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Chapter 3
Expressing conceptual models in mathematical terms

Computational neuronal modeling usually focusses on voltage and current in
excitable cells, but it is often necessary to represent other processes such as diffusion,
chemical reactions, and the behavior of electronic instrumentation. These phenomena
seem quite different from each other, and each has evolved its own distinct "notational
shorthand." Because these specialized notations have particular advantages for addressing
domain−specific problems, NEURON has provisions that allow users to employ each of
them as appropriate (see Chapter 9: How to expand NEURON’s library of
mechanisms). Apparent differences notwithstanding, there is a fundamental parallel
among these notations that can be exploited at the computational level: all are equivalent
to sets of algebraic and differential equations. In this chapter, we will examine the
mathematical representations of chemical reactions, electrical circuits, and cables.

Chemical reactions
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Fig. 3.1. Left: a voltage−gated channel modeled as a three−state kinetic
scheme with voltage−dependent rate constants. Right: cartoon of a model of
acetylcholine (ACh) release that involves the influx, buffering, and diffusion of
calcium, exocytosis requiring binding of three calcium ions per vesicle, and
enzymatic breakdown of ACh (rate constants omitted for clarity).

A natural first step in thinking about voltage− or ligand−gated channel models or
elaborate cartoons of dynamic processes is to express them with chemical reaction
notation, i.e. kinetic schemes (Fig. 3.1). Kinetic schemes focus attention on conservation
of material (in a closed set of reactions, material is neither created or destroyed) and flow
of material from one state to another. 
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The notion of "state" is context−dependent: it may mean actual material quantity of a
molecular species (sometimes moles, sometimes mass), the well−stirred molar
concentration in a volume or the density on a surface, or the probability of a particle
being in a particular state. Thus when we refer to "the value of state A" we mean a value
expressed in the dimensions of A. When A is in units of concentration or density, "the
material in state A" is the product of A and the size of the compartment (volume or
surface) in which A is distributed. 

Flux and conservation in kinetic schemes
In a kinetic scheme, arrows that point toward or away from a state represent paths

along which material enters or leaves the state. For each state there is a differential
equation that expresses how the amount of material in the state is affected by fluxes that
enter and leave it. These differential equations are specified by the states in the kinetic
scheme and the paths along which material can move between them. 

Thus 

A →
k

B
Eq. 3.1

means that material leaves state A at a rate that is proportional to the product of the value
of A and a rate constant k, where A and k are understood to be nonnegative. From the
standpoint of state A, the flux along this path is −kA, and this defines a term in the
differential equation for this state. 

dA

dt
=�k A Eq. 3.2a

But the flux that leaves A in Eq. 3.1 is just the flux that enters B, so 

dB

dt
= k A Eq. 3.2b

Suppose we have a closed system in which Eq. 3.1 is the only chemical reaction that
can occur. Adding Eqns. 3.2a and b together, we have 

dA

dt
+ dB

dt
= 0 Eq. 3.3

which we can integrate to get 

A + B = a constant Eq. 3.4

Equation 3.4 is a statement of the principle of conservation of material: in a closed
system with the reaction described by Eq. 3.1, the sum of A and B is conserved. 

Any kinetic scheme is easily translated into a corresponding set of differential
equations. Each differential equation expresses the rate of change of each state as the
difference between the flux entering the state and the flux leaving the state. For example
the kinetic scheme 
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Eq. 3.5

has five states, and is equivalent to five differential equations. Focussing on B, we see
that the flux entering is the sum of k1 A, k3 C, and k4 D, while the flux leaving is the sum

of k2 B and k5 B, so the corresponding differential equation is 

dB

dt
= k

1
A � k

2
+ k

5
B + k

3
C + k

4
D Eq. 3.6a

The differential equations for the other states are 

dA

dt
=�k

1
A + k

6
E Eq. 3.6b−e

dC

dt
= k

2
B � k

3
C

dD

dt
=�k

4
D

dE

dt
= k

5
B � k

6
E

To derive the conservation rules for a kinetic scheme, we just find linear
combinations of these equations that add up to 0, and then integrate them. For the
example of Eq. 3.6, we see that adding all of the equations together gives 

dA

dt
+ dB

dt
+ dC

dt
+ dD

dt
+ dE

dt
= 0 Eq. 3.7

which we integrate to obtain the conservation rule 

A + B + C + D + E = a constant Eq. 3.8

i.e. the sum of the five states is conserved.

