
June 5, 2003 The NEURON Book: Chapter 14

Chapter 14
How to modify NEURON itself

NEURON’s extensive library of functions and graphical tools has been developed
with an eye to providing those features that are most widely applicable in empirically−
based neural modeling. Since these features are necessarily rather generic, it is sometimes
desirable to have to change them or add new ones in order to meet the special needs of
individual projects. Here we show how to create new GUI tools and add new functions to
NEURON.

Graphical interface programming
The importance of the graphical user interface to the utility of software has been

repeatedly demonstrated in recent years. Creating a tool that interacts with the user
through a graphical interface is usually a highly iterative process. It is rarely clear at the
outset what manipulations of objects on the screen are feasible with reasonable
programming effort, have obvious or easily learned meanings on first approach, and
allow users to straightforwardly and rapidly reach their goals. The strategy outlined in
this section has proven useful in creating every one of the tools in the
NEURONMainMenu suite.

As a concrete example suppose we want to make a tool that allows us to graphically
specify the parameters of the Boltzmann function

y x = 1

e 4k d�x
Eq. 14.1

The half maximum of this curve is located at (d, 0.5), and the slope at this point is k.

The graphical metaphor for setting the value of d seems straightforward: just use the
cursor to drag the (d, 0.5) point on the function horizontally. By placing a small open
square mark centered at (d, 0.5) on the function, we can suggest that this is a user−
selectable "control point."

How to set the value of k is less obvious. It seems quite natural to use the cursor’s x
coordinate for midpoint control, but simultaneously using its y coordinate to control the
slope turns out to be neither intuitive nor convenient. One alternative could be to use a
second control point at the 80% y value that can be dragged back and forth horizontally;
this limits how small the slope can be, but it might be adequate. Another possibility is to
place the slope control point a fixed distance away from the midpoint. In this case the
function is always drawn so that the slope control point is on the line between the current
cursor location and the midpoint. Finally, perhaps it would be better to allow the user to

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 14 June 5, 2003

click on any point of the curve and redraw the curve so that it follows the cursor
wherever the cursor is dragged.

Experimenting with the various styles of setting the slope parameter can be done
later. The burning question now is how to even get started.

Clearly we need a canvas on which to plot the curve and a way to get mouse button
events and cursor coordinates when one clicks in the canvas and drags the cursor to a
new location. We can get a Graph onto the screen with

objref g
g = new Graph()

and test the mouse input handling capability by specifying what procedure handles a
mouse event with

g.menu_tool("A new mouse handler", "handle_mouse")

This creates a new radio style menu item at the end of the graph menu with the label "A
new mouse handler". If this menu item is selected, then future mouse button presses in
the graph canvas will cause the procedure named handle_mouse() to be called with
four arguments. These arguments specify the state of the left mouse button, cursor
coordinates, and whether the shift, control, and/or alt key is being pressed. The
handle_mouse() procedure does not have to be defined when the menu_tool()
function is executed, but it certainly must be defined by the time it is supposed to be
called.

As a quick test, we can use this procedure

proc handle_mouse() {
print $1, $3, $3, $4

}

for a concrete demonstration of mouse input handling. Using tests like this is an excellent
way to get feedback about the meaning of a method that is far more specific than reading
the reference manual can provide.

General issues
We can go quite far by trying things out one at a time and verifying that the hoc code

is working the way we want. However, experience has shown that sooner or later it is
becomes necessary to grapple with the following issues.

� How to encapsulate a tool so that its variables do not conflict with other tools. This
tool defines the variables k and d, and will probably also demand that we invent a lot
of other names for functions and variables. Keeping all of these names localized to a
particular context so that it doesn’t matter if they are used in other contexts is one of
the benefits of object oriented programming.

� How to allow many instances of the same type of tool. If this tool is ever used as a
part of a larger channel builder tool to help describe the steady state as a function of
voltage, there will be a need for separate pairs of Boltzmann parameters for every

Page 2 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

channel state transition. Here is another benefit one almost gets for free with object
oriented programming.

