the st r def keyword, e.g.

strdef stl1l, st2
Assignments are made to string variables, asin

stl = "this is a string”
String variables may be used in any context that requires a string, but no operations, such
as addition of strings, are available (but see spri nt () below).

After aname has been defined as a scalar, string, or array, it cannot be changed to
another type. The doubl e and st r def keywords can appear within a compound
statement and are useful for throwing away previous data and reallocating space.
However the names must originally have been declared outside any f unc or pr oc before
they can be redeclared (as the same type) in a procedure. These restrictions also apply to
object references (obj r ef s-see Declaring an object reference in Chapter 13).

Expressions

The arithmetic result of an expression isimmediately typed on standard output unless
the expression is embedded in a statement or is an assignment expression. Thus

2*5

typed at the keyboard prints
10

and
sqrt(4)

yields

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

The operators used in expressions are, in order of precedence from high to low,
() function call
N exponentiation (right to left precedence)
- unaryminus, logical negation ("not")

* | % multiplication, division, remainder
+ - addition, subtraction

> >= < <= | = == |ogical comparison

&& logical AND

|| logical OR

= assignment (right to left precedence)

Logical expressions are valued 1.0 (TRUE) or 0.0 (FALSE), and anonzero valueis
treated as TRUE. The remainder a%b isintherange 0 < a% < b and can be thought of

asthe value that results from repeatedly subtracting or adding b until the result isin the
range [0, b). This differs from the C syntax in which (- 1) 9% is-1. For us, (- 1) %5 is 4.

Logical comparisons of real values are inherently ambiguous due to roundoff error.
Roundoff can also be a problem when computing integers from reals and indices for
vectors. For this reason the built-in global variable f | oat _epsi | on isused for logical
comparisons and computing vector indices. The constant e in this table stands for

f1 oat _epsi | on, which has adefault value of 10" but can be assigned a different

value by the user.

hoc math or C equivalent

X == -€e<X-Y=<e€

X <y X<y-e€

X <=y X<y+e

X I= X<y-€eorx>y+e

X >y X>y+e

X >=y X2y-€

i nt (x) (int)(x + €)

a[x] a[(int)(x + €)]
Statements

A statement terminated with a newline is executed immediately. A group of
statements separated by newlines or whitespace and enclosed in curly brackets{} form a
compound statement, which is not executed until the closing } istyped. Statements typed
interactively do not produce avaue. An assgnment is parsed by default as a statement

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 12 November 24, 2004

rather than an expression, so assignments typed interactively do not print their values.
Note, though, the expression

(a = 4)
would print the value
4

An expression istreated as a statement when it is within a compound statement.

Comments

Text between /* and */ is treated as a comment.

/* a single Iine coment */
/* this comrent

spans
several lines */
Comments to the end of the line (single line comments) may be started by the double
dash, asin
print Pl /1 this comment is limted to one |line
Flow control

In the syntax below, st nt stands for either a simple or compound statement.

if (expr) stnt

if (expr) stntl else stnt2

while (expr) stnt

for (exprl; expr2; expr3) stnt
for var = exprl, expr2, expr3 stnt
for iterator_nanme(. . .) stnt

Inthei f statement, st nt isexecuted only if expr evaluatesto anon-zero value. The
el se form of thei f statement executes st nmt 1 when expr evaluates to a non-zero
(TRUE) value; otherwise, it executes st nt 2.

Thewhi | e statement is alooping construct that repeatedly executes st nt aslong as
expr iISTRUE. Theexpr isevauated prior to each execution of st nt , soif expr isO
onthefirst pass, st nt will not be executed even once.

The general form of thef or statement is executed as follows: Thefirst expr is
evaluated. Aslong asthe second expr istruethe st nt isexecuted. After each execution
of the st nt , the third expr isevaluated.

The short form of the f or statement is similar to the DOloop of FORTRAN but is
often more convenient to type. However, it is very restrictive in that the increment can
only be unity. If expr 2 islessthan expr 1 the st nt will not be executed even once.
Also the expressions are evaluated once at the beginning of the f or loop and not
reevaluated.

