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Chapter 4
Essentials of numerical methods for neural modeling

Neurons are distributed analog systems that are continuous in time and space, but
digital computation is inherently discrete. Therefore implementing a model of a neuron
with a digital computer raises many purely numerical issues that have no relationship to
the biological questions that are of primary interest, yet must be addressed if simulations
are to be tractable and produce reliable results. In this chapter we examine how
NEURON deals with these issues.

We saw in Chapter 3 that the principle of conservation of charge can be expressed
with a single ordinary differential equation 

C
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= I
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Eq. 4.1

so long as the transmembrane current density is nearly uniform over the surface of a cell.
If current density varies too much, the computational representation must consist of two
or more coupled compartments. These are described by a set of equations of the form 
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Eq. 4.2

where the second term on the right hand side is the sum of all axial currents from
neighboring compartments. Additional terms and equations are necessary if extracellular
fields or electronic instrumentation are to be included in the simulation (see Chapter X).

Selection of a method for numerical integration of these equations is guided by
concerns of stability, accuracy, and efficiency. In this chapter we review these important
concepts and explain the rationale for the integrators used in NEURON. We start with a
theoretical analysis of the errors that are introduced by discretizing the linear cable
equation. Then we move on to a comparative analysis of methods for computing
numerical solutions, which is illustrated by a series of case studies that bring up issues
related to the practical concerns of empirically−based modeling.

Spatial and temporal error 
in discretized cable equations

A linear cable with uniform properties is described by the equation
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c
∂V

dt
+ g V =

a

2 R
a

∂2 V

∂ x2
Eq. 4.3

where V is the membrane potential in volts, c the specific membrane capacitance in
F/cm2, g the specific membrane conductance in S/cm2, a the radius in cm, Ra the axial

resistivity in Ω cm, and x the distance along the cable in cm, so that each term in Eq. 4.3

has units of A/cm2. We assume that the cable is L cm long, and that the axial current at
each end is zero, i.e. "sealed end" boundary conditions, which implies that ∂V ⁄∂ x  = 0
at x = 0 and x = L. The membrane potential is a function of time and location V(t,x), and
the initial condition V(0,x) can be any spatial pattern that satisfies the boundary
conditions.

Analytic solutions: continuous in time and space
The spatial patterns that preserve their shape, changing only in amplitude, are the

Fourier cosine terms cos(πnx/L). From Fourier theory, we know that any spatial pattern
can be represented as an infinite sum of such cosine patterns [Strang, 1986, #719].

These cosine patterns always satisfy the boundary condition at x = 0 because
sin(0) = 0. Satisfaction of the boundary condition at x = L, i.e. sin(πn) = 0, requires that n
be an integer. The pattern preserves its shape because substituting V(x,t) = Vn(t)

cos(πnx/L) into Eq. 4.3 gives 
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n
t Eq. 4.4

which has the solution

V
n

t = V
n

0 e
�k

n
t Eq. 4.5a

where n is the number of half waves in the cosine pattern, Vn(0) is its initial amplitude,

and the rate of decay is 

k
n
= g

c
+

π2 n2 a

2 R
a

L2 c
Eq. 4.5b

When n = 0, voltage is independent of location along the length of the cable and
decays with the membrane time constant τm = c/g seconds (top graph in Fig. 4.1). If n is

large, i.e. when the spatial frequency of the cosine pattern is high, the second term on the
right hand side of Eq. 4.5b is dominant, so the pattern decays very quickly at a rate that is
proportional to the square of the number of half waves on the cable (see Fig. 4.1,
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especially the bottom graph). In a continuous cable, there is no limit to the spatial
frequency, but high spatial frequencies decay extremely quickly.
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Figure 4.1. Top five graphs: These are the first five spatial patterns of V that preserve
their shape along a uniform cylindrical passive cable. V is plotted as a function of
normalized distance along the cable for n = 0, 1, 2, 3, and 4 half cycles. The decay of
these patterns with time is illustrated by "snapshots" taken at t = 0, 0.1, 0.2, 0.3, and 0.4
times the membrane time constant τm. Note that larger n implies faster decay. 

Bottom graph: Amplitudes of these patterns plotted as functions of normalized time.
Starting with the top trace and working down, n = 0, 1, 2, 3, and 4. Dots mark the
amplitudes at the times of the snapshots shown in the upper graphs.
These amplitudes assume cable length is π times its DC length constant λ, so that n = 1
makes the first and second terms of Eq. 4.5b equal. Shorter cables have bigger kn, hence

decay is more rapid. 
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Adding a current stimulus to the equations is not difficult, but the detailed derivation
is not necessary to our discussion of discretization error. Two points are worth
mentioning, however. First, any stimulus can be represented as a Fourier sum. Second, a
cosine stimulus with a specific spatial frequency excites a voltage response with the same
spatial frequency and an amplitude that follows a single exponential decay,
asymptotically approaching a steady state.

Spatial discretization
Now let us compare the continuous cable solution of Eq. 4.5 with the solution of a

cable equation that has been discretized in space by replacing ∂2 V ⁄∂ x2  with the second
order correct approximation 

∂2 V

∂ x2
≈

V x+∆ x � 2 V x +V x�∆ x

∆ x2
Eq. 4.6

For concreteness we need to specify precisely which values of x are allowed. The
ordinary approach is to suppose m points with the first point at x = 0 and the last point at
x = L, so that ∆x = L/(m−1). However, NEURON takes a different approach to
discretization, in which there are m intervals of length ∆x = L/m and the m points are at
the centers of these intervals. Thus the centers are at x = (i + 0.5)L/m where 0 ≤ i < m. 

With either method, m is the number of points in space at which a numerical solution
for V is computed, and m = 1 corresponds to a spatial frequency of 0, i.e. uniform
membrane potential along the entire cable. Furthermore, for either approach the largest
number of half waves that can be represented in the discretized system is n = m−1 so the
highest spatial frequency is (m−1)/2L cycles per unit length. This result is related to the
Nyquist sampling theorem, which states that at least two samples must be captured per
cycle in order to accurately measure the frequency of a signal [Strang, 1986, #719].

The ordinary method puts the ith point at x = iL/(m−1), so cos(πnx/L) = 
cos(π(m−1)iL/(m−1)L) = cos(πi), and the value of V alternates sign at adjacent points.
With NEURON’s method, the largest n is also m−1 because, at n = m, cos(πnx/L) =
cos(πm(m+0.5)L/mL) = cos(π(m+0.5)) = 0. 