� How to save a tool so the user doesn’t lose the data that was specified with the tool.
The values of k and d for one of our objects may represent a great deal of thought and
effort. Even the small matter of repeatedly dragging a window to its desired location
and resizing it tends to become unbearably tedious. The user should be able to save
the window in a session file so that the tool is re−instantiated any time the session file
is retrieved.

� How to destroy the tool when its window is closed. We want our tool to exist only by
sufferance of the user. It should be destroyed if and only if the user presses the Close
button. Objects in hoc are reference counted. This normally means that an object
stays in existence as long as there is some object reference variable (objref) that
references it. If an object is no longer referenced, it is destroyed and the memory
holding its data is available for any other purpose. Think of a reference as a label on
the object: when the last label is removed the object is destroyed. This causes two
opposite problems for graphical interface tools if special provision is not made to
handle the reference issue. First, the memory used by the tool would not be reclaimed
when the window is closed. This isn’t so bad in our situation, but can be very
confusing for tools that manage a point process or even an entire cell if those items
stay in existence. The second problem is that a tool instance can be inadvertently
destroyed along with its window without the user’s pressing the Close button on the
window. This can happen if the only reference to the tool instance is reused when a
new instance is created.

Although it may seem tedious at first, the small effort of starting a tool development
project with a pattern that addresses all these issues is quickly repaid. An initial version
of the pattern begins by defining a new class that will be used to encapsulate the tool data
and code.

A pattern for defining a template

The name we have chosen for this class is BoltzmannParameters (Listing 14.1).
The overall style of the pattern is to declare the names of things used in the template first,
and then to declare procedures and functions. The public g statement declares that g is
accessible to the outside world, and objref g declares that its type is "reference to an
object."

Following the template definition are two statements that create an instance of the
class. This facilitates the edit−run−diagnose cycle by ensuring that, when NEURON
executes this code, we don’t need to type anything into the interpreter in order to see the
result of our file modifications. The purpose of creating the Graph at this point is merely
to cause the object to do something visible on the screen when it is created (Fig. 14.1).

As an aside we must note that typographic and other kinds of trivial errors are
common, so it is a good idea to develop a program in stages, making only a few additions
at a time. Building a tool requires many iterations of incrementally adding to and editing
the hoc code that defines it and then launching NEURON to test it. In a windowed

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 14 June 5, 2003

desktop environment such as MSWindows, MacOS, or Xwindows, this cycle can be
facilitated by using two windows: one for keeping the file open in an editor, and the
other for running NEURON after an editor save (e.g. by double clicking on the name of
the hoc file). For the sake of concreteness, we will assume that the hoc code for our tool
will be saved to a file named bp.hoc.

begintemplate BoltzmannParameters
public g
objref g

proc init() {
g = new Graph()

}
endtemplate BoltzmannParameters

// the following lines facilitate debugging
objref b
b = new BoltzmannParameters()

Listing 14.1. Initial version of bp.hoc creates an object and produces a visible
result (Fig. 14.1).

Close

50 100 150 200 250
20

60

100

140

180

50 100 150 200 250
20

60

100

140

180

Graph x 0 : 300 y 0 : 200

Hide

Fig. 14.1. The graph window generated by the code in Listing 14.1.

After executing the code in Listing 14.1, we can perform additional tests by entering
a few simple commands into the interpreter at the oc> prompt:

oc>b
BoltzmannParameters[0]

oc>b.g
Graph[0]

oc>b.init()
init not a public member of BoltzmannParameters

The init() procedure is automatically called whenever a new instance of the template
is created. In most cases it doesn’t make sense to call it again, so it is usually not declared
public.

Enclosing the GUI tool in a single window

Unfortunately the relationship between the object BoltzmannParameters[0] and
the window on the screen is easily shown to be inappropriate. Pressing the Close button
destroys the window but doesn’t get rid of the BoltzmannParameters[0] object

Page 4 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

because the latter is still referenced by b. Furthermore, redeclaring b or making it
reference another object will destroy BoltzmannParameters[0] because its reference
count is reduced to 0. For a tool, this should only happen when one closes the window.