Stoichiometry, flux, and mole equivalents
In the reaction

A + B →
←
k

b

k
f

C Eq. 3.9
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we see that producing one mole of C requires consumption of two moles: one mole of A,
and one mole of B. That is, a change of C implies equal (but opposite) changes of A and
B. The forward flux is kf A B and the backward flux is kb C, so this reaction translates to

the differential equations 

dA

dt
=� k

f
A B + k

b
C

dB

dt
=� k

f
A B + k

b
C Eq. 3.10

dC

dt
= k

f
A B � k

b
C

from which we can generate several different linear combinations that add up to zero.
Two obvious combinations are

dA

dt
+ dC

dt
= 0 Eq. 3.11a

and

dB

dt
+ dC

dt
= 0 Eq. 3.11b

from which we conclude that both A + C and B + C are conserved. Note that A, B, and C
must have the same units (otherwise Eqns. 3.11a and b would involve the addition of
dimensionally inconsistent values), while kb has units of 1/time and kf is in units of

1/time × units of A.

Confusion may occur with reactions like 

A + A →
←
k

b

k
f

B Eq. 3.12

or the equivalent 

2 A →
←
k

b

k
f

B Eq. 3.13

if the underlying principle of conservation is overlooked. There is certainly no question
that the equation for B is 
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dB

dt
= k

f
A2 � k

b
B Eq. 3.14

but what can we say about dA/dt?

To answer this question, we reexamine Eq. 3.13 and realize that it means that two
moles of A produce one mole of B. So an increase of B implies twice as large a decrease
of A, i.e. 

dA

dt
= 2 �k

f
A2 + k

b
B Eq. 3.15

From Eqns. 3.14 and 15 we see that, in a closed system described by Eq. 3.13, 

dA

dt
+ 2

dB

dt
= 0 Eq. 3.16

and the conservation rule is that A + 2B is constant.

Compartment size
Textbook treatments of kinetic schemes generally begin with the explicit assumptions

that all states use identical dimensions (usually concentration) and are distributed in the
same volume. Up to this point, we have tacitly made the same assumptions, because they
allow kinetic schemes to be translated into differential equations without having to take
compartment size into account.

However, in neuronal modeling this is often too restrictive. Consider a model of the
role of diffusion and active transport in regulating the amount of calcium in a thin shell
adjacent to the cell membrane (Fig. 3.2). Some of the calcium is pumped out, and some
diffuses between the shell and a bulk internal compartment at a rate that is proportional
to a constant kd. 

o
Ca

i
Ca

bulk
Ca

Fig. 3.2. In this model, [Ca2+] in a thin shell just inside the cell membrane is
regulated by a pump in the cell membrane and by diffusional exchange with
bulk stores of calcium in the core of the cell. 

A kinetic scheme formulation of this model is 

Ca
i
→
←
k

d

k
d

Ca
bulk

Eq. 3.17a−c
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Ca
i
+ Pump →

←
k

2

k
1

Ca Pump

Ca Pump →
←
k

4

k
3

Ca
o
+ Pump

Here the active transport of calcium is represented by a pair of first order reactions
between calcium ions in solution on either side of cell membrane, and a calcium pump
that is restricted to the membrane. The states of this model are the amounts of calcium in
the extracellular fluid (Cao), the shell (Cai), and the core of the cell (Cabulk), and the

membrane−associated pump in its "free" and "calcium−bound" forms (Pump and
CaPump, respectively). We want to translate these reactions into a corresponding set of
differential equations, but the reactants occupy four regions, each of which has a
different size. If the volume of the core (volbulk) is much larger than that of the shell

(volshell), then a small amount of calcium could move from the core to the shell and have

a significant effect on the concentration Cai while there is almost no change in the

concentration Cabulk. And how do we deal with Eq. 3.17b and c, in which some reactants

are described in terms of concentration, i.e. material/volume, while others are material
densities, i.e. material/area?

In such situations, it is useful to realize that what we’re trying to do is to write an
equation for each state variable that expresses the rate of change of material as the
difference between fluxes (material/time) into and out of the state. We start by defining
the quantity of material as the product of the state variable and the size of its
compartment, and then ensure that each term in the equation has the same units. 

