
June 5, 2003 The NEURON Book: Chapter 8

Chapter 8
How to initialize simulations

In most cases, initialization basically means the assignment of values at time t = 0 for
membrane potential, gating states, and ionic concentrations at every spatial position in
the model. A model is properly initialized when the Init & Run button produces exactly
the same results, regardless of previous history of the simulation. Of course we assume
that model parameters have not changed between runs, and that any random variable has
been re−initialized with the same seed so that it produces the same sequence of "random"
numbers. For simulations of networks, initialization also includes specifying which
events are in transit to their destinations at time 0 (i.e. generated, at least conceptually, at
t ≤ 0 for delivery at t ≥ 0). If linear circuits are included in the model, then all voltages
across capacitors and the internal states of operational amplifiers must be specified as
part of the initialization. Complex models often have complex recording and analysis
methods, perhaps involving counters and vectors, which may need to be initialized.
Models described by kinetic schemes require that each of the chemical kinetic states be
initialized to some concentration.

State variables and STATEs
In rough mathematical terms, if a system consists of n first order differential

equations, then initialization consists in specifying the starting values of n variables. For
the Hodgkin−Huxley membrane patch (only one compartment), these equations have the
form

dv

dt
= f

1
m,h,n,v Eq. 8.1a−d

dm

dt
= f

2
m,v

dh

dt
= f

3
h,v

dn

dt
= f

4
n,v

so that, knowing the value of each variable at time t, we can specify the slope of each
variable at time t. We have already seen (Chapter 7) that integration of these equations is
an iterative process in which the purpose of an individual integration step (fadvance())

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 8 June 5, 2003

is to carry the system from time t to time t + ∆t using more or less sophisticated
equations of the form

v t+∆ t = v t +∆ t
dv t *

dt
Eq. 8.2

m t+∆ t = m t +∆ t
dm t *

dt

. . .

where the sophistication is in the choice of a value of t* somewhere between t and t + ∆t.
However, regardless of the integration method, the iterative process cannot begin without
choosing starting values for v, m, h, and n. This choice is arbitrary over the domain of the
variables (−∞ < v < ∞ , 0 ≤ m ≤ 1, . . .), but once the initial v, m, h, and n are chosen, all
auxiliary variables (e.g. conductances, currents, d/dt terms) at that instant of time are
determined, and the equations determine the trajectories of each variable forever after.
The actual evaluation of these auxiliary variables is normally done with assignment
statements, such as

gna = gnabar*m*m*m*h
ina = gna*(v − ena)

This is why the model description language NMODL designates gna and ina as
ASSIGNED variables, as opposed to the gating states, m, h, and n, which are termed
STATE variables, i.e. the dependent variables of differential equations.

Unfortunately, over time an abuse of notation has evolved in which STATE also
refers to any variable that is an unknown quantity in a set of simultaneous algebraic
equations, and ASSIGNED refers to any variable that is not a STATE or a PARAMETER
(PARAMETERs can be meaningfully set by the user as constants throughout the
simulation, e.g. gnabar). Nowadays, within a single model description, STATE just
specifies which variables are the dependent variables of KINETIC schemes, algebraic
equations in LINEAR and NONLINEAR blocks, or differential equations in DERIVATIVE
blocks. Generally the number of STATEs in a model description is equal to the number of
equations. Thus, locally in a model description, the membrane potential v is never a
dependent variable (there is no equation that solves for its value in the model description)
and it cannot be meaningfully thought of as a user−specified value, so it is declared in the
model descriptions as an ASSIGNED variable, despite its obvious status as a state variable
at the level of the entire simulation. This abuse of the STATE concept also occurs in the
linear circuit, where the potential at every node of the circuit is an unknown to be solved
and therefore a STATE. However you should be aware that a resistive network does not
add any differential equation to the system (although it adds algebraic equations) and so
those additional dependent variables do not strictly need to be initialized.

While state variables may be assigned any values whatever during initialization, in
practice only a few general types of initialization are carried out. These are based on
analogous experimental methods for preparing a system for stimulation, e.g. letting the
system rest without experimental perturbation, or using a voltage clamp or constant

Page 2 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

injected current to hold the system at a defined membrane potential The idea is that the
system should reach an unchanging steady state independent of previous history. It is
from this steady state that the simulation begins at time t = 0. When there is no steady
state, as for oscillating or chaotic systems, whatever initialization is ultimately chosen
will need to be saved in order to be able to reproduce the simulation. More complicated
initializations involve finding parameters that meet certain conditions, such as what value
of some parameter or set of parameters yields a steady state with a desired potential.
Some initial conditions may not be physically realizable by any possible manipulations
of membrane potential. For example, with hh channels the h gating state has a steady
state of 1 at large hyperpolarized potentials and the n gating state has a steady state of 1
at large depolarized potentials. It would therefore be impossible to reach a condition of
h = 1 and n = 1 by controlling only voltage.