With the ordinary method, the second difference at the ith point is most easily
computed from the real part of 

e jπn i+1 ⁄ m�1 � 2 e jπn i ⁄ m�1 + e jπn i�1 ⁄ m�1

 = e
jπn ⁄ m�1 � 2 + e

� jπn ⁄ m�1
e

jπ n i ⁄ m�1

 = 2 cos πn ⁄ m�1 � 1 e
jπn i ⁄ m�1 Eq. 4.7

which is

2 cos πn ⁄ m�1 � 1 cos πn i ⁄ m�1 Eq. 4.8
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NEURON’s method gives 

2 cos πn ⁄m � 1 cos πn i+0.5 ⁄ m�1 Eq. 4.9

Therefore, for either method 

d V
nm

dt
=�k

nm
V

nm
Eq. 4.10

where 

k
nm

= g

c
+

1�cos πn∆ x ⁄L a

R
a

c∆ x2
Eq. 4.11

The solution of Eq. 4.10 is 

V
nm

t = V
nm

0 e
�k

nm
t Eq. 4.12

Note that knm approaches kn (Eq. 4.5b) when n∆x/L is << 1 (because cos(φ) ≈ 1 − φ2/2

when φ is small). This makes sense when one realizes that L/n is half of the wavelength
of the spatial pattern, so "n∆x/L is small" means that the discretization interval ∆x is short
compared to the wavelength of the spatial pattern. Thus the discrete system is "sampling"
the spatial pattern at an interval that is fine enough to allow a smooth representation of
the pattern. Restating this in more formal terms, the discrete system approximates the
original continuous system more closely at those spatial frequencies for which the
discretization interval ∆x is short compared to the spatial wavelength.
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Figure 4.2. Normalized time constant for decay of spatial patterns vs. number
of half waves along a uniform passive cylindrical cable (cable parameters as in
Fig. 4.1).

Figure 4.2 shows the normalized time constant of decay t = 1/kτm as a function of the

number of half waves for the continuous cable of Fig. 4.1 as well as for discretized
models of this cable with 2, 4, 8, and 16 points. We must point out that, for both
discretization methods, doubling the number of points reduces the error in the time
constant for a given spatial frequency by a factor of 4. Also note that, for small numbers
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of compartments and at the highest spatial frequencies, the spatial error of NEURON’s
discretization method is significantly less than that of the ordinary method.

Adding temporal discretization
So far we have solved the spatially continuous and spatially discretized cables

analytically with respect to time. Now we complete the discretization with respect to
time. The numerical integration methods that have seen the widest use in empirically−
based neural modeling are forward Euler, backward Euler, and Crank−Nicholson. Later
in this chapter we will examine each of these individually and in more detail. For the
purpose of our present theoretical analysis, it is better to treat them all at once by
introducing a parameter θ so that 

dV

dt
≈

V t+∆ t � V t

∆ t
Eq. 4.13a

is evaluated at t+θ∆t by using V interpolated from its values at t and t+θ∆t, i.e.

V t+θ∆ t = 1�θ V t + θV t+∆ t Eq. 4.13b

Thus Eq. 4.10 becomes

V t+∆ t � V t

∆ t
=�k

nm
V t+θ∆ t Eq. 4.14

Drawing on Eq. 4.13b, we can write this as

V t+∆ t � V t

∆ t
=�k

nm
1�θ V t + θV t+∆ t Eq. 4.15

When θ = 0, Eq. 4.15 is the forward Euler method, θ = 1 turns it into the backward Euler
method, and θ = 0.5 gives us the Crank−Nicholson method.

From Eq. 4.15 we immediately get the iteration equation 

V
nm

t+∆ t =
1� 1�θ k

nm
∆ t

1+θ k
nm

∆ t
V

nm
t Eq. 4.16

The first term on the right hand side of this equation is the iteration coefficient; if its
magnitude for any spatial frequency is > 1, the iterations will diverge. With the forward
Euler method (θ = 0), the iteration coefficient with the largest magnitude is for the spatial
frequency at which n = m. At this frequency, the cos(πn∆x/L) term in Eq. 4.11 is −1,
making the decay rate constant 

k
mm

= g

c
+ 2 a

R
a

c∆ x2
Eq. 4.17
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so we see that the magnitude of the iteration coefficient is > 1 when kmm∆t > 2. If we

want the discretized system to represent high spatial frequencies, ∆x must be small, and

this makes the second term in kmm dominant. Substituting θ = 0 and kmm ≈ 2a/Rac∆x2

into Eq. 4.16 and rearranging, we find that, in order for the forward Euler method to
avoid numerical instability, the combination of ∆t and ∆x must obey the constraint 

∆ t

∆ x2
<

R
a

c

a
Eq. 4.18

With the backward Euler method (θ = 1), there is no constraint on ∆t because knm is

always positive and so the iteration coefficient is greater than 0 and less than 1. For the
Crank−Nicholson method (θ = 0.5), the iteration coefficient never becomes less than −1,
so this method is formally stable for all ∆t.

Numerical integration methods
Now we continue our comparative analysis of numerical methods for integrating

Eq. 4.1 and 4.2 by examining them in the context of practical examples. We start with
the simplest approach: explicit or forward Euler, which is not used in NEURON for
reasons that will become clear. Then we consider the implicit or backward Euler method,
Crank−Nicholson, CVODE, and DASPK, which are all available in NEURON.

Forward Euler: simple, inaccurate and unstable
Suppose we are modeling a neuron that has nearly uniform transmembrane current

density. For our conceptual model of this cell, we also assume that its resting potential is
0 mV, its membrane conductance g is constant and linear, and that we are not injecting
any current into it. The techniques we use to understand and control error in simulations
of this passive model are immediately generalizable to the nonlinear case.

Conservation of charge in this model is described by Eq. 4.1, which simplifies to 

dV

dt
+ kV = 0 Eq. 4.19

where the rate constant k is the inverse of the membrane time constant τm = g / C. The

analytic solution of Eq. 4.19 is

V t = V 0 e�kt Eq. 4.20

Let us compare this to a numeric solution computed with the forward Euler method.

The forward Euler method is based on a simple approximation. From the initial
conditions we know the starting value of the dependent variable (V(0)), and the
differential equation that describes the model (Eq. 4.19) gives us the initial slope of the

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 7



The NEURON Book: Chapter 4 June 6, 2003

solution (−kV(0)). The approximation assumes that the slope of the solution is constant
for a short period of time. Then we can extrapolate from the value of V at time 0 to a new
value a brief interval into the future. Now we see why this is called the "forward" Euler
method: we are starting from something that is already known and projecting into the
future. The forward Euler method is one of many integrators that calculate future values
entirely on the basis of present, and possibly also past, values; these are called "explicit"
integrators to distinguish them from "implicit" integrators, such as backward Euler and
Crank−Nicholson (see below), which involve future values in the calculation.

In general terms, if a system is described by the differential equation 

dV

dt
= f V, t Eq. 4.21

then the forward Euler method approximates a solution by repeatedly applying 

V t +∆ t = V t + f V t , t ∆ t Eq. 4.22

For this example, Eq. 4.22 becomes 

V t +∆ t = V t � k V t ∆ t Eq. 4.23

(cf. Eq. 4.16 with θ = 0).
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Figure 4.3. Left: analytic solution to Eq. 4.19 (solid line with circles) and
results of the forward Euler method (squares) for V(0) = 1, k = 1/s, and ∆t =
0.5 s (modified from [Hines, 1997 #208]). Right: absolute error of the forward
Euler method with ∆t = 0.5 (squares), 0.25 (circles), and 0.125 s (+).