To see how this works, let’s translate Eq. 3.17a−c into the corresponding differential
equations. In order to avoid the distraction of scale factors, we start by assuming that
areas and volumes and are in cm2 and cm3, respectively, while material densities (Pump
and CaPump) are in micromoles per cm2 (µmole/cm2) and concentrations (Cao, Cai, and

Cabulk) are in (µmole/cm3). Later we will relax this assumption to see how scale factors

enter into the picture.

We start with Cabulk, which has the simplest equation.

vol
bulk

d Ca
bulk

dt
= k

d
Ca

i
� k

d
Ca

bulk

Eq. 3.18

The total material in this state is volbulk Cabulk, the flux that enters it is kd Cai, and the

flux that leaves it is kd Cabulk. The left hand side of Eq. 3.18 is the rate of change of
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material in this state, and it has units of (µmole/ms). Since every term in this equation
must have the same units, it is clear that kd must be in (cm3/ms).

The equation for Cao is 

vol
o

d Ca
o

dt
= k

3
CaPump � k

4
Ca

o
Pump Eq. 3.19

which, like Eq. 3.18, has units of (µmole/ms) on the left hand side. Since CaPump is in
(µmole/cm2), it follows that k3 must have units of (cm2/ms), and k4 must be in

(cm5/ms µmole).

The state CaPump appears in two reactions, so its differential equation has more
terms.

area
pump

d CaPump

dt
= k

1
Ca

i
Pump + k

4
Ca

o
Pump

       � k
2
+ k

3
CaPump

Eq. 3.20

Once again the left hand side is in (µmole/ms), and it is clear that k1 must have the same

units as k4, i.e. (cm5/ms µmole), while the units of k2 must be (cm2/ms), identical to

those of k3.

The equation for Pump is

area
pump

d Pump

dt
= k

2
+ k

3
CaPump       

� k
1
Ca

i
Pump + k

4
Ca

o
Pump

Eq. 3.21

The terms on the right hand side of this equation are the same as those in Eq. 3.20 but
with opposite signs, and units are obviously consistent throughout.

For Cai the equation is

vol
shell

d Ca
i

dt
= k

d
Ca

bulk
� k

d
Ca

i
    

�k
1
Ca

i
Pump + k

2
CaPump

Eq. 3.22

and the units of all terms are consistent.

Scale factors

Up to this point we have used the same units for all calcium concentrations:
(µmole/cm3). What if we prefer a more customary measure for Cao, e.g.

(millimole/liter)? No problem−−1 µmole/cm3 is equivalent to 1 millimole/liter, i.e. the
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values are numerically equal, so we can use the same rate constants and equations as
before, without having to insert scale factors into our equations.

Now suppose we decide that cm3 is too large a unit for intracellular volumes, and that
we would prefer to use µm3 instead for volbulk and volshell? At first this seems

perplexing, because the units of the left hand side of Eq. 3.18 would be
(µm3 µmole/ms cm3), while the right hand side is still in (µmole/ms). We are rescued
from confusion by recalling that 1 µm = 10−4 cm, so (µm3 µmole/ms cm3) is equivalent
to 10−12 (µmole/ms), and we have 

vol
bulk

d Ca
bulk

dt
= 1012 k

d
Ca

i
� k

d
Ca

bulk

Eq. 3.23

The 1012 on the right hand side of 3.23 is a conversion factor, and if we wanted to be
pedantic we would point out that it has units of (cm3/µm3). In any case, its numeric value
makes sense, because a small net movement of calcium will have a much larger effect on
the concentration Cabulk if volbulk is 1 µm3 rather than 1 cm3.

Of course we also have to apply a scale factor in Eq. 3.22, the other equation that
involves an intracellular volume. By identical reasoning we obtain 

vol
shell

d Ca
i

dt
= 1012 k

d
Ca

bulk
� k

d
Ca

i
    

�k
1
Ca

i
Pump + k

2
CaPump

Eq. 3.24

Electrical circuits
An electrical circuit (Fig. 3.3) can be translated to an equivalent set of equations by

combining Kirchhoff’s current and voltage laws with the characteristics of the individual
devices in the circuit. Here we present a brief heuristic approach to how this can be done.
Space and time preclude discussion of related topics such as graph theory; for a more
thorough development of circuit analysis, motivated readers are referred elsewhere (e.g.
[Nilsson, 1996 #539]).

