
November 24, 2004 The NEURON Book: Chapter 13

Chapter 13
Object-oriented programming

Object orientation is in many ways a natural style of programming whose techniques
are reinvented constantly by every programmer (Coplien 1992). Object notation
consolidates these techniques so that much of the tedious programming necessary to use
them is automatically handled by the interpreter. An object can be thought of as an
abstract data type that is very useful in separating the idea of what a thing does from the
details of the way it goes about doing it. Support for objects in hoc came late to
NEURON, after the notion of cable sections, and as a consequence there are several types
of variables (e.g. sections, mechanisms, range variables) that are clearly treated as objects
from a conceptual point of view but grew up without a uniform syntax.

In hoc , an object is a collection of functions, procedures, and data, where the data
defines the state of the object. There is just enough extra syntax in hoc to support a
subset of the object-oriented programming paradigm: specifically, it supports information
hiding and polymorphism, but not inheritance. Yet this subset is sufficient to greatly
increase the user's ability to maintain conceptual control of complex programs. This
immediately provides all the power of data structures of languages such as C or Pascal,
and most of the power of modules.

Object vs. class
First let's clarify the distinction between object and class. You're close to the mark if

you think of a class as a cookie cutter that cuts out objects called cookies. A class is a
general type, whereas an object of the class is a specific instance of the type. The idea of
a class as a template motivated the keyword that signals the definition of classes in hoc:
one surrounds a collection of functions, procedures, and variables with the keywords
begi nt empl at e and endt empl at e.

From the user's point of view it is necessary to discuss how to create and destroy
objects; what is an object reference; how to call an object's methods or access its data;
and how to pass objects to functions. From the programmer's point of view it is necessary
to discuss how to define a class. Before we plunge into these details, a general overview
of objects in hoc will be useful.

The object model in hoc
The object model used by hoc manipulates references to objects, never the objects

themselves. An object reference is equivalent to a pointer, and can be regarded as a label
or alias for the actual object. Thus the assignment

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 13 November 24, 2004

ob1 = ob2

means that ob1 refers to the same object referred to by ob2, NOT that a new object is
cloned from ob2 and pointed to by ob1. Thus if ob2's object contains a variable called
dat a and that value is changed by the statement

ob2. dat a = 5

then

ob1. dat a

will print the value

5

It quickly becomes tedious to always talk about "the object referred to by xxx" so we
often shorten the phrase to "xxx", always recalling that xxx is only a label for that
object--in fact, xxx is only one of possibly many labels for the object that it points to. In
the next few paragraphs we'll strictly maintain the distinction between object reference
and object, but be aware that we don't always exert such discipline.

Objects and object references

Declaring an object reference
Just as it is often convenient to deal with

variables that can take on different numeric
values (algebra is more powerful than arithmetic),
it is often convenient to deal with object
references that can refer to different objects at
different times. Object references are declared
with

obj r ef name1, name2, name3, . . .

After an object reference has been declared, it refers to the NULLobj ect until it is
associated with some other object (see below).

Once a variable has been declared to be an object reference, it cannot be redefined as
a scalar, double, or string. The obj r ef keyword can appear within a compound
statement, but the names must originally have been declared outside any f unc or pr oc
before they can be redeclared (as obj r ef s) in a procedure.

Creating and destroying an object
You create an object with the new keyword. Thus

obj r ef g
g = new Gr aph()

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The deprecated keyword obj ect var is a
synonym for obj r ef that may be found
in older programs. The preferred obj r ef
emphasizes the pointer nature of object
references and is easier to type.

November 24, 2004 The NEURON Book: Chapter 13

uses the Gr aph template to create one Gr aph object that we can refer to as g. We'll talk
about where the templates come from later. Executing these two statements will create
one graph window on the screen.

Several object references can refer to the same object. Continuing with the present
example,

obj r ef h
h = g

does not create a second graph but merely associates h with the same Gr aph object as g.
The "reference count" of an object is the number of object references that point to it. We
would say that this Gr aph object has a reference count of 2.