The left panel of Fig. 4.3 shows the forward Euler solution obtained for rate
parameter k = 1 s−1 (i.e. 1/second), initial condition V(0) = 1, and time interval ∆t over
which we extrapolate, assuming the transmembrane ionic current is constant within each
interval. The current that is used for a given interval is found from the value of the
voltage at the beginning of the interval (filled squares). This current determines the slope
of the line segment that leads to the voltage at the next time step. The dashed line shows
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the value of the voltage after the first time step as a function of ∆t. Corresponding values
for the analytic solution (solid line) are indicated by filled circles.

The issue of accuracy in numerical simulation is complex, and we discuss it more
thoroughly later in this chapter (see Error). For the moment we only mention that the
forward Euler method has "first order accuracy," which means that the local error is
proportional to ∆t. This is demonstrated in the right panel of Fig. 4.3, where the absolute
difference between the analytic solution and the results of the forward Euler method is
plotted for ∆t = 0.5, 0.25, and 0.125 s (squares, circles, and +, respectively). Cutting ∆t
by a factor of 2 reduced error by very nearly half (∆t was comparable to the model’s time
constant (1 s) so slight deviations from strict proportionality are to be expected).

Numerical instability

We have already broached this topic from a theoretical standpoint in the setting of a
uniform cable model (see Adding temporal discretization above), but it is still useful
to consider stability of numerical integration in the context of "simpler" compartmental
models. What would happen if the forward Euler method were applied to Eq. 4.19 using
a very large time step, e.g. ∆t = 3 s? The simulation would become numerically unstable,
with the first step extrapolating down to V = −2, the second step going to V = −2 + 6 = 4,
and each successive step oscillating with geometrically increasing magnitude.

Simulations of the two compartment model on the left of Fig. 4.4 demonstrate an
important aspect of instability. Suppose the initial condition is V = 0 in one compartment
and V = 2 in the other. According to the analytic solution, at first the potentials in the
two compartments converge rapidly toward each other (time constant = 1/41 s), and later
they decay slowly toward 0 (time constant = 1 s).

If we use the forward Euler method with ∆t = 0.5 s, we realize that there will be a
great deal of trouble during the time where the voltages are changing rapidly. We might
imagine that we can deal with this by choosing a ∆t that will carefully follow the time
course of the voltage changes, i.e. let ∆t be small when they are changing rapidly, and
larger when they are changing slowly. 

The results of this strategy are shown on the right of Fig. 4.4. After 0.2 s with ∆t =
0.001 s, the two voltages have nearly come into equilibrium. Then we changed ∆t to
0.2 s, which is small enough to follow the slow decay closely. Unfortunately, no matter
how small the difference between the voltages, the difference grows geometrically at
each time step. This happens even if the difference consists only of roundoff error,
because the time step used in the forward Euler method must never be more than twice
the smallest time constant in the system. 

Linear algebra clarifies the notion of "time constant" and its relationship to stability.
For a linear system with N compartments, there are exactly N spatial patterns of voltage
over all compartments such that only the amplitude of the pattern changes with time,
while the shape of the pattern is preserved. The amplitudes of these patterns or
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"eigenfunctions" are given by e
tλ

i , where λi is

called the eigenvalue of the ith eigenfunction. The
real part of each eigenvalue is the reciprocal of one
of the time constants of the solutions to the
differential equations that describe the system. The
ith pattern decays exponentially to 0 if the real part
of λi is negative; if the real part is positive, the

amplitude grows catastrophically. If λi has an

imaginary component, the pattern oscillates with frequency ωi = Im(λi). In a passive

electrical system that contains only resistance and capacitance, all λi are real and

negative.

Our two compartment model has two such patterns. In one, the voltages in the two

compartments are identical; this pattern decays with the time course e�t . The other
pattern, in which the voltages in the two compartments are equal but have opposite sign,

decays with the much faster time course e�41 t .

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0.001  0.2
t =∆

t

Figure 4.4. Left: The two compartments of this model are connected by a small
axial resistance, so the membrane potentials are normally in quasi−equilibrium
with each other while at the same time decaying fairly slowly toward 0.
Right: The forward Euler method (dashed lines) is numerically unstable
whenever ∆t is greater than twice the smallest time constant. The analytic
solution (solid lines) is the sum of two exponentials with time constants 1 s and
1/41 s. The solution step size was 0.001 s for the first 0.2 s, after which it
increased to 0.2 s. Modified from [Hines, 1997 #208].

The key idea is that a problem involving N coupled differential equations can always
be transformed into a set of N independent equations, each of which is solved separately.
Numerical solution of these equations must use a time step ∆t that is small enough for the
solution of each equation to be stable. This why stability criteria that involve ∆t depend
on the smallest time constant.
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If the ratio between the slowest and fastest time constants is large, the system is said
to be stiff. Stiffness is a serious problem because a simulation may have to run for a very
long time in order to show changes governed by the slow time constant, yet a small ∆t
has to be used to follow changes due to the fast time constant. 

Driving forces may change the stability properties of a system by altering the time
constants that describe it. A current source (perfect current clamp) does not affect
stability because it does not affect the time constants. Any other signal source imposes a
load on the compartment to which it is attached, changing the time constants and the
corresponding eigenvectors. The more closely it approximates a voltage source (perfect
voltage clamp), the greater this effect will be. 

Backward Euler: inaccurate but stable
The numerical stability problems of the forward Euler method can be avoided if the

equations are evaluated at time t + ∆t, i.e. the approximate solution is found from 

V t +∆ t = V t + f V t +∆ t , t +∆ t ∆ t Eq. 4.24

which is called the implicit or backward Euler method. This equation can be derived
from Taylor’s series truncated at the ∆t term but with t + ∆t in place of t. 

For our example with one compartment, the backward Euler method gives

V t + ∆t =
V t

1 + k∆ t
Eq. 4.25

(cf. Eq. 4.16 with θ = 1). Figure 4.5 shows several iterations of Eq. 4.25. Each step
moves to a new point (ti+1, V(ti+1)) such that the slope there points back to the previous

point (ti, V(ti)). If ∆t is very large, the solution does not oscillate with geometrically

increasing amplitude like the forward Euler method, but instead converges geometrically
toward the steady state. 

The robust stability of the backward Euler method is further illustrated by applying it
to the two compartment model (Fig. 4.6). Notice that a large ∆t gives a reasonable
qualitative understanding of model behavior, even if it does not follow the initial rapid
voltage changes. Furthermore the step size can be changed according to how quickly the
states are changing, yet the solution remains stable.