Table 3.1 lists common circuit elements with their characteristic equations and
schematic representations. The arrows in the figures of the resistor and capacitor indicate
the direction of current flow when i given by the characteristic equation is positive. For
the voltage source we have adopted the usual convention for the direction of positive
current flow (away from the "positive" terminal, which is symbolized by the longer of
the two transverse lines). 

To develop the equations that describe a circuit, we we will employ Kirchhoff’s
current law which states that the algebraic sum of all currents entering a node (a
connection between two or more device terminals) is always zero. Every node in a circuit
has a voltage, and every connection between nodes ("edge") has a current. In order for
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voltage throughout a circuit to be determined unambiguously, each node must be on a
path that ultimately leads to ground. The node equations can then be solved to find the
potential at each node and the current through each element in the circuit.
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Fig. 3.3. Left: A simple parallel RC circuit. Right: Circuit for recording from a
cell while passing current through the same electrode. Amplifier Af and

capacitor Cf are used to compensate for the electrode capacitance Ce. 

Table 3.1. Common circuit elements

Type of element Characteristic equation Schematic representation

Ground v = 0
v

Wire v
1
= v

2 v
1

v
2

Linear resistor i = v
1
� v

2
⁄R

R

v
1

v
2

i

Linear capacitor i = C d v
1
� v

2
⁄dt

C

v
1

v
2

i

Voltage source v
1
� v

2
= E t

v
1

v
2

i

E

Current source i = I t v
1

v
2I

Ideal amplifier
v

3
= G v

1
� v

2

i
1
= i

2
= 0

+

−

v
1

v
2

v
3

1
i

2
i

3
i

Figure 3.4 illustrates the application of Kirchhoff’s current law to a circuit consisting
of a capacitor in parallel with a resistor. There are two nodes, but one is grounded so its
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potential is 0. Since only one node has a potential that is unknown, this circuit can be
described by a single node equation. 

The current flow along all branches attached to the ungrounded node is indicated by
the diagram on the right side of Fig. 3.4. To apply Kirchhoff’s current law to this node,
we must assume a positive direction for current flow along every edge that attaches to the
node. We want to emphasize that these assumed directions are completely arbitrary, and
no matter what we decide, the final equations will be the same. Here we have chosen the
convention that current away from a node adds to the current balance equation, which
gives us 

I
C
+ I

R
= 0 Eq. 3.25

Referring to Table 3.1 for the device properties of capacitors and resistors, we obtain the
ordinary differential equation 

C
dV

dt
+ V

R
= 0 Eq. 3.26

whose solution is 

V t = V
0

e�t ⁄RC Eq. 3.27

where V0 is the initial voltage on C. 

C

I

R

I

V

RC

V

IRIC

Fig. 3.4. Left: Schematic diagram of a simple parallel RC circuit, which has
only one node at which potential is unknown. Right: Node diagram indicating
the flow of current away from this single node.

The slightly more complex circuit of Fig. 3.5 has four nodes. There are only two
nontrivial equations for the voltages at these nodes, since we already know that the
grounded nodes have a voltage of 0. The potentials at the two ungrounded nodes are
unknown, and we need to formulate the node equations for them. Once again, we can
assign the directions of all currents arbitrarily, but once we have chosen the positive
direction of current flow through R3, we have committed ourselves to the positive

direction of IR3
 relative to both node 1 and node 2. So if we assume that positive current

in C1, R1, and R3 flows away from node 1, and apply the convention that "current away

from a node adds to the current balance equation," we have 
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I
C

1

+ I
R

1

+ I
R

3

= 0 Eq. 3.28a

which is the current balance equation for node 1.

To get the other current balance equation, we will assume that the positive direction
for current in C2 and R2 are away from node 2, so these currents add to its current

balance equation. However, we have already chosen a direction for positive current flow
in R3, and it happens to be toward node 2. The current flow diagrams for nodes 1 and 2

(Fig. 3.5 bottom right) underscores the fact that resistor R3 makes equal but opposite

contributions to current balance at nodes 1 and 2. Consequently the current IR3
 is

subtracted from the current balance equation for node 2.