Basic initialization in NEURON: finitialize()
Basic initialization in NEURON is accomplished with the

finitialize(v_init)

function, which is defined in nrn−5.4/src/nrnoc/fadvance.c (UNIX/Linux). This
carries out several actions.

1. t is set to 0 and the event queue is cleared (undelivered events from the previous run
are thrown away).

2. Variables that receive a random stream (the list defined by Random.play
statements) are set to values picked from the appropriate random distributions.

3. All internal structures that depend on topology and geometry are updated and chosen
solvers are made ready.

4. The controller for Vector.play variables is initialized. The controller makes use of
the discrete event system for Vector.play specifications that define transfer times
for a step function in terms of dt or a time Vector.

Discrete events at time t = 0 (i.e. the appropriate Vector.play events) are
delivered.

5. If finitialize() was called with an argument v_init, the membrane potential
potential v in every compartment is set to the value v_init with a statement
equivalent to

forall for (x) v(x) = v_init

6. The INITIAL block of every inserted mechanism in every segment of every section
is called. This includes the INITIAL blocks of POINT_PROCESS mechanisms
(discussed later in this chapter under INITIAL blocks in NMODL). The order in
which mechanisms are initialized depends on whether any mechanism has a USEION
statement or WRITEs an ion concentration.

Ion initialization is performed first, including calculation of reversal potentials. Then
mechanisms that WRITE an ion concentration are initialized. This necessitates

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 8 June 5, 2003

recalculation of the reversal potentials for those ions. Finally, all other mechanism
INITIAL blocks are called.

Apart from these constraints, the call order of user−defined mechanisms is currently
defined by the alphabetic list of mod file names or the order of the mod file arguments
to nrnivmodl (or mknrndll). However one should avoid sequence−dependent
INITIAL blocks. Thus if the INITIAL block of one mechanism needs the values of
variables another mechanism, the values of the latter should be assigned before
finitialize() is executed.

If extracellular mechanisms exist, their vext states are initialized to 0 before any
other mechanism is initialized. Therefore, for every mechanism that computes an
ELECTRODE_CURRENT, v_init refers to both the internal potential and the
membrane potential.

INITIAL blocks are discussed in further detail below.

7. LinearMechanism states, if any, are initialized.

8. Network connections are initialized. This means that the INITIAL block inside any
NET_RECEIVE block that is a target of a NetCon object is called to initialize the
states of the NetCon object.

9. The INITIAL blocks may have initiated net_send events whose delay is 0. These
events are delivered to the corresponding NET_RECEIVE blocks.

10. If fixed step integration is being used, all mechanism BREAKPOINT blocks are
called (essentially equivalent to a call to fcurrent()) in order to initialize all
assigned variables (conductances and currents) based on the initial STATE and
membrane voltage.

If any variable time step method is active, then those integrators are initialized. In this
case, if you desire to change any state variable (here "state variable" means variables
associated with differential equations, such as gating states, membrane potential,
chemical kinetic states, and ion concentrations in accumulation models) after
finitialize() is called, you will need to call cvode.re_init() to notify the
variable step methods that their copy of the initial states needs to be updated. Note
that initialization of the differential−algebraic solver IDA consists of two very short
(dt = 10−6 ms) fully implicit time steps in order to ensure the validity of
f y’ , y = 0 .

11. Vector recording of variables using the list defined by the cvode.record(&state,
vector) statements is initialized. This is the only meaningful way at this time to
retrieve results from a simulation that uses the local variable time step method, since t
values on return from a sequence of fadvance() calls are not monotonic and only a
small fraction of states (the states in only one cell) is integrated on a single
fadvance() call.

12. Vectors that record a variable (the list defined by Vector.record statements)
record the value in Vector.x[0], if t = 0 is a requested time for recording.

Page 4 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

Default initialization in the standard run library:
stdinit() and init()

Default initialization for the standard run library takes effect when you enter a new
value for v_init into the field editor next to the Init button, or when you press either the
Init or the Init & Run, button in the RunControl panel. These buttons do not call the
init() procedure directly but instead execute a procedure called stdinit() which
has the implementation

proc stdinit() {
 realtime=0 // "run time" in seconds
 startsw() // initialize run time stopwatch
 setdt()
 init()
 initPlot()
}

setdt() ensures (by reducing dt, if necessary) that the points plotted fall on time step
boundaries, i.e. that 1/(steps_per_ms*dt) is an integer. The initPlot()
procedure begins each plotted line at t = 0 with the proper y value.