The backward Euler method requires solution of a set of nonlinear simultaneous
equations at each step. To compensate for this extra work, the step size needs to be as
large as possible while preserving good quantitative accuracy. Like the forward Euler
method, the backward Euler method also has first order accuracy, but it is more practical
for initial exploratory simulations since reasonable values of ∆t produce fast simulations
that are almost always qualitatively correct, and, as we have seen here, tightly coupled
compartments do not generate large error oscillations but instead come quickly into
equilibrium because of its excellent stability.
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Figure 4.5. Comparison of analytic solution to Eq. 4.19 (solid line with circles)
with results from the backward Euler method (Eq. 4.25, squares) for V(0) = 1,
k = 1/s, and ∆t = 1 s. At the end of each step, the slope at the new value (heavy
lines) points back to the beginning of the step. The dashed line shows the voltage
after the first time step as a function of ∆t. Modified from [Hines, 1997 #208].
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Figure 4.6. Simulation of the two compartment model of Fig. 4.4 using the
backward Euler method. Left: ∆t = 0.2 s, much larger than the fast time
constant. Right: ∆t was initially 0.02 s, small enough to follow the first time
constant closely. After 0.1 s, ∆t increased to 0.2 s but the solution remained
stable. Thin lines are analytic solution, thick lines are backward Euler solution.
Modified from [Hines, 1997 #208].

Crank−Nicholson: stable and more accurate
The central difference or Crank−Nicholson method [Crank, 1947 #672] is an implicit

integrator that is equivalent to advancing by one half step with backward Euler and then
advancing by another half step with forward Euler (Fig. 4.7). The value at the end of
each step is along a line determined by the estimated slope at the midpoint of the step.
The local error of this method is proportional to the square of the step size, so for a given
∆t we can expect a large accuracy increase. In fact, simulation of our one compartment

Page 12 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved



June 6, 2003 The NEURON Book: Chapter 4

model with ∆t = 1 s (Fig. 4.7) is much more accurate than the forward Euler simulation
with ∆t = 0.5 s (Fig. 4.3).
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Figure 4.7. Simulations of the one compartment model with the Crank−Nicholson
method, which uses the slope at the midpoint of the step (short thick lines) to
determine the new value (squares). These are almost indistinguishable from the
analytic solution (solid line with circles). The dashed line shows the voltage after
the first time step as a function of ∆t. Modified from [Hines, 1997 #208].

A most convenient feature of the central difference method is that the amount of
computational work for the extra accuracy beyond the backward Euler method is trivial,
since after computing V(t + ∆t/2) with backward Euler, we just have

V t +∆ t = 2 V t +
∆ t

2
� V t Eq. 4.26

so the extra accuracy does not cost extra computations of the model functions.

One might well ask what effect the forward Euler half step has on numerical stability.
The left panel in Fig. 4.8 shows the solution for the two compartment model of Fig. 4.4
computed using the central difference method with ∆t much larger than the fast time
constant. The sequence of a backward Euler half step followed by a forward Euler half
step approximates an exponential decay by

V t +∆ t = V t
1 � 0.5 k∆ t

1 + 0.5 k∆ t
Eq. 4.27

(cf. Eq. 4.16 with θ = 0.5). As ∆t becomes very
large, the step multiplier approaches −1 from
above, so the solution oscillates with decreasing
amplitude. Technically speaking the Crank−
Nicholson method is stable because the error
oscillations decay with time.

This example demonstrates that artifactual
large amplitude oscillations may result if the time
step is too large. Such oscillations can affect
simulations of models that involve voltage clamps
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or in which very small resistances couple adjacent segments. However, in some cases
oscillations can be minimized by using small ∆t while the solution contains a large
amplitude component that is changing rapidly, and increasing ∆t after the slower
components dominate the solution (Fig. 4.8 right). 
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Figure 4.8. Simulations of the two compartment model using the Crank−Nicholson
method. Left: Significant error oscillations can appear when the simulation has a
large amplitude component with a time constant much smaller than ∆t. However,
the simulation is numerically stable because the oscillation amplitude decreases at
each step. Right: ∆t was initially 0.02 s, i.e. smaller than the fastest time constant
(~ 0.0244 s), so the simulation followed the rapid collapse of the fast component.
After 0.1 s, ∆t increased to 0.2 s; this provoked oscillations, but their amplitude is
only a small fraction of the total response and decays rapidly, so the trajectories
appear smooth. Thin lines are analytic solution, thick lines are Crank−Nicholson
solution. Modified from [Hines, 1997 #208].

Efficient handling of nonlinearity

Nonlinear equations generally need to be solved iteratively to maintain second order
correctness. However, voltage dependent membrane properties, which are typically
formulated in analogy to Hodgkin−Huxley (HH) type channels, allow the cable equation
to be cast in a linear form that is still second order correct and can be solved without
iterations. A direct solution of the voltage equations at each time step t → t + ∆t using
the linearized membrane current I(V,t) = g (V − E) is sufficient as long as the slope
conductance g and the effective reversal potential E are known to second order at time
t + 0.5∆t. HH type channels are easy to solve at t + 0.5∆t since the conductance is a
function of state variables that can be computed using a separate time step offset by
0.5∆t with respect to the voltage equation time step. That is, to integrate a state from
t − 0.5∆t to t + 0.5∆t we only require a second−order−correct value for the voltage−
dependent rates at the midpoint time t. 

Figures 4.9 and 10 illustrate the differences between the unstaggered and staggered
time step approaches. The left panel of Fig. 4.9 shows membrane potential v and the
gating variable m from an action potential simulation computed with the ordinary, i.e.
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unstaggered, implementation of the Crank−Nicholson method. The superior accuracy
achieved with staggered time steps is apparent in Fig. 4.10. The middle panels of these
two figures zoom in on the solutions between 2.0 and 2.2 ms to reveal the sequence of
calculations. The right panels demonstrate that using staggered time steps turns a system
of differential equations with nonlinear coupling into a linear system of decoupled
equations, so that second order accuracy is achieved without having to resort to
iterations. 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
ms

m

0 1 2 3 4 5

−80

−40

0

40
mV

ms

staggered
dt = 0.001 ms

unstaggered
dt = 0.1 ms

ms
1.8 1.9 2 2.1

0.2

0.4

0.6

0.8 m

−40

−20

0

20

40
mV

unstaggered
dt = 0.1 ms

ms
1.8 1.9 2 2.1

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5
ms

|m error|

0

5

10

15
mV

0 1 2 3 4 5
ms

|v error| unstaggered

dt = 0.02 ms

dt = 0.01 ms

Figure 4.9. Simulated response of a 100 µm2 patch of membrane with HH
channels to a 0.025 nA current lasting 0.5 ms, computed with the ordinary
(unstaggered) Crank−Nicholson method using time step ∆t = 0.1 ms. Left: The
spike was noticeably delayed compared to the standard for accuracy (dashed
traces, computed with Crank−Nicholson using staggered time steps and ∆t =
0.001 ms). Similar errors were observed in h and n (traces omitted for clarity).
Middle: A magnified view of these solutions from 2.0 to 2.2 ms. Dots mark the
individual values computed by the unstaggered Crank−Nicholson method. The
unstaggered method advances the solution in two stages. First the new
membrane potential v(t + ∆t) is computed from the values of v, m, h, and n at
t. Then the new values of m, h, and n are computed analytically from their
values at t and the average of the old and new membrane potentials
(v(t) + v(t + ∆t))/2. Right: Plots of the absolute error of v and m reveal that the
error is proportional to the integration time step ∆t, i.e. the solution has only
first order accuracy.