The iterator form of the f or statement is an object-oriented construct that separates
the idea of iteration over aset of items from the idea of what work is to be performed on
each item. Assuch, it ismost useful for dealing with objects that are collections of other

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

objects. It is aso useful whenever iteration over a set of items has a nontrivial mapping to
a seguence of numbers. As a concrete example of this, let us define an iterator called
case. Todothis, we usethe hoc keywordsi t erator andit erator_stat enent,
e.g. likethis
iterator case() {local i
for i 2, numarg() {

$&1 = $i
i terator_statenent

}
}
It is easy to usethisiterator to loop over small setsof unrelated integers, asin
for case(&x, 1, -1, 3, 25, -3) print x

Of course, thisrequiresthat x has already been used as a scalar variable (otherwise the
expression & will beinvalid) An alternative would be the relatively tedious

doubl e nuni 5]
1

nun{ 0] =

nunf 1] = -1

nunf 2] = 3

nunl 3] = 25

nunf 4] = -3

for i =0, 4 {
X = nunfi]
print x

We should point out that i t er at or case() isalready includedinst dl i b. hoc (in
nrn-x. x/ share/lib/hoc/ (UNIX/Linux) or c:\ nrnxx\lib\hoc\ (MSWindows)).
Thisis automatically available after nr ngui . hoc has been |oaded.

These statements are used to modify the normal flow of control:

br eak Exit from the enclosing whi | e or f or loop.
conti nue Jump to end of the enclosing whi | e or f or .
return Exit from the enclosing procedure.

return expr Exit from the enclosing function.

st op Exit to the top level of the interpreter.
quit() Exit from the interpreter.

Functions and procedures

The definition syntax is

func name() {stnt}
proc nanme() {stnt}

Functions must return avalueviaa
return expr

statement. Procedures do not return avalue. As atrivial example of a function definition,
consider

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 12 November 24, 2004

func three() {
return 3

This definesthe functiont hr ee() which returns a fixed numeric value. Typing the
name of this function at the oc> prompt will cause its returned value to be printed.

oc>t hree()

oc>

Notice the recommended placement of {} . The opening { must appear on the same
line as the statement to which it isa part. This aso applies to conditional statements. The
closing } isfreeform, but clarity is best served if it is placed directly under the beginning
of the statement it closes and interior statements are indented.

Arguments

Scalars, strings, and objects can be passed as arguments to functions and procedures.
Arguments are retrieved positionally, e.g.

func quotient() {
return $1/ $2

}

defines the function quot i ent () which expects two scalar arguments. The $1 and $2
inside the function refer to the first and second arguments, respectively.

Formally, an argument starts with the letter $ followed by an optiona & (the "pointer
operator") to refer to ascalar pointer, followed by an optional s or o that signifies a string
or object reference, followed by an integer. Thus a string argument in the first position
would be known as $s 1, while an object argument in the third position would be $03.

For example,
proc printerr(){
print "Error ", $1, "-- ", $s2

defines a procedure that expects a scalar for its first argument and a string for its second
argument. If we invoke this procedure with the statement printerr (29, "too nany
channel s") , it will print the message B ror 29 : too nany channel s.

Thereisalso a"symbolic positional syntax" which usesthevariablei in place of the
positional constant to denote which argument isto be retrieved, e.g. if i equals 2, then $i
and $2 refer to the same argument. Thevalue of i must bein therange[1, numar g()],
where numar g() isabuilt-in function that returns the number of arguments to a user-
written function. This usage literally requires the symbol $i ; $ plus any other letter (e.g.
$j or $x) will not work. Furthermore, i must be declared | ocal to the function or
procedure.