If an object is no longer referenced, i.e. when its reference count is 0, it is destroyed
and the memory that held its data becomes available for any other purpose. In this
example, we can break the association between g and the Gr aph object by redeclaring g

obj r ef g

so that g once again points to the NULLobj ect . However, the graph will persist on our
screen because it is still referenced by h. To get rid of the graph we have to break this
final reference, e.g. with the statement

h = g

Using an object reference
The object reference g should be thought of as pointing to an actual object located in

the computer. This object has "members" which consist of variables that describe its
state, plus "methods" (functions and procedures) that do things to itself and to the outside
world. Some of these members are hidden from the
outside world (i.e. "private"), but others are visible
("public") and can be accessed from outside the
object. The syntax for using the public members of
an object employs a "dot" notation that is reminiscent
of how one accesses an element of a structure in C.
For example, the Gr aph class has a method called er ase() that erases graph lines, so if
g is an obj r ef that points to a Gr aph object, the statement

g. er ase()

will erase the lines in the Gr aph.

Passing objrefs (and objects) to functions

As mentioned in Chapter 12 (see Arguments under Functions and procedures),
obj r ef arguments are passed using call by reference. This has two consequences: the
called f unc or pr oc can change which object the obj r ef argument points to, and also
that it can change the object itself. As a rather artificial example of the first consequence,
let us define a pr oc that swaps the objects that two obj r ef s point to.

obj r ef ot mp / / so i t can be used as an obj r ef i n a pr oc

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Of course, in C the object reference
really is a pointer, so one would use
the arrow notation a- >b. In C++, the
object reference has the same syntax
as a reference variable.

The NEURON Book: Chapter 13 November 24, 2004

pr oc oswap() {
 ot mp = $o1
 $o1 = $o2
 $o2 = ot mp
 obj r ef ot mp / / dest r oy l i nk bet ween ot mp and $o2
}

Suppose a and b are obj r ef s that point to a Gr aph and a Vect or , respectively, so that

pr i nt " a i s " , a, " , b i s " , b

returns

a i s Gr aph[0] , b i s Vect or [3]

If we call

oswap(a, b)

and then repeat

pr i nt " a i s " , a, " , b i s " , b

we now see

a i s Vect or [3] , b i s Gr aph[0]

In other words, oswap() made these obj r ef s point to different objects.

For an even more artificial example of the second consequence, consider

pr oc f oo() { / / expect s a Vect or ar gument wi t h s i ze >= 2
 $o1. x[1] = PI
}

Suppose we declare

obj r ef dat a
dat a = new Vect or (3)
dat a. i ndgen()

which makes dat a point to a Vect or with three elements whose values are 0,1, and 2,
so that dat a. pr i nt f () returns

0 1 2

Calling f oo(dat a) and then trying dat a. pr i nt f () once more gives us

0 3. 14159 2

i.e. f oo() changed the object itself. In passing we note that call by reference also applies
to the rare situations in which it might be useful to pass an actual object name (as distinct
from an obj r ef --see Object references vs. object names below) to a pr oc or f unc .

Defining an object class
A new object class can be defined by writing hoc code that specifies the properties of

the class. This code is called a template, and once the hoc interpreter has parsed the code
in a template, the class that it defines is fixed for that session. This means that any
changes to a template require exiting NEURON and restarting.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 13

The syntax for writing a template is

begi nt empl at e c l assname
publ i c name1, name2, name3, . . .
ext er nal var i abl e1, st r i ng2, f unct i on3, t empl at e4, . . .

. . . hoc code . . .
endt empl at e c l assname

where cl assname is the name of the class that the template defines. The hoc code can
be almost anything you like, but generally it consists of declarations of variables and
definitions of procedures and functions. As noted above, a function or procedure that is
defined in a class is also called a method.

By default, every variable, pr oc , and f unc that belongs to an object will be hidden
from the outside. To make something visible from the outside, you must declare that it is
publ i c. Inside the template you cannot refer to any user-defined global variables or
functions except those that appear in an ext er nal statement. However, you can execute
built-in functions such as pr i nt f () and exp() , and you can also create objects from
any externally-defined template.