The default init() procedure itself is

proc init() {
 finitialize(v_init)
 // User−specified customizations go here.
 // If this invalidates the initialization of
 // variable time step integration and vector recording,
 // uncomment the following code.
 /*
 if (cvode.active()) {
 cvode.re_init()
 } else {
 fcurrent()
 }
 frecord_init()
 */
}

Custom initialization is generally accomplished by inserting additional statements after
the call to finitialize(). These statements often have the effect of changing one or
more state variables, i.e. variables associated with differential equations, such as gating
states, membrane potential, chemical kinetic states, and ion concentrations in
accumulation models. This invalidates the initialization of the variable time step
integrator, making it necessary to call cvode.re_init() to notify the variable step
integrator that its copy of the initial states needs to be updated. If instead fixed step
integration is being used, the fcurrent() function should be called; this makes the
values of conductances and currents consistent with the new states. Changing state
variables after calling finitialize() can also cause incorrect values to be stored as
the first element of recorded vectors. Adding frecord_init() to the end of init()
prevents this.

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 8 June 5, 2003

INITIAL blocks in NMODL
INITIAL blocks for channel models generally set the channel gating states to their

steady state values with respect to the present value of v. HH−like models do this easily
and explicitly by calculating the voltage sensitive alpha and beta rates for each gating
state and using the two state formula for the steady state, e.g.

PROCEDURE rates(v(mv)) {
 minf = alpha(v)/(alpha(v) + beta(v))
 . . .
}

and then

INITIAL {
 rates(v)
 m = minf
 . . .
}

When channel models are described by kinetic schemes, it is common to calculate the
steady states with the idiom

INITIAL {
 SOLVE scheme METHOD steadystate
}

where scheme is the name of a KINETIC block. To place this in an almost complete
setting, consider a three state potassium channel with two closed states and an open state

NEURON {
 USEION k READ ek WRITE ik
}

STATE { c1 c2 o }

INITIAL {
 SOLVE scheme METHOD steadystate
}

BREAKPOINT {
 SOLVE scheme METHOD sparse
 ik = gbar*o*(v − ek)
}

KINETIC scheme {
 rates(v) : calculate the 4 k rates.
 ~ c1 <−> c2 (k12, k21)
 ~ c2 <−> o (k2o, ko2)
}

where we have only left out some of the minor variable declarations and the voltage−
sensitive implementation of the rates procedure. As mentioned above in Default
initialization in the standard run library: stdinit() and init(), when
initialization has been customized so that states are changed after finitialize() has
been called, it is generally useful to call the fcurrent() function so that the values of
all conductances and currents consistently with the newly initialized states. In particular
this will call the BREAKPOINT block (twice, in order to compute the Jacobian (di/dv)

Page 6 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

elements for the voltage matrix equation) for all mechanisms in all segments, and on
return the ionic currents such as ina, ik, and ica will contain the corresponding net
ionic currents through each segment.

Default initialization of STATEs

In model descriptions, a default initialization of the STATEs of the model occurs just
prior to the execution of the INITIAL block. However this default initialization is rarely
useful and one should always explicitly implement an INITIAL block. If the name of a
STATE variable is state, then there is also an implicitly declared parameter called
state0. The default value of state0 is specified either in the PARAMETER block

PARAMETER {
 state0 = 1
}

or implicitly in the STATE declaration with the syntax

STATE {
 state START 1
}

If a default value for state0 is not declared by the user, the default value will be 0.
state0 is not accessible from the interpreter unless it is explicitly mentioned in the
GLOBAL or RANGE list, as in

NEURON {
 GLOBAL m0
 RANGE h0
}

in which every m will be set to the single global m0 value during initialization, while h
will be set to the possibly spatially−varying h0 values. Clarity will be served if, in the
use of the state0 idiom, you explicitly use an INITIAL block of the form

INITIAL {
 m = m0
 h = h0
 n = n0
}

Ion concentrations and equilibrium potentials

Prior to version 4.1, model descriptions could not initialize concentrations, or at least
it was very cumbersome to do so. Each ion type was managed by its own separate ion
mechanism, which in turn initialized the ionic concentration adjacent to the membrane
according to global variables. That is, if cai and cao were integrated by a model
declaring

USEION ca READ ica WRITE cai, cao

there would also be an automatically created mechanism called ca_ion, so that the
initial values of cai and cao were set globally to the values of cai0_ca_ion and
cao0_ca_ion, respectively (see Initializing concentrations in hoc below).