For HH equations in a single compartment, using staggered time steps converts four
simultaneous nonlinear equations at each step to four independent linear equations that
have the same order of accuracy. Since the voltage dependent rates use the voltage at the
midpoint of the integration step, integration of channel states can be done analytically
with just a single addition and multiplication and two table lookup operations. While this
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efficient scheme achieves second order accuracy, the tradeoff is that the tables depend on
the value of ∆t and must be recomputed whenever ∆t changes.
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Figure 4.10. Simulated action potential from the same model as in Fig. 4.9, but
computed with Crank−Nicholson using staggered time steps. Left: The
solution with ∆t = 0.1 ms was almost indistinguishable from the standard for
accuracy. Similar improvements were observed in h and n. Right: An
expanded view of these solutions, with dots marking the values computed with
∆t = 0.1 ms. First the values of m, h, and n at t + 0.5∆t are computed
analytically from their values at t − 0.5∆t and the membrane potential v at t.
Then the values of m, h, and n at t + 0.5∆t are used to update v from t to
t + ∆t. Right: Plots of the absolute error of v and m show that the error is
proportional to the square of the integration time step ∆t, i.e. using staggered
time steps increases solution accuracy to second order.

Adaptive integration: fast or accurate, occasionally both
There is a wide variety of problems for which an adaptive time step method might

have much higher performance than a fixed step method, e.g. ∆t could grow very large
when all states are varying slowly, as during interspike intervals. On the other hand, in
problems involving propagating action potentials or networks of cells, it may happen that
some state somewhere in the system is always changing quickly. In such cases ∆t is
always small in order to follow whichever state is varying fastest. Thus it is often not
clear in advance that the increased overhead of an adaptive time step method will be
repaid by an occasional series of long time steps.
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Implementational considerations

The variable order variable time step integrator CVODE was written by Cohen and
Hindmarsh [Cohen, 1994 #512] to solve ordinary differential equation (ODE) initial
value problems of the form

y ’ = f y , t Eq. 4.28a−c

y 0 = y
0

y ∈
N

where y′ is the first derivative of y with respect to t, and bold face is used to signify
vectors (lower case) and matrices (upper case). Since there are many different adaptive
integrators, it is worthwhile to review the reasons why CVODE is particularly relevant to
NEURON. 

1. CVODE employs Backward Differentiation Formula (BDF) methods suitable for stiff
problems, which are common in neuronal modeling.

2. CVODE was easily interfaced to the existing NEURON structure. It would be neither
convenient nor efficient to gather all of the equations for every compartment and
every membrane mechanism into one huge bag and throw it at a solver. The interface
between ODE solver and the definition and setup of equations that are already
distributed among membrane mechanisms requires a map between the internal
NEURON states and the ODE state vector y, as well as a map between the internal
computations for f and the ODE state derivative vector y′. Programming an efficient
map between the distributed internal Jacobian (J = ∂f/∂y) evaluation and a sparse
matrix representation is possible but complex. The CVODE solver obviates this
problem since it allows programmers to define their own problem−dependent linear
solvers. This means NEURON can exploit the existing block structure of the Jacobian
matrix and reuse the local block solvers that are already distributed within the
membrane mechanism objects.

3. CVODE (and DASPK−−see below) allows a sophisticated balance between accuracy
of solution of M y = b and solution time by supporting the preconditioned iterative
Krylov method, which requires one to only supply a solver for P y = b, where P is in
some sense an approximation to M such that P−1 M is approximately the identity
matrix and is chosen so that computation of the inverse of P is much faster than
computation of the inverse of M. Small off−diagonal elements in the Jacobian are
usually ignored for Gaussian elimination efficiency, but can occasionally have an
adverse effect on stability and thereby limit the effective time step. It is not yet clear
which method is more robust when such off−diagonal terms are ignored in the
context of nerve simulations: the Krylov method, or direct use of the approximate
Jacobian in CVODE. 

4. Finally, CVODE was implemented using encapsulated data structures, so it was
conceptually simple to place it in an object−oriented class wrapper for use in
implementing a local variable time step method. An important pre−existing feature of
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CVODE that helped support local variable time steps was the ability to efficiently
retreat to any time point within the previous integration interval.

Unfortunately, models that contain linear circuits and extracellular fields cannot be
expressed, or at least are not easy to express, in the form shown in Eq. 4.28. Such models
take the form

Cy ’ = f y, t Eq. 4.29a−c

y 0 = y
0

y ∈
N

where some rows in the C matrix may be 0 (introduction of algebraic equations), and the
nonzero rows may have off−diagonal elements (capacitors between nodes). In principle
one could use the singular value decomposition of C to recast the system as

z ’ = g z , x , t Eq. 4.30a and b

0 = h z , x , t

and satisfy the latter constraint directly whenever f is calculated. This is what NEURON
does with the zero area nodes at the ends of sections, where membrane potential is
governed by an algebraic equation rather than an ODE, without too much trouble and
with no loss of efficiency. However, in practice f(y, t) is given by an algorithm which
one cannot multiply by a matrix. Also the sparse structure of f is generally lost in the
transformation, making g much more dense and hence less efficient to solve. 

For these reasons, when extracellular or linear mechanisms are present and a variable
step integration method is requested, the fast CVODE method is replaced by the slower
but more robust DASPK method of Brown, Hindmarsh, and Petzold [Brown, 1994
#675], which is available from http://netlib.org.

The user’s perspective

A key feature of using CVODE is that one does not set the integration step size, but
instead specifies criteria for relative and absolute errors. The solver then adjusts ∆t and
the local error order of the implicit difference approximation so that the local error for
each state is less than the sum of its relative and absolute errors. 

Figure 4.11 illustrates the performance of CVODE in simulations of the two
compartment model using two different values for the local absolute error tolerance.
CVODE is capable of a high degree of accuracy, but caution must be exercised in setting
the error tolerance, and it is a good idea to compare results against fixed time step
methods during (and even after) model development.