The current situation is that b references our tool instance, b.g references the Graph
in our tool, but the window doesn’t reference anything. We need a way for the window to
reference the tool. We can augment our pattern so that this happens by enclosing the
Graph in a VBox which references the tool itself, and making sure that this VBox is the
only reference to the tool. The pattern now looks like:

begintemplate BoltzmannParameters
public g, box
objref g, box, this

proc init() {
box = new VBox()
box.ref(this)
box.intercept(1)
g = new Graph()
box.intercept(0)
box.map()

}
endtemplate BoltzmannParameters

// the following lines facilitate debugging
objref tmpobj
proc makeBoltzmannParameters() {

tmpobj = new BoltzmannParameters()
objref tmpobj

}
makeBoltzmannParameters()

Listing 14.2. bp.hoc revised for proper management of reference count.

Between the box.intercept(1) and box.intercept(0) statements, anything that
would create a window becomes arranged vertically in a Vbox (or horizontally if it is an
Hbox). When this is declared as an object reference, it always refers to the object that
declared it. The box.ref(this) statement has the effect that, when the last window
created by the box is closed, the reference count of the tool is decremented. If this makes
the reference count equal to 0, the tool is destroyed. When boxes are nested, only the
outermost (the one with an actual window) requires this idiom. The code at the end of
this revised bp.hoc creates an instance of our tool, and then immediately redeclares
tmpobj in order to guarantee that the only remaining reference to the tool is the one
associated with the Vbox.

The pattern is now in a form that can be integrated into the standard
NEURONMainMenu / Tools / Miscellaneous menu with

add_miscellaneous("BoltzmannParameters", \
"makeBoltzmannParameters()")

Our init() procedure is collecting a lot of odds and ends; readability would be better
served by separating the different idioms into procedures. Listing 14.3 shows the
organization we prefer. Also note the changes to map(), which add the useful feature of

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 14 June 5, 2003

giving the window a title that reflects the name of the tool instance. These changes
produce the window shown in Fig. 14.2.

strdef tstr

proc init() {
build()
map()

}

proc build() {
box = new VBox()
box.ref(this)
box.intercept(1)
g = new Graph()
box.intercept(0)

}

proc map() {
sprint(tstr, "%s", this)
box.map(tstr)

}

Listing 14.3. Revision of init() to enhance clarity.

Close

50 100 150 200 250
20

60

100

140

180

50 100 150 200 250
20

60

100

140

180

BoltzmannParameters[0]

Hide

Fig. 14.2. Changes in the map() procedure (Listing 14.3) turn the window title
into the name of the tool instance (compare with Fig. 14.1).

Saving the window to a session

The last enhancement to our basic tool pattern provides a way to save the tool in a
session file so it can be recreated properly when the session file is loaded. This
enhancement involves several changes to bp.hoc (see Listing 14.4). Before examining
these, we must point out that everything in this code is independent of the future
implementation of the particulars of what we want our tool to do. It just gives us a
starting framework to which we can add specific functionality.

The principal change to bp.hoc is the addition of a new save() procedure that can
print executable hoc code lines to the session file. Most of the statements in save() are
of the form box.save("string"). Since our tool has a graph, it is a good idea to save
its size. This can be done explicitly by building an appropriate statement, but a simple
idiom is to call its save_name method (see g.save_name("ocbox_.g", 1)) since