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 8 June 5, 2003

The reason that model mechanisms
were not allowed to specify ion variables
(or other potentially shared variables such
as celsius) was that confusion could
result if more that one mechanism at the
same location set the same variables to
different values. This of course causes
confusion of a different kind in that, when
an ion variable such as ena is clearly
assigned a value as a PARAMETER in a
model, that assignment has no effect. In this case a warning occurs as in the mechanism

NEURON {
 SUFFIX test
 USEION na READ ena
}

PARAMETER {
 ena = 25 (mV)
}

When this model is translated
$ nrnivmodl test.mod
Translating test.mod into test.c
Warning: Default 25 of PARAMETER ena will be ignored and set by NEURON.

and use of the model in NEURON shows that the value of ena is that defined by the
na_ion mechanism itself instead of the test model.

$ nrngui
 . . .
Additional mechanisms from files
 test.mod
 . . .
oc>create soma
oc>access soma
oc>insert test
oc>ena
 50

If we add the initialization

INITIAL {
 printf("ena was %g\n", ena)
 ena = 30
 printf("we think we changed it to %g\n", ena)
}

to test.mod, then we can see that it still does not have an effect.

oc>finitialize(−65)
ena was 50
we think we changed it to 30
 1
oc>ena
 50

Page 8 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

Since calcium currents, concentrations, and
equilibrium potentials are managed by the
ca_ion mechanism, one might reasonably ask
why we can refer to the short names ica, cai,
cao and eca, rather than the longer forms that
include the suffix _ion, i.e. ica_ca_ion etc..
The answer is that there is unlikely to be any
confusion about the meaning of ica, cai, . . .
so we might as well take advantage of the
convenience of using these short names.

June 5, 2003 The NEURON Book: Chapter 8

It is perhaps not a good idea to invite diners into the kitchen, but the reason for this
can be seen from the careful hiding of the ion variables by making local copies of them
in the C code generated by the nocmodl translator. Translation of the INITIAL block
into a model−specific initmodel function is, except for some trivial boiler plate, an
almost verbatim copy. However, finitialize() calls this indirectly via the model
generic nrn_init function, which can be seen in all its gory detail in the C file output
from nocmodl test.mod :
/***************************/
static nrn_init(_count, _nodes, _data, _pdata, _type_ignore)
 int _count, _type_ignore; Node** _nodes; double** _data; Datum** _pdata;
{ int _ix; double _v;
 _p = _data; _ppvar = _pdata;

#if _CRAY
#pragma _CRI ivdep
#endif
 for (_ix = 0; _ix < _count; ++_ix) {
 _v = _nodes[_ix]−>_v;
 v = _v;
 ena = _ion_ena;
 initmodel(_ix);
 }
}
/***************************/

It suffices merely to call attention to the statement

ena = _ion_ena;

which shows the difference between the local copy of ena and the pointer to the ion
variable itself. The model description can touch only the local copy and is unable to
change the value referenced by _ion_ena. Some old model descriptions circumvented
this hiding by using the actual reference to the ion mechanism variables in the INITIAL
block (from a knowledge of the translation implementation), but that was always
considered an absolutely last resort.

This hands−off policy for ion variables has recently been relaxed for the case of
models that WRITE ion concentrations, but only if the concentration is declared to be a
STATE and the concentration is initialized explicitly in an INITIAL block. It is
meaningless for more than one model at the same location to specify the same
concentrations, and an error is generated if multiple models WRITE the same
concentration variable at the same location.

If we try this mechanism

NEURON {
 SUFFIX test2
 USEION na WRITE nai
 RANGE nai0
}

PARAMETER {
 nai0 = 20 (milli/liter)
}

STATE {
 nai (milli/liter)
}

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 8 June 5, 2003

INITIAL {
 nai = nai0
}

we get this result

oc>create soma
oc>access soma
oc>insert test2
oc>nai
 10
oc>finitialize(−65)
 1
oc>nai
 20
oc>nai0_test2 = 30
oc>finitialize(−65)
 1
oc>nai
 30

If the INITIAL block is not present, the nai0_test2 starting value will have no effect.

Initializing concentrations in hoc

The best way to initialize concentrations depends on the design and intended use of
the model. One must ask whether the concentration is supposed to start at the same value
in all sections where the mechanism has been inserted, or should it be nonuniform from
the outset?

Take the case of a mechanism that WRITEs an ion concentration. Such a mechanism
has an associated global variable that can be used to initialize the concentration to the
same value in each section where the mechanism exists. These global variables have
default values for na, k and ca that are "reasonable" but probably incorrect for any
specific preparation. The default concentrations for ion names created by the user are
1 mM; these should be assigned correct values in hoc. A subsequent call to
finitialize() will use this to initialize the ionic concentration.