For a more biologically relevant example of how CVODE can reduce the time
necessary to produce accurate simulations, let us compare simulations of a neocortical
layer V pyramidal cell model [Mainen, 1996 #192] generated with the Crank−Nicholson
and CVODE integrators. The model was subjected to a 900 ms depolarizing current
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applied to the soma, which evoked two bursts of spikes (Fig. 4.12 top). A series of
simulations was run with the Crank−Nicholson method using progressively smaller ∆t
until the time at which the last action potential crossed above 0 mV converged to a
constant value; this occurred for ∆t ≤ 0.01 ms, and a simulation performed with ∆t =
0.01 ms took 340 seconds to complete on a 2.2 GHz Pentium 4 PC with 512 K cache.
Solutions computed with CVODE converged to the same zero crossing time of the last
spike, i.e. same global error, when absolute tolerance was 2.5 · 10−3 for all states except
[Ca2+]i, which had an absolute tolerance of 2.5 · 10−7; using these tolerances, the

solution runtime was 19 seconds. Thus CVODE achieved the same accuracy as the most
accurate fixed time step solution, but with a runtime that was almost 20 times faster.
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Figure 4.11. Simulations of the two compartment model using CVODE. Left:
Filled circles on one of the traces mark the times at which CVODE calculated
solutions. When the solution is changing rapidly, ∆t is very small, but it grows
quite large when the solution changes slowly. If the local absolute error
tolerance is sufficiently strict (0.005 for this example), there is no visible
difference between the computed and analytic solutions. Right: Thin lines are
the analytic solution, thick lines the CVODE solution. Increasing the error
tolerance allows CVODE to take larger steps, but spurious transients may
occur if the criterion is too lax.

The bottom panel of Fig. 4.12 demonstrates the control that CVODE exerted over ∆t
throughout the entire simulation. When states were changing most rapidly, ∆t fell to
values much smaller than 0.01 ms, but during the long interburst interval it increased to a
maximum of ~4.4 ms. The smallest steps were restricted to the onset and offset of the
injected current (t = 5 and 905 ms) and brief intervals starting just before the threshold
and ending shortly after the depolarized peak of each spike, as can be seen in an
expanded view of the transition from the interburst interval to the beginning of the
second burst (Fig. 4.13). The remarkable speedup by CVODE is due to the fact that ∆t
was much larger than 0.01 ms for most of the simulation.
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Figure 4.12. Top: CVODE was used to compute somatic membrane potential
in a model of a neocortical layer V pyramidal cell subjected to a long
depolarizing current pulse; Crank−Nicholson method with ∆t = 0.01 ms
produced results that are indistinguishable at the scale of this figure. Bottom:
For most of the simulation, CVODE used time steps much larger than 0.01 ms.
The order of integration (not shown) ranged from 2 to 5, most steps being
second or third order. Figure from [Hines, 2001 #568].

The only difficulty that CVODE introduced is an excessive literalness required for
interpretation of discrete functions. To see what this means, consider this strategy for
emulating a "ramp clamp": filling the elements of a Vector with a linearly increasing
sequence of values and then using the Vector class’s play() method to drive the
command potential of a voltage clamp. Figure 4.14 shows this technique applied to a
single compartment model with HH currents that was clamped by an SEClamp (series
resistance rs = 106 Ω). The elements of a Vector were assigned the series of values
−65+0.125i for 0 ≤ i ≤ 401, i.e. a linear ramp that swept from −65 to −15 mV over the
course of 10 ms, assuming ∆t = 0.025 ms. A second Vector filled with the
corresponding times (0.025i) was used to insure that each command potential in the
sequence was applied at the proper time.

Simulations of this model using the implicit Euler method with a 0.025 ms time step
display smoothly varying membrane potential and clamp current, even when examined at
the scale of individual time steps (Fig. 4.14 right). This is because the stream of values
delivered by the Vector is equivalent to a second order piecewise linear function, i.e.
command potential itself varies smoothly with time. 
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Figure 4.13. Top: An expanded view of the first spike in the second burst from Fig. 4.12. The
times of computed solutions are marked by + symbols. Bottom: ∆t fell below 0.01 ms from just
before the threshold of each spike until shortly after its peak. Figure from [Hines, 2001 #568].
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Figure 4.14. Ramp clamp using the Vector class’s play() method works well with fixed ∆t
integration because command potential is effectively a continuous function of time. Top traces
are membrane potential, bottom traces are clamp current.
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current (bottom traces) because the value sequence in the Vector that drives command potential
is treated as a first order step function. In this simulation, and in Fig. 4.16, atol = 0.001.
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Figure 4.16. Vector.play() with interpolation works well with CVODE because the Vector
that drives command potential is treated as a piecewise linear function. See text for details.
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However, under CVODE the stream must be considered a first order equivalent step
function. Driving the voltage clamp with this step function makes membrane potential
jump from one level to another and produces substantial capacitance current transients at
each step discontinuity (Fig. 4.15).

This problem has been addressed in NEURON 5.4 by adding a linear interpolation
option to the Vector class’s play() method. This option, which works both with fixed
∆t and CVODE, treats our two vectors as if they defined a piecewise linear function. This
means we can represent the ramp command used in
this example by a pair of vectors whose elements
are −65, −15 and 0, 10, respectively. Simulation
results using Vector.play() with linear
interpolation under CVODE are shown in Fig. 4.16.

Error control

An important issue in adaptive integration is selection of appropriate values for local
error control. Variable time steps elevate the issue of "physiological accuracy" (see Error
below) to a level of high concern. Experience so far suggests that the absolute local error
tolerance is much more important than the relative error. One can specify an error
criterion based on relative error, but in neural modeling there is hardly ever a reason to
require increasing absolute accuracy around the 0 value of most states, especially voltage.

The scale of states is often a crucial consideration, in that the maximum absolute
error must be consistent with the desired resolution of each state. An extreme example is
a calcium pump model with pump density measured in moles/cm2. Here an appropriate
value is 10−14 mole/cm2, and an allowable error of 0.01 is clearly nonsense. For this
reason, it is essential that each state that is badly scaled, e.g. [Ca2+]i measured in mM, be

given its own explicit maximum absolute error. NEURON accommodates this need by
allowing the user to set specific error criteria for individual states that take precedence
over any global criterion.

NEURON’s default error setting for CVODE is 10 µV for membrane potential and
0.1 nM for internal free calcium concentration, so that a simulation of the classical
Hodgkin−Huxley action potential at 6.3° C has accuracy comparable to a second order
correct simulation with fixed ∆t = 25 µs.

Local variable time step method

NEURON provides a network connection (NetCon) class for network simulations in
which cell to cell communication can be abstractly represented by the (possibly delayed)
delivery of logical events, as opposed to graded interaction via gap junctions or electrical
synapses (see Chapter 10). The notion of a cell driven by discrete input events naturally
suggests an expansion of the simulation domain wherein variable time step methods
provide substantial performance gains. 