Direct commands

Direct commands within a template, e.g.

begi nt empl at e Foo
publ i c a
a = 5 / / t hi s i s a di r ect command

endt empl at e Foo

are executed once when the template is interpreted. This means that declarations such as
doubl e, st r def , f unc , xopen(f i l e) , etc., that need to be executed only once and
not for each object are useful as direct commands. However, direct commands such as
a = 5 are less useful, since the value of a is lost when an actual object is created,
because the assignment statement is not executed at that time. Thus if we create a new
object of class Foo named f oot est

oc>obj r ef f oot est
oc>f oot est = new Foo()
oc>f oot est . a
 0
oc>

we see that the value of f oot est . a is 0, not 5.

Initializing variables in an object

All variables that are declared in a template start off with a value of 0 by default. To
initialize variables to something other than 0, the template must contain an i ni t ()
procedure. This procedure will be executed automatically every time a new object is
created. If i ni t () appears in the publ i c list, you can execute it explicitly as well. For
example, if we define a new class Foo2 as

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 13 November 24, 2004

begi nt empl at e Foo2
publ i c i ni t , a
pr oc i ni t () {

a = 5
}

endt empl at e Foo2

and then create a new object of this class

oc>obj r ef f oo2t est
oc>f oo2t est = new Foo2()

now we find that f oo2t est . a has the nonzero value that we wanted

oc>f oo2t est . a
 5
oc>

Furthermore, if we assign a different value to f oot est . a

oc>f oo2t est . a = 6
oc>f oo2t est . a
 6
oc>

we can restore the original value by invoking f oo2t est . i ni t ()

oc>f oo2t est . i ni t ()
 0
oc>f oo2t est . a
 5
oc>

Keyword names

One restriction on templates is that hoc keywords cannot be redefined. This is an
artifact of the order in which symbol tables are searched. For an example of how this
affects programming, suppose we wanted to add a method to our St ack class that would
print the name of every object in the stack. It might seem reasonable do this by inserting

pr oc pr i nt () { l ocal cnt , i
cnt = l i s t . count ()
i f (cnt == 0) {

pr i nt " st ack i s empt y"
} el se {

f or i =0, cnt - 1 pr i nt l i st . obj ect (i)
}

}

into the body of the template and adding pr i nt to the publ i c statement. This would
allow us to call our new method with the highly mnemonic statement st ack. pr i nt () .
But when the interpreter tried to translate this to intermediate code, it would issue the
error message

nr ni v : par se er r or i n st ack3. hoc near l i ne 2
 publ i c push, pop, pr i nt
 ^

and we would have to change the name of the method to something else, e.g.
pr i nt names .

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 13

Object references vs. object names
Up to this point we have been using object references to refer to objects, emphasizing

the difference between an object itself and what we call it. Actually, each object does
have a unique name that can be used anywhere a reference to the object is used.
However, these unique names are primarily intended for use by the library routines that
construct NEURON's graphical interface. While it may occasionally be useful to employ
these unique names in user-written code (e.g. for diagnostic or didactic purposes), this
should never be done in ordinary programming. Object names are not guaranteed to be
the same between different sessions of NEURON unless the sequence of creation and
destruction of objects of the same type is identical. This is because the object name is
defined as cl assname[i ndex] , where the "index" is automatically incremented every
time a new instance of that class is created. Index numbers are not reused after objects are
deleted except when there are no existing objects of that type; then the index starts over
again at 0.

The reason why unique object names are allowed at all is because some objects, such
as the Poi nt Pr ocessManager , should be destroyed when their window is dismissed.
This could not happen if the interpreter had an obj r ef to that object, since an object is
destroyed only when its reference count goes to 0. Thus the idiom is to cause the VBox
window itself to increment the reference count for the object (and decrement it when the
window is dismissed, using the VBox 's r ef () or di smi ss_act i on() method). Now
the hoc obj r ef that holds the reference can safely discard it, and the object will not be
immediately destroyed. But the consequence is that there is now no way to get to the
object (or the objects it created) from the interpreter except to use the object name, e.g.
there is no other way to graph one of the point process variables in the
Poi nt Pr ocessManager .