The name of the global variable is formed from the name of the ion that the
mechanism uses and the concentration that it WRITEs. For example, suppose we have a
mechanism kext that implements extracellular potassium accumulation as described by
Frankenhaeuser and Hodgkin [Frankenhaeuser, 1956 #307]). The kext mechanism
WRITEs ko, so the corresponding global variable is ko0_k_ion. The sequence of
instructions

ko0_k_ion = 10 // seawater, 4 x default value (2.5)
ki0_k_ion = 4*54.4 // 4 x default value, preserves ek
finitialize(v_init) // v_init is the starting Vm

will set ko to 10 mM and ki to 217.6 mM in every segment that has the kext
mechanism.

What if one or more sections of the model are supposed to have different initial
concentrations? For these particular sections the ion_style() function would be used
to assert that the global variable is not to be used to initialize the concentration for this

Page 10 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

particular ion. A complete discussion of ion_style(), its arguments, and its actions is
contained in NEURON’s help system, but we will consider one specific example here.
Let’s say we have inserted kext into section dend. Then the numeric arguments in the
statement

dend ion_style("k_ion",3,2,1,1,0)

would have the following effects on the kext mechanism in the dend section (in
sequence): treat ko as a STATE variable; treat ek as an ASSIGNED variable; on call to
finitialize() use the Nernst equation to compute ek from the concentrations;
compute ek from the concentrations on every call to fadvance(); do not use
ko0_k_ion or ki0_k_ion to set the initial values of ko and ki. The proper
initialization would now be to set ko and ki explicitly for this section, e.g.

ko0_k_ion = 10 // all sections start with ko = 10 mM
dend {ko = 5 ki = 2*54.4} // . . . except dend
finitialize(v_init)

Examples of custom initializations

Initializing to a particular "resting potential"
Perhaps the most trivial custom initialization is to force the initialized voltage to be

the resting potential. Returning our consideration to initialization of the HH membrane
compartment,

finitialize(−65)

will indeed set the voltage to −65 mV, and m, h, and n will be in steady state relative to
that voltage. However, this must be considered analogous to a voltage clamp
initialization since the sum of all the currents may not be 0 at this potential, i.e. −65 mV
may not be the resting potential. For this reason it is common to adjust the leakage
equilibrium potential so that the resting potential is precisely −65 mV.

This can be done with a user−defined init()
procedure based on the idea that total membrane
current at steady state must be 0. For our single
compartment HH model, this means that

0 = ina + ik + gl_hh*(v − el_hh)

so our custom init() is

proc init() {
 finitialize(−65)
 el_hh = (ina + ik + gl_hh*v)/gl_hh
 if (cvode.active()) {
 cvode.re_init()
 } else {
 fcurrent()
 }
 frecord_init()
}

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Remember to load user−defined
versions of functions or
procedures that are part of the
standard library, such as init(),
after the standard library.
Otherwise, the user−defined
version will be overwritten.

The NEURON Book: Chapter 8 June 5, 2003

The cvode.re_init() call is not essential here since states have not been changed, but
it is still good practice since it will update the calculation of all the dstate/dt (note that
now dv/dt should be 0 as a consequence of the change in el_hh) as well as internally
make a call to fcurrent() (which is necessary because changing el_hh requires a
recalculation of il_hh).

Calculating the value of leakage equilibrium potential in order to realize a specific
resting potential is not fail−safe in the sense that the resultant value of el_hh may be
very large and out of its physiological range−−after all, gl_hh may be a very small
quantity. It may sometimes be better to introduce a constant current mechanism and set
its value so that

0 = ina + ik + ica + i_constant

holds at the desired resting potential. An example of such a mechanism is

: constant current for custom initialization

NEURON {
 SUFFIX constant
 NONSPECIFIC_CURRENT i
 RANGE i, ic
}

UNITS {
 (mA) = (milliamp)
}

PARAMETER {
 ic = 0 (mA/cm2)
}

ASSIGNED {
 i (mA/cm2)
}

BREAKPOINT {
 i = ic
}

and the corresponding custom init() would be

proc init() {
 finitialize(−65)
 ic_constant = −(ina + ik + il_hh)
 if (cvode.active()) {
 cvode.re_init()
 } else {
 fcurrent()
 }
 frecord_init()
}

Before moving on to the next example, we should mention that testing is required to
verify that the system is stable at the desired v_init, i.e. that the system returns to
v_init after small perturbations.