It may happen that only a few cells in a network are active at any one time, but with a
global time step these active cells govern the time step for all (Fig. 4.17). NEURON’s
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local variable time step method merely uses a separate CVODE solver instance for each
cell, thus integrating that cell’s states with time steps governed only by those state
dynamics and the discrete input events. 
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Figure 4.17. Integration with local variable time steps can significantly improve
computational efficiency. The top figure shows a simple feedforward network
implemented with a NetStim artificial neuron (white) and a pair of single compartment
biophysical models with Hodgkin−Huxley membrane (black and red). All synapses are
excitatory, with latencies between presynaptic spike and postsynaptic conductance
change shown in ms. The white cell produces a single spike at t = 0 ms. This triggers a
spike in the black cell, but the red cell requires inputs from both synapses to make it
fire. The short vertical lines in the middle and bottom figures mark the times at which
solutions are computed using the global (middle) and local (bottom) variable time step
methods. Note that, if rapid changes occur in any cell (e.g. onset of an epsp, or the
upstroke and peak of a spike), the global method forces extra computations in all cells,
even those in which nothing much is happening. This does not occur with the local
method. The total computational cost of a simulation depends chiefly on the total
number of times that new STATEs are calculated. The global method evaluated f(y) (see
Eq. 4.29a) 177 times, calculating 8 STATEs each time (4 STATEs per cell), for a total of
1416; the local method required 253 evaluations of f(y), but these were in individual
cells so only 4 STATEs were calculated each time, and the local method’s total was
1012. Therefore the global method was ~1.4 times more costly than the local method.
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All cells are always on a list ordered by their current time and all outstanding events
are on a list ordered by their delivery time. These lists are implemented as splay trees to
minimize insertion and removal times (proportional to the log of the size of the list), and
the least time element can be accessed in constant time. The last fact that prepares our
arena for action is that a CVODE instance can, without integrating equations, retreat
from its current time to any time back to the beginning of its previous time step.

The network simulation advances in time by checking the cell and event lists to find
the least time cell or event, whichever is first. If a cell is first, that cell is integrated
according to its current time step, and moved to a location on the cell list appropriate to
its new time. If an event is first, it is delivered to the proper cell. That cell retreats to the
delivery time and becomes the least time cell, and the event is removed from the list and
discarded. 

It is easy to devise networks in which the speed improvement of the local time step
approach is arbitrarily great. e.g. chains of neurons. However, this method yields no
benefit in periods of synchronous activity. If events are extremely numerous, neither the
local nor the global variable time step method improves simulation speed. When multiple
events per reasonable ∆t arrive regularly, the fixed time step nicely aggregates all events
in a step without regard to their temporal microstructure, whereas variable step methods’
scrupulous handling of each event is out of all proportion to the conceptual
approximation of the network. 

The choice of methods is thus dependent on the problem and the user’s intention. To
encourage the exploration that is necessary to determine which method may be best
suited for a particular application, NEURON allows any of its fixed or variable time step
methods to be used with no changes to the user−level specification of the problem.

The local variable time step method considerably increases the complexity of the
underlying communication between interpreter and solver with respect to recording
results. With a global time step, whether fixed or variable, the fadvance() function
(see Chapter 7) has a clear and precise meaning, i.e. the exit time differs from the entry
time by the interval ∆t. The problem is that, with the local variable time step, each cell
has its own time stream, so each recorded variable must be mapped to the appropriate
time stream. This problem is solved by cvode.record(), which records both a
variable and its associated times into a pair of Vectors.

Discrete event simulations

One limiting case of the variable step simulation style is the event−driven or "discrete
event" simulation, in which the cell jumps from event to event. Here a single
compartment is used merely as a stage in which the voltage never changes (the natural
time step is infinite), and the "cells" are represented by point processes that receive
events from, and produce events to, the NetCon instances. A large variety of useful
artificial neural net−like cell models, e.g. integrate and fire, firing frequency dependent
on input, use dependent synaptic plasticity, have equations that can be solved analytically
so that "cell" state needs only to be computed at the event. This topic is discussed more
thoroughly in Chapter 10. 
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Error
The total or global error in a simulation is a combination of errors from two sources.

The local error emerges from the extrapolation process within a time step. For the
backward Euler method this is easily analyzed with Taylor’s theorem truncated at the
term proportional to ∆t.

V t+∆ t = V t + V ’ t+∆ t ∆ t � V " t *
∆ t2

2
Eq. 4.31

where t ≤ t *≤ t+∆ t .

The forward and backward Euler methods both ignore second and higher order terms,
so the error at each step is proportional to ∆t2. Integrating over a fixed time interval T
requires T/∆t steps, so the error that accumulates in this interval is on the order of

∆t2T/∆t, i.e. the net error is proportional to ∆t. Applying a similar analysis to the Crank−

Nicholson method finds that its local error is proportional to ∆t2. Therefore we can
always decrease the local error of these fixed step methods as much as we like by
reducing ∆t.

The second contribution to total error comes from the cumulative effect of past
errors, which have moved the computed solution away from the trajectory of the analytic
solution. Thus, if our computer solution has a nonzero total error at time t1, then even if

we were to thereafter solve the equations exactly using the state values at t1 as our initial

condition, the future solution will be inaccurate because we are on a different trajectory.
This means that the second component of total error depends on the dynamics of the
system itself.

The total error of a simulation is therefore not easy to analyze. For the one and two
compartment models we have examined in this chapter, all trajectories end up at the same
steady state, so total error tends to decrease with time, but not all systems behave in this
manner. Particularly treacherous are systems that behave chaotically so that, once the
computed solution diverges even slightly from the proper trajectory, it subsequently
moves rapidly away from the original and the time evolution becomes totally different. 

Chaos is not the only circumstance that may produce high sensitivity to numerical
error. Consider the Hodgkin−Huxley membrane action potentials elicited by two current
stimuli, one near threshold and the other twice as strong. The left panel of Fig. 4.18
shows action potentials computed with the backward Euler method using time steps of 25
and 5 µs, the Crank−Nicholson method using ∆t = 25 µs, and CVODE using local
absolute error tolerance = 0.01. For the strong stimulus, all three integration methods
produced nearly identical results. However, the backward Euler method displayed a
noticeable error when the 25 µs time step was used to compute the response to the weak
stimulus (dashed line). The weak stimulus allowed membrane potential to hover near
spike threshold, so that a small error due to the time step could grow into a large error in
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the time of occurrence of the action potential. The error was much smaller in the
simulation computed with ∆t = 5 µs. 

However, behavior near threshold is highly sensitive to almost any parameter. This is
seen in the right panel of Fig. 4.18, where all solutions were computed with CVODE
(local absolute error tolerance = 0.01) and the sodium channel density ḡ

Na
 was varied

by only 1%. This small variation of ḡ
Na

 did almost nothing to the response to the strong

stimulus, but its effect on the latency of the spike elicited by the weak stimulus was
comparable to the integration error of the backward Euler method with ∆t = 25 µs. This
demonstrates that it is important to know the sensitivity of results to every model
parameter, and ∆t is just one more parameter that is added as a condition of being able to
run simulations on a digital computer.
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Figure 4.18. Simulations of Hodgkin−Huxley membrane action potentials
elicited by 0.3 ms current stimuli with amplitude of 0.0225 or 0.045 mA/cm2.
Left: Sensitivity to integration time step. For each stimulus amplitude,
responses were computed using CVODE (local absolute error tolerance =
0.01), Crank−Nicholson (∆t = 25 µs), and backward Euler (∆t = 25 and 5 µs).
The backward Euler solution with 25 µs time step showed a noticeable error.