The function numar g() can be caled inside a user-written function or procedure to
obtain the number of arguments. Thusif we declare

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

proc countargs(){
print "Nunmber of arguments is ", numarg()

and then execute count ar gs(x, sin(0.1), 9),wherex isascaar that we have defined
previously, NEURON's interpreter will print Nunber of argunents is 3. Generaly
numar g() isused in procedures and functions that employ symbolic positional syntax,

asin
proc printargs() { local i
for i =1, numarg() print $i
}
If we executeprintargs(P, -4, sqrt(5)), theinterpreter will respond by printing
3. 1415927
-4
2. 236068

Similarly, we could define afunction

proc printstrs() { local i
for i =1, numarg() print $si

and then execute pri ntstrs("foo", "faugh', "fap") to get the printed output

f oo
faugh
fap

Call by reference vs. call by value

Scalar arguments use call by value so the variable in the calling statement cannot be
changed. If the calling statement has a & prepended to the variable, that variable is passed
by reference and must be retrieved with the syntax $&1, $&2, etc..

If the variable passed by referenceis a one-dimensional array (i.e. adouble), then
$&1 referstoitsfirst (Oth) element and thej th element is denoted $&1[j - 1] . Be warned
that thereis no array bounds checking, and the array is treated as being one-dimensional.
A scalar or array reference may be passed to another procedure with &$&1. To save a
scalar reference, use the Poi nt er class.

Arguments of type st r def and obj r ef usecall by reference, so the calling value
may be changed by the called f unc or pr oc. Objects are discussed in Chapter 13.

Local variables

Local variables maintained on a stack can be defined with thel ocal statement. The
| ocal statement must be thefirst statement in the function and on the same line as the
pr oc statement. For example, in

proc squares() { local i, j, k/* print squares up to arg */
for (i=1; 1 <=$1; i=i+l) print i*i

declaringi,j ,andk tobel ocal insuresthat this procedure does not affect any
previously defined global variables with these names.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 12 November 24, 2004

Recursive functions

User defined functions can be used in any expression, so functions can be called
recursively. For example, the factorial function can be defined as
func fac() {
if ($1 == 0) {
return 1

el se {
return fac($1-1)*$1

}
}
and the call
fac(3)
would produce
6

It would be auser error to call this function with a negative or non-integer argument.
Besides the fact that the algorithm is numerical nonsense for those values, in theory the
function would never return since the recursive argument would never be 0. Actually,
after some time the stack frame list would overflow and an error message would be
printed, asin

oc>fac(-1)

nrnoc: fac call nested too deeply near line 10
fac(-1)

fac(-99)
fac(-98)
fac(-97)
fac(-96)
and ot hers
oc>

Input and output

The following describes simple text-based input and output. User interaction is better
performed with the graphical interface, and dealing with multiple files requires use of the
Fi | e class.

Standard hoc supplied r ead() and pri nt, which use standard input and output,
respectively. Their useisillustrated by this example

while (read(x)) {
print "value is ", X

Thereturn value of read() islif avaluewasread, and O if there was an error or end of

file (EOF). Thepri nt statement takes a comma-separated list of arguments that may be
strings or variables. A newlineis printed at the end.

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

For greater flexibility, the following built-in functions are also available.
printf("format string", argl, arg2, . . .)

printf () iscompatible with the standard C library function of the same name. It
allowsf, g, d, o, and x formats for scalar arguments, and the s format for strings.
All the %specificationsfor field width apply.

fprint("format string", argl, arg2, . . .)

fprint() issmilartoprintf (), butitsoutput goesto the file that was opened
by wopen("fil ename") . Such files are closed by wopen() with no arguments,
or by the alternative wopen(" ") . When no writefileisopen, f pri nt () defaults
to standard output. wopen() returns 0 on failure of the attempted open.

sprint(strdef, "format string", argl, . . .)