Page 12 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

Initializing to steady state
In Chapter 4 we mentioned that NEURON’s default integrator uses the implicit

Euler method, which can find the steady state of a linear system in a single step if the
integration step size is large compared to the longest system time constant. Implicit Euler
can also find the steady state of many nonlinear systems, but it may be necessary to
perform several iterations with large dt. An init() that takes advantage of this fact is

proc init() { local dtsav, temp
 finitialize(v_init)
 t = −1e10
 dtsav = dt
 dt = 1e9
 // if cvode is on, turn it off to do large fixed step
 temp = cvode.active()
 if (temp!=0) { cvode.active(0) }
 while (t<−1e9) {
 fadvance()
 }
 // restore cvode if necessary
 if (temp!=0) { cvode.active(1) }
 dt = dtsav
 t = 0
 if (cvode.active()) {
 cvode.re_init()
 } else {
 fcurrent()
 }
 frecord_init()
}

This first performs a preliminary "voltage clamp" initialization to v_init. Then it sets
time to a very large negative value (to prevent triggering point processes and other
events) and integrates over several steps with a large fixed dt so that the system can
reach steady state. The procedure wraps up by returning dt to its original value, setting t
back to 0, and, if necessary, reactivating the variable step integrator. The last few
statements are the familiar re−initialization of cvode or invocation of fcurrent(),
followed by initialization of vector recording.

This initialization strategy generally works well, but there are circumstances in which
it may fail. Active transport mechanisms can be troublesome with fixed time step
integration if dt is large, because even a small pump rate may produce a negative
concentration. To see a more mundane example of instability with large dt, construct a
single compartment model that has the hh mechanism. With the default hh parameters,
and in the absence of any injected current, this is quite stable even for huge values of dt
(e.g. 105 ms). Now reduce gnabar_hh to 0, increase dt to 100 ms, and watch what
happens over the course of 5000 ms. The result is an oscillation whose peak−to−peak
amplitude gradually increases to ~ 10 mV. It would be all to easy to miss such
oscillations when using steady−state initialization with large steps. This underscores the
need for careful testing of any initialization strategy, since in a sense all of them work
"behind the scenes."

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 8 June 5, 2003

Initializing to a desired state
Suppose the end of some run is to serve as the initial condition for subsequent runs;

this is a particularly useful strategy for dealing with models that oscillate or otherwise
lack a "resting" state. We can save all the states with

objref svstate, f
svstate = new SaveState()
svstate.save()

The binary state information can be saved for use in later neuron sessions with

f = new File("states.dat")
svstate.fwrite(f)

and future sessions can read the file into the SaveState object with

objref svstate, f
svstate = new SaveState()
f = new File("states.dat")
svstate.fread(f)

Whether or not the state information comes from a svstate.save() in this session
or was read from a file, we only have to make a minor change to init() in order to use
that information to initialize the system:

proc init() {
 finitialize(v_init)
 svstate.restore()
 t = 0 // t is one of the "states"
 if (cvode.active()) {
 cvode.re_init()
 } else {
 fcurrent()
 }
 frecord_init()
}

Initializing by changing the model
Occasionally the aim is to bring a model to an initial condition that it would never

reach on its own. This can be a particular challenge if the model involves several
interacting nonlinear processes, making it difficult or impossible to know in advance
what values the states should have. Such problems can sometimes be circumvented by
changing the parameters of the model so that initialization reaches the desired state, and
then restoring the original parameters of the model.

As a specific example, consider a conceptual model of the regulation of the calcium
concentration in a thin intracellular compartment ("shell") adjacent to the cell membrane
(Fig. 8.1). Calcium (Ca+2) can enter or leave the shell in one of three ways: by diffusion
between the shell and the core of the cell, by active transport via a membrane−bound
pump, or as a result of non−pump calcium current ICa (i.e. transmembrane calcium flux

not produced by the pump). For the sake of simplicity, we will assume that Cacore and

Cao ([Ca+2] in the core and extracellular solution) are constant. However, the problems

Page 14 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

that we encounter, and the manner in which we solve them, would be the same even if
Cacore and Cao were allowed to vary.

ICa

Pump

Diffusion

core

shell

Fig. 8.1. Schematic diagram of a model of regulation of [Ca+2] in a thin shell
just inside the cell membrane.

Our goals are to:

1. initialize the internal calcium concentration next to the membrane [Ca+2]shell
(hereafter called Cashell) to a desired value and then plot Cashell and the pump

current ICapump
 as functions of time

2. plot the starting value of ICapump
 as a function of the initial Cashell

To achieve these goals, we must be able to set the initial value of Cashell to whatever

level we want and ensure that the pump reaches its corresponding steady state.