An example of the didactic use of object names

The name of an object can be used in any context in which a string is expected, e.g. a
pr i nt obj r ef statement. For example, if we execute the statements

obj r ef g, h
g = new Gr aph()
h = g

then we see a graph on the computer screen, and

pr i nt g, h

returns

Gr aph[0] Gr aph[0]

because both g and h refer to the same Gr aph object. At this point if we type the
command pr i nt Gr aph[0] we also get Gr aph[0] .

After redeclaring g

obj r ef g

we find that pr i nt g, h gives us

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 13 November 24, 2004

NULLobj ect Gr aph[0]

Since one object reference (h) still points to Gr aph[0] , the graph is still visible, and
pr i nt Gr aph[0] still produces Gr aph[0] .

Now asserting

h = g

discards the last reference to Gr aph[0] , destroying this object. Consequently the graph
disappears from the screen, and pr i nt g, h produces

NULLobj ect NULLobj ect

Any lingering doubts concerning the fate of Gr aph[0] are dispelled when we find that
pr i nt Gr aph[0] generates the message

nr ni v : Obj ect I D doesn' t ex i s t : Gr aph[0]
 near l i ne 11
pr i nt Gr aph[0]
 ^

Using objects to solve programming problems

Dealing with collections or sets
Most, if not all, nontrivial programming problems seem to involve the notion of a set

or collection of objects. hoc can represent the concept of "more than one" in several
ways, but the workhorses are the array of objects and the list of objects. The array is the
most efficient but requires a prior knowledge of the number of objects to be stored. The
list can store any number of objects at any time; this fact makes Li st the most often used
class.

Array of objects

Storage for an array of objects is declared with

obj r ef ar r ay[s i ze]

Only rarely is the size known when the program is written, so it is common practice to
separate the declaration from the size definition, specifying the latter just after the point
in execution when the size is finally known, as in

obj r ef ar r ay[1] / / s i ze must be decl ar ed even i f wr ong
pr oc set _s i ze() {

obj r ef ar r ay[$1]
}

After the size is set, it can no longer be changed without redeclaring the entire array,
which discards the references to any objects referenced by its previous incarnation. When
an array is declared or redeclared, all of its elements reference the NULLobj ect .

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 13

An array is a random access object because its individual elements can easily be
retrieved in any sequence, just specifying the corresponding index. For example an array
of five graphs can be created with

obj r ef gr aphs[5]
f or i =0, 4 { gr aphs[i] = new Gr aph() }

The internal name of each item in the array can be printed in reverse order with

f or (i =4; i >= 0; i - = 1) { pr i nt gr aphs[i] }

Suppose we wanted to destroy the third (index = 2) graph. We can't simply say

obj r ef gr aphs[2]

because this would discard the entire array, throwing away all of our graphs and creating
a new array whose elements all point to the NULLobj ect . Instead, the way to make the
reference count for the third graph become 0 is

obj r ef ni l / / ni l poi nt s t o NULLobj ect
gr aphs[2] = ni l / / and now so does gr aphs[2]

Example: emulating an "array of strings"

Even very simple templates have their uses. There is no such thing in hoc as an array
of strings, but consider

begi nt empl at e St r i ng
publ i c s
st r def s

endt empl at e St r i ng

Now an array of objects can be used to get the functionality of an array of strings.

obj r ef s[3]
f or i =0, 2 s[i] = new St r i ng() / / t hey al l s t ar t out empt y
s[0] . s = " hel l o"
s[2] . s = " goodbye"

It is important to realize that there is no conflict between the use of s as the name of a
st r def inside the template and the use of s as the name of an object reference outside
the template.

We must mention that NEURON comes with a very similar implementation of the
St r i ng class (see st dl i b. hoc in nr n- x. x / shar e/ l i b/ hoc/ (UNIX/Linux) or
c: \ nr nxx\ l i b\ hoc\ (MSWindows)). This is automatically available after
nr ngui . hoc has been loaded.