Thisfunction is very useful for building file names, and even command strings,
out of other variables. For example, if datafilesareto benameddrat . 1,
dr at . 2, etc., the names can be generated with variables in the following manner.
strdef filenane, prefix
prefix = "rat"
num = 1
sprint(filenane, "d%. %", prefix, num
After execution of these statements the, string variablef i | enanme contains
drat. 1.

fscan()

f scan() returnsthe value read sequentially from the file that was opened by
ropen("fil ename"). Thefileisclosed by caling ropen() with no argument
or with a different file name argument. r open() returnsO if the file could not be
opened. If noread fileisopen, f scan() takesitsinput from standard input.

Read files must consist of whitespace- or newline-separated numbersin any
meaningful format. An EOF will interrupt the program with an error message.
The user can avoid this with a sentinel value as the last number in the file or by
knowing how many timesto call f scan() .

getstr(strvar)

get str () readsthe next line from the file that was opened by r open() , and
assignsit to the string variable argument. The trailing newlineis part of the string.

xred("pronpt"”, default, mn, nmax)
xred() placesaprompt on the standard error device along with the def aul t
value, and waits for input on standard input. If anewline istyped, xr ed returns
the default value. If anumber istyped, it is checked to seeif itisin the range

defined by m n and max. If so, the input value is returned. If the typed number is
not in the range, the user is prompted again for a number within the proper range.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 12 November 24, 2004

xopen("fil enane™)

Thefilecaledfi | enanme isread in and executed by hoc. Thisis useful for
loading previoudly written procedures and functions that were left out of the
command line during hoc invocation.

Editing
The emcommand invokes a public domain editor that is similar, if not identical, to
MicroEMACS. Readers who wish to try this editor will find a description of itin

Appendix A2. However, most users are already familiar with some other editor, and it is
quite easy to transfer text filesinto hoc with xopen() orl oad_file().

References

Kernighan, B.W. and Pike, R. Appendix 2: Hoc manual. In: The UNIX Programming
Environment. Englewood Cliffs, NJ: Prentice-Hall, 1984, p. 329-333.

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004

Chapter 12 Index

\' 5
C
computational efficiency
why is NEURON fast? 1
E
em 18
F

funcs and procs
arguments
call by referencevs. cal by vaue 15
numarg() 14
objref 14, 15
pointer 14
positional syntax 14
strdef 14, 15
symbolic positional syntax 14
defining 13
local variable 15
recursion 16
return 13

GUI
tools
are implemented in hoc 1
work by constructing hoc programs 2

hoc 1
enhancements and extensions 1
error handling 5
history function 4
immediate mode 4

The NEURON Book: Chapter 12

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 12

interrupting execution
Kernighan and Pike 1

libraries 2
oc> prompt 4
starting and exiting 4
hoc syntax
basic input and output
fprint() 17
fscan() 17
getstr() 17
print 16
printf() 17
read() 16
ropen() 17
sprint() 17
wopen() 17
xopen() 18
xred() 17
comments 12
expressons 10
logical expressions
operators 11
float_epsilon 11
flow control 12
break 13
continue 13
ese 12
for 12
if 12
iterator 13

Page 20

iterator_statement

quit() 13

11

13

6

November 24, 2004

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 12

return 13
stop 13
while 12
keywords 7
names 7/
pointer operator 14
statements 11
compound statement 11
variables 9
built-in constants 10
cannot redefinetype 10
double 10
scalars 9
strdef 10

load file() 18
M
MicroEMACS 18
mod file 3
N
NEURON
startup banner 4
NEURON Main Menu GUI

File
Quit 4
neuron.exe 3

neurondemo 2

NMODL
translator
mknrndl| 3
nocmodl 3

nrnivmod| 3

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 21

The NEURON Book: Chapter 12

nrniv 2
adding new mechanisms
nrniv.exe 3
nrnmech.dll 3
O
oc 3
P
PFWM
isimplementedinC 1
Pointer class 15
Programmer's Reference 1
S
standard GUI library

hoc source accompanies NEURON 2
redefining functions and procedures 2

standard run library

hoc source accompanies NEURON 2
redefining functions and procedures 2

standard run system
isimplemented in hoc
stdlib.hoc 13

November 24, 2004

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