I
C

2

+ I
R

2

� I
R

3

= 0 Eq. 3.28b

1V

IC1 IR1

IR3

C1 C2R1 R2

IR1IC1 IC2 IR2

IR3
2V1V

R3

2V

IC2 IR2

IR3

Fig. 3.5. Top: A circuit with three nodes. Bottom: Current flow diagram at
each of the two nodes where potential is unknown. Note the direction of
current flow in R3.

Substituting device properties into these equations gives 

C
1

dV
1

dt
+

V
1

R
1

+
V

1
�V

2

R
3

= 0 Eq. 3.29a

C
2

dV
2

dt
+

V
2

R
2

�
V

1
�V

2

R
3

= 0 Eq. 3.29b

Again note the − sign applied to the current in R3 in the second node equation. This pair

of coupled first order differential equations constitutes a second order initial value
problem, which has a solution of the form 
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V
1

t = A
1
e
�t ⁄τ

a + B
1
e
�t ⁄τ

b Eq. 3.30a−b

V
2

t = A
2

e
�t ⁄τ

a + B
2

e
�t ⁄τ

b

where A1, B1, A2, and B2 are determined by the values of V1 and V2 at t = 0, and the

time constants τ
a

 and τ
b

 are the eigenvalues of the matrix 

� 1

C
1

1

R
1

+ 1

R
3

1

C
1

R
3

1

C
2

R
3

� 1

C
2

1

R
2

+ 1

R
3

Eq. 3.31

As a final example of the equivalence between an electrical circuit and a set of
equations, let us consider a circuit that could be used to compensate for electrode
capacitance. Anyone who has ever recorded from a cell with a microelectrode knows that
electrode resistance and capacitance can interfere with experimental measurements.
Figure 3.6 shows a simplified circuit of a common method used to compensate for
electrode capacitance when recording with a sharp microelectrode under current clamp.
This circuit includes a cell, a microelectrode whose electrical properties are represented
by a series resistance Re and a single lumped capacitance Ce located at the "amplifier"

end of the electrode, a current source Iclamp for injecting current into the cell, and a

"headstage amplifier" A1. It also has an amplifier Af and capacitor Cf that provide

positive feedback to compensate for the electrode capacitance. 

e
RV

m

Cell

A
1

V
oI

clamp

V
e

e
C

C
f

V
f

A
f

Fig. 3.6. Capacitance compensation under current clamp. The capacitance Ce
of the microelectrode distorts recordings by slowing and attenuating the
response of Ve to changes in Vm and Iclamp. Amplifier Af and capacitor Cf
compensate for this by supplying charging current to Ce. 

The open circles mark the nodes that are not grounded. The first node is the site at
which the electrode is attached to the cell, and the voltage at this node is Vm, the local
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membrane potential of the cell. As Fig. 3.7 suggests, the current balance equation for this
node is 

i
inj
� i

R
e

= 0 Eq. 3.32

i.e. the current iRe
 that flows through the electrode resistance equals the current iinj that is

injected into the cell.

i
inj

e
RV

m

Cell

i
R

e

Fig. 3.7. The first node of the circuit in Fig. 3.6. The current injected into the
cell equals the current that passes through the electrode resistance Re.

The voltages at the remaining three nodes are unknown, so we will need three
equations. Taking advantage of the characteristic equations for an amplifier (Table 3.1),
we see immediately that the nodes at the outputs of the feedback and headstage
amplifiers have voltages that are given by 

V
f
=G

f
V

o
Eq. 3.33

and

V
o
=G

1
V

e
Eq. 3.34

where Gf and G1 are the "gains" or amplification factors of the feedback and headstage

amplifiers, respectively. For the third equation, we apply Kirchhoff’s current law to the
remaining node, which is diagrammed in Fig. 3.8. The current balance equation for this
node is 

i
R

e

+ i
C

e

� I
clamp

� i
C

f

+ i
+
= 0 Eq. 3.35

Each device attached to this node contributes a term to Eq. 3.35, e.g. iCe
 is the current

that charges the electrode capacitance, and iC
f
 is the current supplied by the feedback