List of objects

A list of objects uses the Li st class

obj r ef l i s t
l i st = new Li s t ()

Objects are added to the list with the append() method, as in

f or i =0, 4 { l i st . append(new Gr aph()) }

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 13 November 24, 2004

Notice that we do not have to know how many items will be added to the list before we
start adding them. One can print the names of the objects in a list with the statement,

f or i =0, l i s t . count - 1 { pr i nt l i s t . obj ect (i) }

The Li st class's count () method always returns the number of objects in the list, and
the obj ect () method returns the item.

Iteration over a list is one of the most commonly used programming idioms. This
allows processing of each item in the list, as in

obj r ef t obj
f or i =0, l i st . count - 1 {

t obj = l i s t . obj ect (i)
/ / do somet hi ng t o t he obj ect r ef er enced by t obj

}
obj r ef t obj / / onl y t he l i st hol ds a r ef er ence t o t he l ast obj ect

Notice how a temporary obj r ef is employed to refer to each object in turn.

Example: a stack of objects

This template defines a class that can be used to create stacks of objects.

begi nt empl at e St ack
publ i c push, pop
obj r ef l i s t

pr oc i ni t () {
l i st = new Li s t ()

}

pr oc push() {
l i st . append($o1)

}

pr oc pop() { l ocal cnt
cnt = l i s t . count ()
i f (cnt == 0) {

pr i nt " st ack under f l ow"
st op

}
$o1 = l i s t . obj ect (cnt - 1)
l i st . r emove(cnt - 1)

}
endt empl at e St ack

After hoc parses this template, the statements

obj r ef st ack
st ack = new St ack()

create an object that functions as a stack. At the time this new object is created, its
i ni t () procedure is executed, which creates an empty list for use by the push() and
pop() procedures. Notice that push() and pop() are public, but the internal list is
private.

Suppose we already have three Gr aph objects g[0] , g[1] , and g[2] (see Creating
an object under Objects and object references above). Then st ack. push(g[1])

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 13

adds a reference to the second Gr aph at the end of the St ack object's internal list.
st ack. pop(g[2]) would cause g[2] to reference the same object as g[1] and remove
it from the stack.

In this example, we have exploited an existing object class (Li st) to create a new
object class (St ack) that can be used to hold a stack of objects of any class we like--not
just objects of any of NEURON's built-in classes, but also objects of any other classes
that we might dream up in the future! Note the use of the Li st class's count () and
r emove() methods to find the object at the end of the list and to remove this reference
from the list.

Encapsulating code
Suppose you have a hoc file that works perfectly all by itself (when nothing else is

loaded) and does something meaningful when you type r un() at the oc> prompt. Also
suppose the file has no direct commands except declarations (if it does have direct
commands, just collect them into an i ni t () procedure). Then, if you put the these lines
at the beginning of the file

begi nt empl at e F1
publ i c r un

and this line at the end of the file

endt empl at e F1

you have an object template. You can use this template to create an object and run it, like
this

obj r ef f 1
f 1 = new(F1)
f 1. r un()

and you will get identical behavior as before. What's been gained? Well, you can do this
to a bunch of files and load them all together and never worry about variable or function
name clashes between files because nothing (except the object templates and specific
object names) is global.

Don't forget that the default initialization of variables declared in a template is 0. It is
a good idea to include an i ni t () procedure that uses explicit assignment statements to
make sure that variables will start off with the proper values. It is possible to declare a
variable with an assignment statement in procedure P1, and then use it in a publ i c
procedure P2, but be mindful of the possibility that someone may execute P2 before
executing P1. If this happens, the variable will have a value of 0.

Polymorphism and inheritance
A language supports polymorphism when it automatically does the right thing

whether a function is called on the base class or on an object of a subclass. Since an
object reference can refer to any type of object, hoc 's object model is polymorphic. Thus,
if A and B are different classes but happen to have a method with the same name, e.g.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 13 November 24, 2004

f oo() , then if or ef refers to an instance of either A or B, we can say or ef . f oo() and
the method of the particular object type will be called.