Right: Sensitivity to variation in ḡ
Na

. All traces were computed with CVODE

(local absolute error tolerance = 0.01). Peak sodium conductance was
0.12 S/cm2 (solid lines) ± 1% (dotted and dashed lines). The three traces
elicited with the large stimulus are indistinguishable in this graph.

Using extremely small ∆t might seem to be the best way to reduce error. However,
computers represent real numbers as floating point numbers with a fixed number of
digits, so if you keep adding 10−20 to 1 you may always get a value of 1, even after
repeating the process 1020 times. Operations that involve the difference of similar
numbers, as when differences are substituted for derivatives, are especially prone to such
roundoff error. Consequently there is a limit to the accuracy improvement that can be
achieved by decreasing ∆t. 

Generally speaking, it would be desirable to use what might be called "physiological"
values of ∆t, i.e. time steps that give a good representation of the state trajectories
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without having a numerical accuracy that is orders of magnitude better than the accuracy
of our physiological measurements (which is generally not as good as 5%, and seldom
better). The question is not so much how large the error of a simulation is relative to the
analytic solution, but whether the simulation error leads us to trajectories that are
significantly different from the set of trajectories defined by the error in our parameters.
Insofar as removal of any source of error has value, there is a temptation to treat the
model equations as sacred runes which must be solved to an arbitrarily high precision.
Nevertheless, determining the meaning of a simulation run requires judgment. A
misplaced emphasis on numerical accuracy should not obscure the fact that qualitative
results may be quite sufficient. We agree with John Moore, our mentor and colleague,
who is fond of quoting R. Hamming: "The purpose of computing is insight, not numbers"
[Hamming, 1987 #720].

Summary of NEURON’s integration methods
NEURON offers the user a choice of several different integration methods. For any

particular problem, the best way to determine which is the method of choice is to run
comparison simulations with several values of ∆t or local error tolerance to see which
executes most quickly while achieving the desired accuracy. In performing such trials,
one must remember that the stability properties of a simulation depend on the entire
system that is being modeled. Because of interactions between "biological" components
and any "nonbiological" elements, such as stimulators or voltage−clamps, the time
constants of the entire system may be different from those of the biological components
alone. A current source (perfect current clamp) does not affect stability because it does
not change the time constants. Any other signal source imposes a load on the
compartment to which it is attached, changing time constants and potentially introducing
troublesome stiffness. The more closely a signal source approximates a voltage source
(perfect voltage clamp), the greater this effect will be. 

Fixed time step integrators
Implicit integrators are used as NEURON’s fixed time step methods. This is in part

because of their superior stability compared to explicit integrators [Dahlquist, 1974
#673].

Default: backward Euler

NEURON’s default integration method is a fixed step first order implicit scheme that
produces good qualitative results with large time steps when extremely stiff ODEs and
even algebraic equations are present in the system, e.g. models that involve voltage
clamps. Because of its robust stability, it can be used with extremely large time steps to
find the steady−state solution for a linear ("passive") system. 
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Crank−Nicholson

When the global parameter secondorder is set to 2, NEURON uses a variant of the
Crank−Nicholson method. This has local error proportional to ∆t2 and is therefore
particularly accurate for small time steps. 

In implicit integration methods, all current balance equations must be solved
simultaneously. The backward Euler algorithm does not resort to iteration to deal with
nonlinearities, since its numerical error is proportional to ∆t anyway. The special feature
of the Crank−Nicholson variant is its use of a staggered time step algorithm to avoid
iteration of nonlinear equations (see Efficiency in the section Crank−Nicholson: stable
and more accurate above). This converts the current balance part of the problem to one
that requires only the solution of simultaneous linear equations, making the
computational cost per time step almost identical to the backward Euler method. 

The second order fixed time step method works with HH−type Ohm’s law channels,
but its accuracy is really only first order when the instantaneous current−voltage relation
of the channels is nonlinear or when channel gating models are expressed with KINETIC
schemes (the SOLVE scheme METHOD sparse statement in NMODL solves kinetic
schemes using the fully implicit method). Accuracy is also formally first order for
models involving changing ion concentration, though that is a negligible issue when dt
is small enough to accurately follow voltage changes. 

Although the Crank−Nicholson method is formally stable, models with stiff equations
require small ∆t to avoid numerical oscillations (Fig. 4.8). It is unusable in the presence
of voltage clamps, extracellular mechanisms, or linear circuits, since the solution of
algebraic equations gives results with large numerical oscillations. 

Adaptive integrators
NEURON’s adaptive integrators free the user from having to choose an integration

step size. Instead, they automatically adjust integration order and ∆t so that the solution
satisfies a user−specified error criterion. While this may be the most salient feature of
these methods, there are several reasons why they may be preferable to fixed step
integrators:

� Adaptive integrators usually require less time for a given degree of accuracy.

� They avoid the problem of "empty temporal resolution" (many solution points when
nothing is happening) that occurs with fixed time step integration. 

� Currents, voltages, and conductances are all known to the same accuracy at the same
time, unlike the staggered Crank−Nicholson method.

� Events occur at their actual times instead of being constrained to multiples of ∆t. For
example, with fixed time steps, current step discontinuities are only first order correct
unless they are defined to lie on time step boundaries. Precise timing may be
particularly important in network simulations.
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Switching between fixed and variable time step methods is as easy as a button press
(NEURON Main Menu / Tools / VariableStepControl / Use variable dt) and does not
affect any GUI tools. Plots of expressions vs. time still look the same, and Vector
recording of temporal streams still works. There is no need to change model descriptions,
or at least to change the statements that define the equations. Ease of switching is crucial
since relative performance between high overhead variable step and low overhead fixed
step methods ranges widely. For example, simulation of the demonstration models by
Mainen and Sejnowski [ , 1996 #192] slowed down by a factor of 2 or sped up by a
factor of 7, depending on number of spikes in a simulation run and whether there were
long intervals in which no state changed rapidly.

CVODE

CVODE handles any kind of model description involving DERIVATIVE or KINETIC
representations of gating states, ion accumulation/diffusion, or nonlinear current−voltage
relations. It does not work with models that involve extracellular mechanisms, linear
circuits, perfect voltage clamps, or capacitors between nodes. Each cell in a network
simulation may have its own local time step, but time steps must be global if there are
gap junctions between different cells. Cell mechanisms that have analytical solutions
(e.g. integrate and fire) can be implemented in a way that allows discrete event
simultations.

DASPK

The DASPK method is suitable for models that involve extracellular mechanisms,
linear circuits, perfect voltage clamps, or capacitors between nodes. However, there is no
local variable step variant of DASPK.
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