Page 6 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

this will also save any new views of the graph that were generated by the user. This must
be done at the top level, so the graph reference has to be public.
begintemplate BoltzmannParameters

public g, box, map
objref g, box, this
strdef tstr

proc init() {
 build()
 if (numarg() == 0) {
 map()
 }
}

proc build() {
 box = new VBox()
 box.save("save()")
 box.ref(this)
 box.intercept(1)
 g = new Graph()
 box.intercept(0)
}

proc map() {
 sprint(tstr, "%s", this)
 if (numarg() == 0) {
 box.map(tstr)
 } else {
 box.map(tstr, $2, $3, $4, $5)
 }
}

proc save() {
 box.save(\"load_file(\"bp.hoc\", \"BoltzmannParameters\")\n}\n{")
 box.save("ocbox_ = new BoltzmannParameters(1)")
 box.save("}\n{object_push(ocbox_)}")
 // insert tool−dependent statements here
 box.save("{object_pop()}\n{")
 g.save_name("ocbox_.g", 1)
}

endtemplate BoltzmannParameters

// the following lines facilitate debugging
objref tmpobj
proc makeBoltzmannParameters() {

tmpobj = new BoltzmannParameters()
objref tmpobj

}
makeBoltzmannParameters()

Listing 14.4. This refinement of bp.hoc generates a tool that can be saved and
retrieved from a session file.

A related change to bp.hoc is the addition of box.save("save()") to the
build() procedure. This designates save() as the procedure that will be called when
the tool is saved to a session file.

Changes to init() and map() are necessitated by the fact that we want the tool to
be properly mapped to the screen regardless of whether we have created it for the first
time, or instead are reconstituting it from a session file. If a tool is created de novo, it
should appear in a default location with default initializations of its various user−

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 14 June 5, 2003

specifiable parameters. However, if it is being recreated from a session file, we want it to
appear in the same location and with the same parameter values as when it was saved.

Making this happen involves three related changes to bp.hoc. First, the init()
procedure has been modified so that calling it without an argument will cause the
window to be mapped immediately with its defaults. Otherwise, the mapping is deferred,
so that code in the session file can specify its location etc.. The second change is to the
map() procedure: when called with no arguments, it will make the tool appear in its
default position. Alternatively map() can be called from the session file with arguments
that specify where the tool will be drawn on the screen. This brings us to the third
change, which is to add map to the public statement at the top of the template
(otherwise map() couldn’t be called from the session file).

objectvar save_window_, rvp_
objectvar scene_vector_[3]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List() scene_list_ = new List()}

//Begin BoltzmannParameters[0]
{
load_file("bp.hoc", "BoltzmannParameters")
}
{
ocbox_ = new BoltzmannParameters(1)
}
{object_push(ocbox_)}
{object_pop()}
{
{
save_window_=ocbox_.g
save_window_.size(0,300,0,200)
ocbox_.g = save_window_
save_window_.save_name("ocbox_.g")
}
ocbox_.map("BoltzmannParameters[0]", 403, 30, 314.25, 249.75)
}
objref ocbox_
//End BoltzmannParameters[0]

objectvar scene_vector_[1]
{doNotify()}

Listing 14.5. The contents of the session file created by executing Listing 14.4
and then saving the tool to a session.

Saving this tool to a session file by itself produces the text shown in Listing 14.5.
NEURON’s internal code for saving session files first prints several statements that
declare object reference variables used by various kinds of windows. The only statement
that concerns us here is the declaration of ocbox_, which is used by boxes to map
themselves to the screen as windows.

Next it prints a comment that contains the title of the window, and then it calls our
save() procedure. The subsequent lines up to save_window_ are exactly the strings
printed by the save() procedure of bp.hoc. The first of these strings is

load_file("bp.hoc", "BoltzmannParameters")

Page 8 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

which makes sure that the code for our template is loaded, and the next is

ocbox_ = new BoltzmannParameters(1)

which uses the ocbox_ object reference to create an instance of our tool. Note the use of
an argument to prevent the init() procedure from mapping the tool to the screen. The
object_push() causes succeeding statements to be executed in the context of the
object. This allows access to any of the variables or functions in the object even if they
are not public. The graph reference must be public because object_pop() returns to
the previous context, which is normally the top level of the interpreter.

"Top level" refers to the interpreter dealing with global variables rather
than variables that are only visible inside templates. Strictly, I suppose one
can say the interpreter is executing at the top level unless it is executing
code that is declared in a template or class. When the interpreter is not at
the top level but inside a template, you may often find it useful to
temporarily get back to the top level with execute("statement").