Details of the mechanism

The kinetic scheme that describes this mechanism of calcium regulation is

diffusion Ca
core

→
←

1⁄τ

1⁄τ

Ca
shell

Eq. 8.3a

active transport Ca
shell

+ Pump →
←
k

2

k
1

CaPump Eq. 8.3b and c

CaPump →
←
k

4

k
3

Ca
o
+ Pump

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 8 June 5, 2003

calcium current Ca
shell

←
1⁄2 F vol

�I
Ca

Eq. 8.3d

where τ is the time constant for equilibration of Ca+2 between the shell and the core, F is
Faraday’s constant, and vol is the volume of the shell.

The NMODL code that implements this mechanism is

NEURON {
 SUFFIX capmp
 USEION ca READ cao, ica, cai WRITE cai, ica
 RANGE tau, width, cacore, ica, pump0
}

UNITS {
 (um) = (micron)
 (molar) = (1/liter)
 (mM) = (millimolar)
 (uM) = (micromolar)
 (mA) = (milliamp)
 (mol) = (1)
 FARADAY = (faraday) (coulomb)
}

PARAMETER {
 width = 0.1 (um)
 tau = 1 (ms) : corresponds to D = 2e−7 cm2/s
 : D for Ca in water is 6e−6 cm2/s, i.e. 30x faster
 k1 = 5e8 (/mM−s)
 k2 = 0.25e6 (/s)
 k3 = 0.5e3 (/s)
 k4 = 5e0 (/mM−s)
 cacore = 0.1 (uM)
 pump0 = 3e−14 (mol/cm2)
}

ASSIGNED {
 cao (mM) : on the order of 10 mM
 cai (mM) : on the order of 0.001 mM
 ica (mA/cm2)
 ica_pmp (mA/cm2)
 ica_pmp_last (mA/cm2)
}

STATE {
 cashell (uM) <1e−6>
 pump (mol/cm2) <1e−16>
 capump (mol/cm2) <1e−16>
}

INITIAL {
 ica = 0
 ica_pmp = 0
 ica_pmp_last = 0
 SOLVE pmp STEADYSTATE sparse
}

Page 16 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

BREAKPOINT {
 SOLVE pmp METHOD sparse
 ica_pmp_last = ica_pmp
 ica = ica_pmp
}

KINETIC pmp {
 : volume/unit surface area has dimensions of um
 : area/unit surface area is dimensionless
 COMPARTMENT width {cashell}
 COMPARTMENT (1e13) {pump capump}
 COMPARTMENT 1(um) {cacore}
 COMPARTMENT (1e3)*1(um) {cao}
 CONSERVE pump + capump = (1e13)*pump0
 ~ cacore <−> cashell (width/tau, width/tau)
 ~ cashell + pump <−> capump ((1e7)*k1, (1e10)*k2)
 ~ capump <−> cao + pump ((1e10)*k3, (1e10)*k4)
 ica_pmp = (1e−7)*2*FARADAY*(f_flux − b_flux)

 : ica_pmp is the "new" value, but cashell must be
 : computed using the "old" value, i.e. ica_pmp_last
 ~ cashell << (−(ica − ica_pmp_last)/(2*FARADAY)*(1e7))

 cai = (0.001)*cashell
}

Initializing the mechanism

For the sake of convenience we will assume that our model cell has only one section
called soma, and that soma is the default section. Also suppose that we have already
assigned the desired value of Cashell to a parameter we will call ca_init, e.g. with a

statement of the form ca_init = somevalue. Our problem is how to ensure that
initialization makes cashell_capmp take on the value of ca_init.

As a naive first stab at this problem, we might try changing the init() procedure
like this

proc init() {
 cashell_capmp = ca_init
 finitialize(v_init)
}

i.e. by inserting a line that sets the desired value of Cashell before calling finitialize().

To see whether this has the desired effect, we need only to run a simulation and examine
the time course of Cashell and the pump current ICa

pump
. This quickly shows that, no

matter what value we first assign to cashell_capmp, finitialize() drives Cashell and

ICa
pump

 to the same steady state levels (Fig. 8.2). We might have anticipated this result,

because it is what steady state initialization is supposed to do. If Cashell is too high, the

excess calcium will diffuse into the core or be pumped out of the cell until Cashell returns

to the steady state value. On the other hand, if Cashell is too low, calcium will diffuse into

the shell from the core, and the pump will slow or may even reverse, until Cashell comes

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 8 June 5, 2003

back to the steady state value. Thus, regardless of how we perturb Cashell, steady state

initialization always brings the model back to the same condition.

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 5 10 15 20
ms

ica

mA/cm2

Fig. 8.2. Default initialization after setting cashell_capmp to 0.1 µM leaves
Cashell (left) and ICa

pump
 (right) at their steady−state levels of ~ 0.034 µM and

~ 1.3 × 10−4 mA/cm2, respectively.

