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Chapter 8
How to initialize simulations

In most cases, initialization basically means the assignment of values at time t = 0 for
membrane potential, gating states, and ionic concentrations at every spatial position in the
model. A model is properly initialized when clicking on the Init & Run button produces
exactly the same results, regardless of previous simulation history. Of course we assume
that model parameters have not changed between runs, and that any random number
generator has been re-initialized with the same seed so that it produces the same sequence
of "random" numbers. Models described by kinetic schemes require that each of the
reactant states be initialized to some concentration. If linear circuits are involved, initial
values must be assigned to voltages across capacitors and the internal states of
operational amplifiers. For networks and other models that use the event delivery system,
initialization also includes specifying which events are in transit to their destinations at
time 0 (i.e. events generated, at least conceptually, at t ≤ 0 for delivery at t ≥ 0). Complex
models often have complex recording and analysis methods, perhaps involving counters
and vectors, and these may also need to be initialized. 

State variables and STATE variables
In rough mathematical terms, if a system consists of n first order differential

equations, then initialization consists in specifying the starting values of n variables. For
the Hodgkin-Huxley membrane patch (only one compartment), these equations have the
form 

dv
dt

� f 1

�
m,h ,n ,v � Eq. 8.1a-d

dm
dt

� f 2

�
m,v �

dh
dt

� f 3

�
h ,v �

dn
dt

� f 4

�
n ,v �

so that, knowing the value of each variable at time t, we can specify the slope of each
variable at time t. We have already seen (Chapter 7) that integration of these equations is
an iterative process in which the purpose of an individual integration step (f advance( ) )
is to carry the system from time t to time t + ∆t using more or less sophisticated equations
of the form
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t ��� t � � v

�
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�
t * �
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Eq. 8.2
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�
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�
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dt

. . .

where the sophistication is in the choice of a value of t*  somewhere between t and t + ∆t.
However, regardless of the integration method, the iterative process cannot begin without
choosing starting values for v, m, h, and n. This choice is arbitrary over the domain of the
variables (-∞ < v < ∞ , 0 ≤ m ≤ 1, . . . ), but once the initial v, m, h, and n are chosen, all
auxiliary variables (e.g. conductances, currents, d/dt terms) at that instant of time are
determined, and the equations determine the trajectories of each variable forever after.
The actual evaluation of these auxiliary variables is normally done with assignment
statements, such as

gna = gnabar * m* m* m* h
i na = gna* ( v -  ena)

This is why the model description language NMODL designates gna and i na as
ASSI GNED variables, as opposed to the gating variables m, h, and n, which are the
dependent variables in differential equations and are therefore termed STATE variables.

Unfortunately, over time an abuse of notation has evolved so that STATE refers to any
variable that is an unknown quantity in a set of equations, and ASSI GNED refers to any
variable that is not a STATE or a PARAMETER (PARAMETERs can be meaningfully set by
the user as constants throughout the simulation, e.g. gnabar ). Currently, within a single
model description, STATE just specifies which variables are the dependent variables of
KI NETI C schemes, algebraic equations in LI NEAR and NONLI NEAR blocks, or
differential equations in DERI VATI VE blocks. Generally the number of STATEs in a
model description is equal to the number of equations. Thus, locally in a model
description, the membrane potential v is never a dependent variable (the model
description contains no equation that solves for its value) and it cannot be regarded as a
user-specified value. Instead, it is declared in model descriptions as an ASSI GNED
variable, even though it is obviously a state variable at the level of the entire simulation.
This abuse of terminology also occurs in linear circuits, where the potential at every node
is an unknown to be solved and therefore a STATE. However, a resistive network does
not add any differential equation to the system (although it adds algebraic equations), so
those additional dependent variables do not strictly need to be initialized.

While STATE variables may be assigned any values whatever during initialization, in
practice only a few general categories of custom initialization are used. Some of these are
analogous to experimental methods for preparing a system for stimulation, e.g. letting the
system rest without experimental perturbation, or using a voltage clamp or constant
injected current to hold the system at a defined membrane potential--the idea is that the
system should reach an unchanging steady state independent of previous history. It is
from this steady state that the simulation begins at time t  = 0. When there is no steady
state, as for oscillating or chaotic systems, whatever initialization is ultimately chosen
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will need to be saved in order to be able to reproduce the simulation. More complicated
initializations involve finding parameters that meet certain conditions, such as what value
of some parameter or set of parameters yields a steady state with a desired potential.
Some initial conditions may not be physically realizable by any possible manipulations of
membrane potential. For example, with the hh model the h gating state has a steady state
of 1 at large hyperpolarized potentials and the n gating state has a steady state of 1 at
large depolarized potentials. It would therefore be impossible to reach a condition of h =
1 and n = 1 by controlling only voltage.

Basic initialization in NEURON: finitialize()
Basic initialization in NEURON is accomplished with the f i ni t i al i ze( )  function,

which is defined in nr n- x. x / sr c/ nr noc/ f advance. c  (UNIX/Linux). This carries
out several actions.

1. t  is set to 0 and the event queue is cleared (undelivered events from the previous run
are thrown away).