After the save() procedure returns, the map method is called for ocbox_ with the
first argument being the title of the window, followed by four more size arguments
which specify the screen location of the window. Since we commandeered ocbox_ as
the reference for our tool, our own map procedure is called instead and we replace
whatever title was used by the current authoritative instance name. Our map() procedure
also uses the four placement arguments if they exist (they don’t if map() is called from
init()).

Tool−specific development

Plotting

This tool is supposed to display a Boltzmann function, so an obvious first step is to
define the function, declare the parameters we will be managing, and plot the function.
Since any names we invent are nicely segregated so they can’t conflict with names at the
top level of the interpreter or names in any other tool, we can safely use the natural
names that first come to mind.

The Boltzmann function can go anywhere in the template.

func b() {
return 1/(1 + exp(−4*k*(d − $1))

}

The first argument is referred to as $1 in a function body. The parameters are used here,
and this is sufficient to declare them, but their default values would be 0. To give them
better defaults we add

k = 1
d = 0

to the body of the init() procedure.

Plotting the function raises the issue of the proper domain and the number of points.
We could get sophisticated here with regard to plotting points at x values that nicely

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 14 June 5, 2003

follow the curve, but instead we will just plot 100 line segments with a domain defined
by the current graph scene size.

proc pl() {local i, x, x1, x2
g.erase_all
x1 = g.size(1)
x2 = g.size(2)
g.begin_line
for i=0, 100 {

x = x1 + i*(x2 − x1)
g.line(x, b(x))

}
g.flush

}

This procedure starts with erase_all because it will eventually be called whenever k or
d is changed. For now we get a drawing on the graph by calling pl() at the end of the
map() procedure.

Making these changes and running bp.hoc produces the error message

c:\NRN\BIN\Neuron.exe: parse error in
 C:\WINDOWS\Desktop\b.hoc near line 20
 return 1/(1 + exp(−4*k*(d − $1))
 ^

because the Boltzmann function was missing a closing parenthesis. Parse errors mean
something is wrong with the syntax of the statement, and most languages give better
details about what might be invalid. The carat indicates the point where the parser failed,
which is usually usually an important clue, but failure may not occur until several tokens
after the actual mistake. One common parse error in apparently well−formed statements
is the wrong type of a name, e.g. specifying a string where a scalar variable is required.

Adding the parenthesis and trying again, we find that beginline was misspelled.
This error occurred at run time, so the call stack was printed, which gives very helpful
information about the location of the error. Generally, run time messages are more
pertinent to that actual problem than are syntax error messages, although logic errors can
be very difficult to diagnose. Of no help at all is the line number, which refers to the last
line that was parsed (makeBoltzmannParameters()).

begin_line not a public member of Graph
c:\NRN\BIN\Neuron.exe: Graph begin_line in
 C:\WINDOWS\Desktop\b.hoc near line 75
 makeBoltzmannParameters()
 ^
 BoltzmannParameters[0].pl()
 BoltzmannParameters[0].map()
 BoltzmannParameters[0].init()
 makeBoltzmannParameters()

Another try gives

c:\NRN\BIN\Neuron.exe: exp result out of range in
C:\WINDOWS\Desktop\b.hoc near line 75
makeBoltzmannParameters()
 ^

Page 10 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

Testing exp(−10000) shows there is no underflow problem with this function, and
exp(700) is below the overflow limit. A slight elaboration of b() to take this into
account is then

func b() { local x
x = −4*k*(d − $1)
if (x > 700) { return 0 }
return 1/(1 + exp(x))

}

Now we no longer get an "out of range" message, but the Graph still appears to
empty, looking identical to Fig. 14.2. Invoking the Graph menu item "View = plot" turns
this into a featureless grey rectangle (Fig. 14.3).

Close

BoltzmannParameters[0]

Hide

Fig. 14.3. After the numeric overflow problem is eliminated, the graph seems
to be empty. However, View = plot turns the window contents grey, indicating
that something else is wrong.