For our second attempt we try calling finitialize() first, and then setting the
desired value of Cashell.

proc init() {
 finitialize(v_init)
 cashell_capmp = ca_init
 // we’ve changed a state, so the following are needed
 if (cvode.active()) {
 cvode.re_init()
 } else {
 fcurrent()
 }
 frecord_init()
}

This is partly successful, in that it does affect Cashell and ICapump
, but plots of these

variables seem to start from the wrong initial conditions. For example, if we try
ca_init = 0.1 µM, the plot of cashell_capmp appears to start with a value of
~ 0.044 µM instead. Using the Graph’s Color/Brush menu to change the color or
thickness of the plots of cashell_capmp and ica, we discover the presence of early,
fast transients that overlie the y axis (Fig. 8.3 top). Thus cashell_capmp really does
start at the right initial value, but in less than 5 microseconds it drops by ~ 56%. So we
have solved one mystery only to uncover another: what causes these fast transients?

Some reflection brings the realization that, although we changed the concentration in
the shell, we did not properly initialize the pump. Consequently, as soon as we launch a
simulation, Ca+2 starts binding to the pump, and this is responsible for the precipitous
drop of Cashell. At the same time, the rate of active transport begins to rise, which is

Page 18 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

reflected in the increase of ICa
pump

. These changes produce the "pump transients" in

Cashell and ICa
pump

, which can be quite large as Fig. 8.3 shows.

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 5 10 15 20
ms

mA/cm2
ica

0

0.02

0.04

0.06

0.08

0.1

0 0.0025 0.005 0.0075 0.01
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 0.0025 0.005 0.0075 0.01
ms

mA/cm2
ica

Fig. 8.3. Time course of Cashell (left) and ICa
pump

 (right) following an

initialization that increased Cashell abruptly after calling init(). The traces in

the top figures were thickened to make the early fast transients easier to see.
The time scale of the bottom figures has been expanded to reveal the details of
these fast transients. The final steady−state levels of Cashell and ICa

pump
 are the

same as in Fig. 8.2.

A strategy that does what we want is to change the value of cacore_capmp to
ca_init and make τ very fast before calling finitialize(), then wrap up by
restoring the values of cacore_capmp and τ. This amounts to changing the model in
order to achieve the desired initialization. One example of such a custom init() is

proc init() { local savcore, savtau
 // make cacore equal to ca_init
 savcore = cacore_capmp
 cacore_capmp = ca_init
 // initialize cashell to cacore
 savtau = tau_capmp
 tau_capmp = 1e−6 // so cashell tracks cacore closely
 finitialize(v_init)

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 8 June 5, 2003

 // restore cacore and tau
 cacore_capmp = savcore
 tau_capmp = savtau
 if (cvode.active()) {
 cvode.re_init()
 } else {
 fcurrent()
 }
 frecord_init()
}

This code ensures that the difference between Cashell and Cacore becomes vanishingly

small, and at the same time allows the pump to initialize properly (Fig. 8.4).

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

20
ms

cashell_capmp
Mµ

0 5 10 15
0

0.0001

0.0002

0.0003

0.0004

0.0005

20
ms

ica

mA/cm
2

Fig. 8.4. Following proper initialization, plots of Cashell (left) and ICapump

(right) begin at the correct values and do not display the early fast transient
that appeared in Fig. 8.3.

Now we can plot the starting value of ICapump
 as a function of the initial Cashell.

Figure 8.5 shows a Grapher configured to do this. To make this a semilog plot, we used
an independent variable x to sweep ca_init from 10−4 to 102 µM in 30 logarithmically
equally spaced intervals. For each value of x the Grapher calculated the corresponding
value of ca_init as 10x, called our custom init(), and plotted the resulting ica_capmp
vs. log10(cashell_capmp), i.e. log10(Cashell). Note that log10(cashell_capmp)

ranges from −4 to 2, which means that Cashell ranges from 10−4 to 102 µM, i.e. exactly

the same range of concentrations as ca_init. This confirms the ability of our custom
init() to set cashell_capmp to the desired values.

Page 20 Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved

June 5, 2003 The NEURON Book: Chapter 8

Plot Erase All

Indep Begin -4

Indep End 2

Steps 30

Independent Var x

X-expr log10(cashell_capmp)

Generator ca_init=10^x init()

-4 -2 0 2
0

0.001

0.002

0.003

-4 -2 0 2
0

0.001

0.002

0.003
ica_capmp

mA/cm2

Grapher

Fig. 8.5. A Grapher used to plot of ICa
pump

 vs. initial Cashell. The Graph menu’s

Change Text was used to add the mA/cm2 label.

Copyright © 2001−2003 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