capacitor Cf. Referring to Fig. 3.6 and Table 3.1, we replace each term in Eq. 3.35 by the

corresponding characteristic equation to get 

V
e
�V

m

R
e

+ C
e

d V
e

dt
� I

clamp
� C

f

d V
f
� V

e

dt
+ 0 = 0 Eq. 3.36

which rearranges to 
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C
e
+ C

f

d V
e

dt
�C

f

d V
f

dt
=

V
m
�V

e

R
e

+ I
clamp

Eq. 3.37

Interested readers may wish to combine Eqns. 3.33, 34, and 37 to derive a single
differential equation that relates the "output" voltage Vo to the "input" voltage Vm. 
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e
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f

i
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i
e
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i
+

i
C

f

A
1

Fig. 3.8. The third node of the circuit in Fig. 3.6. Perfect compensation for
electrode capacitance (which can never be achieved with real amplifiers and
electrodes) requires that iC

f
 balances iC

e
 exactly.

Cables
The spread of electrical and chemical signals in a cable are described by equations

that combine conservation laws with formulas that express how voltage and
concentration gradients drive the movement of charge and mass. This discussion focusses
on electrical signals, since the basic form of these equations is identical for chemical
signals [Carslaw, 1980 #376][Crank, 1979 #377][Jack, 1983 #90][Rall, 1977 #108], and
similar considerations arise in connection with their numerical solution. 

The propagation of electrical signals along an unbranched cable is governed by the
one−dimensional cable equation

∂V

∂T
+F V = ∂2 V

∂ X2
Eq. 3.38

where V and F are continuous functions of space and time, which are represented by X
and T (with appropriate scaling) [Rall, 1977 #108][Jack, 1983 #90]. The branched
architecture typical of most neurons is dealt with by combining partial differential
equations of this form with appropriate boundary conditions. This is the approach taken
in NEURON, whose programming language hoc and graphical user interface have
special features that allow us to avoid the task of writing families of cable equations and
puzzling out their boundary conditions. Instead, we construct models by specifying the
properties of individual neurites and how they are interconnected. NEURON then applies
the standard strategy of spatial and temporal discretization to convert our specification
into algebraic difference equations, which it solves numerically [Rall, 1964 #201][Crank,
1979 #377][Carslaw, 1980 #376] (see Chapter 4: Essentials of numerical methods
for neural modeling).

We can derive the cable equation by combining the physical principle of conservation
of charge with Ohm’s law. Focussing on these separately provides insight into the
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process of spatial discretization and the meaning of boundary conditions. In addition we
can easily handle issues of branching and spatially varying diameter that were assumed
away in the cable equation but are dominant physical features of real neurons.

Conservation of charge requires that the sum of currents flowing into any region from
all sources must equal zero. For example, if Figure 3.9 represents part of a cell,
conservation of charge means that

∑ i
a
�∫

A

i
m

dA = 0 Eq. 3.39

where the first term is the sum of all axial currents ia (in mA) flowing into the region

through cross−section boundaries, and the second term is the total transmembrane current
found by integrating the transmembrane current density im (in mA/cm2) over the

membrane area A (in cm2) of the region. The usual sign convention is that outward
transmembrane current is positive and axial current into a region is positive. If electrode
current sources are present, they are treated exactly the same as membrane currents
except for the sign convention, i.e. electrode current into a cell (depolarizing current) is
positive. Including electrode current is in the conservation equation gives 

∑ i
a
�∫

A

i
m

dA +∫
A

i
s
dA = 0 Eq. 3.40

The physical size of electrode current sources is generally very small compared to the
spatial extent of a region, so the mathematical form for is is usually a delta function of

position is (mA) · δ(x−x0, y−y0, z−z0) (cm−2). It becomes a matter of personal preference

whether to keep electrode currents under an integral, analogous to distributed membrane
currents, or merely to add is (mA) to the sum of ia in whatever region the electrode

happens to be. In either case, the extra terms add nothing to the conceptual analysis, so
we will omit them from the following equations to reduce irrelevant clutter.

im

im
im

im

ia

ia

ia

ia

Fig. 3.9. The net current that flows into any region of a cell is 0. The arrows
indicate the positive directions for transmembrane (im) and axial (ia) currents.
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A standard approach in computer simulation is to divide the neuron into regions or
compartments small enough that the spatially varying im in any compartment j is well

approximated by its value at the center of the compartment. Equation 3.40 then becomes

i
m

j

A
j
=∑

k

i
a

kj
Eq. 3.41

where Aj is the surface area of compartment j. 