This is puzzling at first, but after a moment’s reflection we try adding

print $1, 1/(1 + exp(x))

just before the return statement in func b(), and run the code again. This diagnostic
test results in NEURON printing just one pair of values

25 3.720076e−44

which is a clue to what should have been obvious: instead of one mistake, there are two.

The first error was in the way the desired x value was calculated in proc pl(),
which should have read

x = x1 + i*(x2 − x1)/100

The second error was to accept the default dimensions of the graph, which have x
running from 25 to 275 so that b() is too small to be of interest. This can be fixed by
adding the line

g.size(−5, 5, 0, 1)

after creating the graph in the build() procedure.

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 14 June 5, 2003

Close Hide

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

BoltzmannParameters[0]

Fig. 14.4. The graph after fixing the range of x values and specifying
appropriate dimensions.

Now the graph produced by this template looks pretty good, but it has a slope of −1.
This is just carelessness; maybe we fell into thinking that exponentials always have
negative arguments, as if everything is a time constant. Let us strike a mutual pact never
to make another mistake.

Handling events

The following lines, placed in the build() procedure after the Graph has been
created, specifies how mouse events are handled.

g.menu_tool("Adjust", "adjust")
g.exec_menu("Adjust")

The exec_menu selects the menu item Adjust as the current tool for mouse event
handling. That is, press, drag, or release of the left mouse button while the mouse cursor
is over the Graph will cause a procedure named adjust() to be called with arguments
that specify the type of event (press, drag, or release), the scene coordinates of the cursor,
and the state of the control, shift, and alt keys.

proc adjust() {
if ($1 == 2) { // left mouse button pressed

adjust_ = 0
// $2 and $3 are scene coords of mouse cursor
if (ptdist($2, $3, d, 0.5) < 100) {

adjust_ = 1
} else if (ptdist($2, $3, $2, b($2)) < 100) {

adjust_ = 2
}

}
if (adjust_ == 1) {

d = $2
pl()

}
if (adjust_ == 2) {

// keep y value within function domain
if ($3 > 0.99) $3 = 0.99
if ($3 < 0.01) $3 = 0.01
// avoid singularity at x == d
if ($2 > d || $2 < d) {

// change k so that curve passes through
// cursor location

Page 12 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

k = log(1/$3 − 1)/(4 * (d − $2))
pl()

}
}

}

func ptdist() {
return 1

}

Listing 14.6. The handler for mouse events is proc adjust().

The adjust() procedure needs to decide whether d or k is the parameter of interest.
If the mouse cursor is within 10 pixels of the current (d, 0.5) then on every event we’ll
set the value of d to the cursor’s x coordinate. Otherwise, if the cursor is within 10 pixels
of any other point on the curve, we’ll set the value of k on every mouse event so that the
curve will pass through the cursor’s location. Just to get things working, for now we
defer the calculation of pixel distance between two points, using instead a ptdist()
function that always returns 1 so that we always end up setting d. We compare to 100,
instead of 10, because we won’t bother taking the square root when we calculate the
distance.

Running b.hoc, placing the mouse cursor over the Graph canvas, and dragging it
back and forth with the mouse button pressed shows satisfying tracking of the curve with
the cursor (Fig. 14.5 A), so there is no need to worry yet about performance.

Testing the ability of adjust() to change k is easily done by temporarily forcing
adjust_ to have the value 2 on the press event. In considering the inverse of the
Boltzmann function, there are limits on the range 0 < y < 1 and a singularity at x == d.
This first attempt at doing something reasonable is likely to be sufficient but we won’t
know until we try it. In fact, I’m very pleased−−much better than another control point
for k (Fig. 14.5 B).

Close

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

BoltzmannParameters[0]

Hide Close Hide

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

BoltzmannParameters[0]

A B

Fig. 14.5. A. The code in Listing 14.6 enables click and drag to shift the curve from
side to side. B. Forcing adjust_ to 2 allows us to test the use of this tool to set k.