For a concrete example, suppose we have defined several different classes of objects
that generate specialized graphs called BodePl ot , Power Spect , and Cr ossCor r , and
that each of these classes has its own pl ot () and er ase() method. We can easily
automate plotting and erasing if we declare

pr oc pl ot al l () { l ocal i
 f or i = 0, gl i s t . count () - 1 gl i st . obj ect (i) . pl ot ()
}

pr oc er aseal l () { l ocal i
 f or i = 0, gl i s t . count () - 1 gl i st . obj ect (i) . er ase()
}

and, every time we spawn a new instance of one of these classes, we append it to a Li st
object, e.g.

obj r ef mygr af l i st
gl i s t = new Li s t ()
 . . .
obj r ef bp, ps, cc
bp = new BodePl ot ()
gl i s t . append(bp)
ps = new Power Spect ()
gl i s t . append(ps)
cc = new Cr ossCor r ()
gl i s t . append(cc)

Now we can take care of all of these graphs at once by invoking pl ot al l () or
er aseal l () .

Inheritance allows us to define many kinds of subclasses starting from a more abstract
base class. It is useful in capturing the "IS A" relationship, and is most effective when the
subtype "IS A" kind of base type, i.e. whenever a program uses an object of the base type
then it would also make sense if it used an object of the subtype. People often (ab)use
inheritance when the IS A relationship does not hold, in order to conveniently reuse a
portion of the base class. When one class is "ALMOST LIKE" another, and that other is
ready and waiting to be used, it is tempting to inherit the whole behavior and replace only
the parts that are different. It's best to avoid this practice and instead factor out the
behavior common to both classes, placing that in a base class which can be inherited by
both classes.

In hoc , inheritance can only be emulated by having the "subclass" instance create its
"superclass" instance during initialization and supply stub methods for calling the public
methods of the superclass. For example, consider the trivial Base class

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 13

begi nt empl at e Base
publ i c a, b
obj r ef t hi s

pr oc a() {
pr i nt f (" i ns i de %s. a() \ n" , t hi s)

}

pr oc b() {
pr i nt f (" i nsi de %s. b() \ n" , t hi s)

}
endt empl at e Base

Then the following will look like a subclass of Base, where we provide our own
implementation of a and "inherit" the method b:

begi nt empl at e Sub
publ i c a, b
obj r ef t hi s, base

pr oc i ni t () {
base = new Base()

}

pr oc a() {
pr i nt f (" i nsi de %s. a\ n" , t hi s)

}

pr oc b() {
base. b()

}

endt empl at e Sub

References
Coplien, J.O. Advanced C++ Programming Styles and Idioms. Reading, MA: Addison-
Wesley, 1992.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 13 November 24, 2004

Chapter 13 Index
C

class 1

base class 11, 12

subclass 11, 12

vs. object 1

F

funcs and procs

arguments

call by reference 3

object 3

objref 3

L

List class 9

append() 9

count() 10

iteration 10

object stack 10

object() 10

remove() 11

O

object 1

object

array 8

creating 2

destroying 2

methods 3, 5

name

how generated 7

vs. object reference 7

new 2

NULLobject 2, 3, 8

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 24, 2004 The NEURON Book: Chapter 13

using the NULLobject 9

public members

accessing from hoc 3

dot notation 3

vs. private members 3

reference count 3, 7

state 1, 3

vs. class 1

vs. object reference 1

object reference 1

cannot be redefined as scalar, double, or string 2

declaring 2

objectvar 2

objref 2

points to an object 1, 3

vs. object 1

vs. object name 7

object-oriented programming

encapsulating code 11

information hiding 1

inheritance 1, 12

polymorphism 1, 11

S

stdlib.hoc 9

String class 9

T

template 1

cannot be redefined 4

direct commands 5

names cannot redefine hoc keywords 6

variable initialization

default initialization 5

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 13 November 24, 2004

init() procedure 5

writing a template 5

begintemplate 5

endtemplate 5

external 5

public 5

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