Up to this point we have relied entirely on the principle of conservation of charge.
Ohm’s law is invoked to resolve the axial currents between compartment j and its
neighbors (right hand side of Eq. 3.41): each axial current is approximated by the voltage
drop between the centers of the compartments divided by the resistance of the path
between them 

i
a

kj

= v
k
� v

j
⁄r

jk Eq. 3.42

This transforms Eq. 3.41 into

i
m

j

A
j
=∑

k

v
k
� v

j
⁄r

jk Eq. 3.43

This automatically takes care of the direction of axial current flow, since vj < vk implies

that current flows into compartment j.

The total membrane current is the sum of capacitive and ionic components

i
m

j

A
j
= c

j

dv
j

dt
+ i

ion
j

v
j
, t Eq. 3.44

where cj is the membrane capacitance of the compartment and iionj
(vj, t) includes the

effects of varying ionic channel conductances. In summary, the spatial discretization of
branched cables yields a set of ordinary differential equations of the form

c
j

dv
j

dt
+ i

ion
j

v
j
, t =∑

k

v
k
� v

j
⁄r

jk
Eq. 3.45

As mentioned above, injected source currents would be added to the right hand side of
this equation.

Equation 3.45 involves two approximations. First, axial current is specified in terms
of the voltage difference between the centers of adjacent compartments. The second
approximation is that spatially varying membrane current is represented by its value at
the center of each compartment. This is much less drastic than the often heard statement
that a compartment is assumed to be "isopotential." It is far better to picture the
approximation in terms of voltage, membrane current, and axial current varying linearly
between the centers of adjacent compartments. Indeed, the linear variation in voltage is
implicit in the usual description of a cable in terms of discrete electrical equivalent
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circuits where all the membrane channels in a compartment have been pushed into a
single point at the center of the compartment. 

Two special cases of Eq. 3.45 deserve particular attention. The first of these allows us
to recover the usual parabolic form of the cable equation. Consider the interior of an
unbranched cable with constant diameter. The axial current consists of two terms
involving compartments with indices j−1 and j+1, i.e.

c
j

dv
j

dt
+ i

ion
j

v
j
, t =

v
j�1

� v
j

r
j�1, k

+
v

j+1
� v

j

r
j+1, k

Eq. 3.46

If each compartment has length ∆x and diameter d, its capacitance is Cm π d ∆x and the

axial resistance is Ra ∆x / π (d/2)2, where Cm is specific membrane capacitance and Ra is

cytoplasmic resistivity. Equation 3.46 then becomes

C
m

dv
j

dt
+ i

j
v

j
, t = d

4 R
a

v
j+1

�2 v
j
+v

j�1

∆ x2
Eq. 3.47

where the total ionic current iionj
 is replaced by the ionic current density ij. As ∆x → 0,

the right hand term becomes the second partial derivative of membrane potential with
respect to distance at the location of the now infinitesimal compartment j, and we have 

C
m

∂ v

∂ t
+ i v , t = d

4 R
a

∂2 v

∂ x2 Eq. 3.48

Multiplying both sides by Rm and recognizing that i Rm = v gives 

R
m

C
m

∂ v

∂ t
+ v =

d R
m

4 R
a

∂2 v

∂ x2
Eq. 3.49

Scaling t and x by the time and space constants τm = RmCm and λ = 1

2

d R
m

R
a

 (i.e.

substituting T = t / τm and X = x / λ) transforms Eq. 3.49 into the form shown in

Eq. 3.38. 

The second special case of Eq. 3.45 allows us to recover the boundary condition.
This is an important issue since naive discretizations at the ends of the cable have
destroyed the second order accuracy of many simulations. The boundary condition for
the terminal end of a nerve fiber is that no axial current flows at the end of the cable, i.e.
the end is sealed. This is implicit in Eq. 3.45, where the right hand side will consist only
of the single term (vj−1 − vj) / rj−1, j when compartment j lies at the end of an

unbranched cable.
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