Some kind of mark, e.g. a little open square, is needed to indicate the control point at
(d, 0.5). To do this we put

g.mark(d, 0.5, "s", 8)

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 14 June 5, 2003

just before g.flush in the pl() procedure. A size of 8 points is perhaps a bit large for
a control point (Fig. 14.6). Later we will add a visual readout of the values of d and k.

So far, plotting and handling events has been natural in model coordinates. However,
calculating proximity between something plotted on a Graph and the location of the
mouse cursor is best done in pixel or screen coordinates, since that avoids the problems
caused by disparities between model x and y scales. This requires revisions to
ptdist(), where the information needed to transform between model and screen
coordinates will be obtained by a sequence of calls to the view_info() function. I can
certainly never remember the details of the various arguments for view_info() and
need to refer to the help page.

Since each Graph can be displayed in more than one view simultaneously, the
transformation between model coordinates and screen coordinates depends on which
view we are interested in. Of course, the view we want is the one that contains the mouse
cursor. and this is the purpose of the first call to view_info().

func ptdist() {local i, x1, y1, x2, y2
i = g.view_info() // i is the view in which

// the mouse cursor is located
// $1..$4 are scene (x,y) of mouse cursor
// and corresponding point on curve, respectively
x1 = g.view_info(i, 13, $1)
y1 = g.view_info(i, 14, $2)
x2 = g.view_info(i, 13, $3)
y2 = g.view_info(i, 14, $4)
return (x1 − x2)^2 + (y1 − y2)^2

}

A little testing shows that it is difficult to get the cursor near enough to the curve
when the slope is large, because even a slight offset in the x coordinate causes a large
jump of b(x) away from the cursor’s y coordinate. We can fix this by adding a clause to
adjust() that detects whether the horizontal distance between the cursor and the curve
is small. Thus

} else if (ptdist($2, $3, $2, b($2)) < 100) {

becomes

} else if (ptdist($2, $3, $2, b($2)) < 100 \
 || abs($2 − b_inv($3)) < 10 {

Note that a backslash at the end of a line is a statement continuation character.
Implementation of b_inv(), the inverse to the Boltzmann function, is more than 90%
argument and parameter testing.

func b_inv() {local x
if ($1 >= 1) {

x = 700
} else if ($1 <= 0){

x = −700
} else {

x = log(1/$1 − 1)
}
if (k == 0) {

return 1e9
}

Page 14 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

return d − x/(4*k)
}

Finishing up

As mentioned earlier, it would be nice to have a direct indication of the values of the
parameters. To do this, we add a horizontal panel to the bottom of the VBox and make
the field editor buttons call the plot function pl() whenever the user changes the value.
Also, when a Graph menu tool is created within the scope of an open xpanel, the tool
selector appears as a radio button in the panel. The code fragment to do this, in context in
the build() procedure, is

g = new Graph()
g.size(−5,5,0,1)
xpanel("", 1)

xpvalue("k", &k, 1, "pl()")
xpvalue("d", &d, 1, "pl()")
g.menu_tool("Adjust", "adjust")

xpanel()
g.exec_menu("Adjust")

We use xpvalue() and pointers, instead of xvalue() and variable names, because
field editors assume variable names are at the top level of the interpreter. This is in
contrast to action statements, such as pl() in this instance, which are executed in the
context of the object. Figure 14.6 shows what the tool now looks like.

Close Hide

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

k 1 d Adjust−3

BoltzmannParameters[0]

Fig. 14.6. Final appearance of the "Boltzmann Parameters" tool. The parameter
values displayed are for the leftmost curve. Other curves with arrows suggest
the process of selection and dragging the mouse.

The last touch is to change the save() procedure so that it saves the tool−specific
state. Since model scene coordinates are saved by default instead of view coordinates, it
is also a good idea in this case to make them equivalent. This is done by adding these
tool−dependent statements to save()

// insert tool−dependent statements here
sprint(tstr, "{k=%g d=%g}", k, d)
box.save(tstr)
g.exec_menu("Scene=View")

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 14 June 5, 2003

The first two statements, which incidentally take advantage of the tstr string variable
that already exists, write the assignments of k and d to the session file, while the third one
takes care of making scene and view coordinates equivalent.

The entire code for the final implementation of our tool is shown in Listing 14.7.
begintemplate BoltzmannParameters
 public g, box, map
 objref g, box, this
 strdef tstr

 proc init() {
 k = 1
 d = 0
 build()
 if (numarg() == 0) {
 map()
 }
 }

 proc build() {
 box = new VBox()
 box.save("save()")
 box.ref(this)
 box.intercept(1)
 g = new Graph()
 g.size(−5,5,0,1)
 xpanel("", 1)
 xpvalue("k", &k, 1, "pl()")
 xpvalue("d", &d, 1, "pl()")
 g.menu_tool("Adjust", "adjust")
 xpanel()
 g.exec_menu("Adjust")
 box.intercept(0)
 }

 proc map() {
 sprint(tstr, "%s", this)
 if (numarg() == 0) {
 box.map(tstr)
 } else {
 box.map(tstr, $2, $3, $4, $5)
 }
 pl()
 }

 proc save() {
 box.save("load_file(\"bp.hoc\", \"BoltzmannParameters\")\n}\n{")
 box.save("ocbox_ = new BoltzmannParameters(1)")
 box.save("}\n{object_push(ocbox_)}")
 // insert tool−dependent statements here
 sprint(tstr, "{k=%g d=%g}", k, d)
 box.save(tstr)
 g.exec_menu("Scene=View")
 // end of tool dependent statements
 box.save("{object_pop()}\n{")
 g.save_name("ocbox_.g", 1)
 }

 func b() { local x
 x = 4*k*(d − $1)
 if (x > 700) { return 0 }
 return 1/(1 + exp(x))

Page 16 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 14

 }

 proc pl() { local i, x, x1, x2
 g.erase_all
 x1 = g.size(1)
 x2 = g.size(2)
 g.beginline
 for i=0, 100 {
 x = x1 + i*(x2 − x1)/100
 g.line(x, b(x))
 }
 g.mark(d, 0.5, "s", 8)
 g.flush
 }

 proc adjust() {
 if ($1 == 2) { // left mouse button pressed
 adjust_ = 0
 // $2 and $3 are scene coords of mouse cursor
 if (ptdist($2, $3, d, 0.5) < 100) {
 adjust_ = 1
 } else if (ptdist($2, $3, $2, b($2)) < 100 \
 || abs($2 − b_inv($3)) < 10) {
 adjust_ = 2
 }
 }
 if (adjust_ == 1) {
 d = $2
 pl()
 }
 if (adjust_ == 2) {
 if ($3 > 0.99) $3 = 0.99
 if ($3 < 0.01) $3 = 0.01
 if ($2 > d || $2 < d) {
 k = log(1/$3 − 1)/(4 * (d − $2))
 pl()
 }
 }
 }

 func ptdist() {local i, x1, y1, x2, y2
 i = g.view_info() // i is the view in which
 // the mouse cursor is located
 // $1..$4 are scene (x,y) of mouse cursor
 // and corresponding point on the curve, respectively
 x1 = g.view_info(i, 13, $1)
 y1 = g.view_info(i, 14, $2)
 x2 = g.view_info(i, 13, $3)
 y2 = g.view_info(i, 14, $4)
 return (x1 − x2)^2 + (y1 − y2)^2
 }

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 14 June 5, 2003

 func b_inv() {local x
 if ($1 >= 1) {
 x = 700
 } else if ($1 <= 0){
 x = −700
 } else {
 x = log(1/$1 − 1)
 }
 if (k == 0) {
 return 1e9
 }
 return d − x/(4*k)
 }
endtemplate BoltzmannParameters

Listing 14.7. Complete source code for the BoltzmannParameters tool.

Page 18 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