2. Variables that receive a random stream (the list defined by Random. pl ay( )
statements) are set to values picked from the appropriate random distributions. 

3. All internal structures that depend on topology and geometry are updated, and chosen
solvers are made ready.

4. The controller for Vect or . pl ay( )  variables is initialized. The controller makes use
of the event delivery system for Vect or . pl ay( )  specifications that define transfer
times for a step function in terms of dt  or a time Vect or . 

Events at time t  = 0 (e.g. appropriate Vect or . pl ay( )  events) are delivered.

5. If f i ni t i al i ze( )  was called with an argument v_i ni t , the membrane potential v
in every compartment is set to the value v_i ni t  with a statement equivalent to

f or al l  f or  ( x)  v( x)  = v_i ni t

6. The I NI TI AL block of every inserted mechanism in every segment of every section is
called. This includes point processes as well as distributed mechanisms (see INITIAL
blocks in NMODL later in this chapter). The order in which mechanisms are
initialized depends on whether any mechanism has a USEI ON statement or WRI TEs an
ion concentration.

Ion initialization is performed first, including calculation of equilibrium potentials.
Then mechanisms that WRI TE an ion concentration are initialized; this necessitates
recalculation of the equilibrium potentials for any affected ions. Finally, all other
mechanism I NI TI AL blocks are called.

Apart from these constraints, the call order of user-defined mechanisms is currently
defined by the alphabetic list of mod file names or the order of the mod file arguments
to nr ni vmodl  (or mknr ndl l ). However one should avoid sequence-dependent
I NI TI AL blocks. Thus if the I NI TI AL block of one mechanism needs the values of
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variables another mechanism, the latter should be assigned before f i ni t i al i ze( )  is
executed.

If extracellular mechanisms exist, their vext  states are initialized to 0 before any other
mechanism is initialized. Therefore, for every mechanism that computes an
ELECTRODE_CURRENT, v_i ni t  refers to both the internal potential and the 
membrane potential. 

I NI TI AL blocks are discussed in further detail below.

7. Li near Mechani sm states, if any, are initialized.

8. Network connections are initialized. This means that the I NI TI AL block inside any
NET_RECEI VE block that is a target of a Net Con object is called to initialize the states
of the Net Con object. 

9. The I NI TI AL blocks may have initiated net _send events whose delay is 0. These 
events are delivered to the corresponding NET_RECEI VE blocks.

10. If fixed step integration is being used, all mechanism BREAKPOINT blocks are
called (essentially equivalent to a call to f cur r ent ( ) ) in order to initialize all 
assigned variables (conductances and currents) based on the initial STATE and
membrane voltage.

If any variable time step method is active, then those integrators are initialized. In this
case, if you desire to change any state variable (here "state variable" means variables
associated with differential equations, such as gating states, membrane potential,
chemical kinetic states, or ion concentrations in accumulation models) after
f i ni t i al i ze( )  is called, you must then call cvode. r e_i ni t ( )  to notify the
variable step methods that their copy of the initial states needs to be updated. Note that
initialization of the differential algebraic solver IDA consists of two very short (dt  =
10-6 ms) backward Euler time steps in order to ensure the validity of f � y ' , y ��� 0 .

11. Vect or  recording of variables using the list defined by cvode. r ecor d( &st at e,
vect or )  statements is initialized. As discussed in Chapter 7 under The fixed step
methods: backward Euler and Crank-Nicholson, cvode. r ecor d( )  is the only
good way of keeping the proper association between local step state value and local t . 

12. Vect or s that record a variable, and are in the list defined by Vect or . r ecor d( )
statements, record the value in Vect or . x[ 0] , if t  = 0 is a requested time for
recording.

Default initialization in the standard run system:
stdinit() and init()

The standard run system's default initialization takes effect when you enter a new
value for v_i ni t  into the field editor next to the RunControl panel's Init button, or when
you press either RunControl panel's Init or Init & Run button. These buttons do not call the
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i ni t ( )  procedure directly but instead execute a procedure called st di ni t ( )  which has
the implementation

pr oc st di ni t ( )  {
  r eal t i me=0  / /  " r un t i me"  i n seconds
  st ar t sw( )    / /  i ni t i al i ze r un t i me st opwat ch
  set dt ( )
  i ni t ( )
  i ni t Pl ot ( )
}

set dt ( )  ensures (by reducing dt , if necessary) that the points plotted fall on time step
boundaries, i.e. that 1/ ( s t eps_per _ms* dt )  is an integer. The i ni t Pl ot ( )  procedure
begins each plotted line at t  = 0 with the proper y value. 

The default i ni t ( )  procedure itself is 

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  / /  User - speci f i ed cust omi zat i ons go her e.
  / /  I f  t hi s  i nval i dat es t he i ni t i al i zat i on of  
  / /  var i abl e t i me st ep i nt egr at i on and vect or  r ecor di ng,
  / /  uncomment  t he f ol l owi ng code.
  / *
  i f  ( cvode. act i ve( ) )  {  
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
  * /
}

Custom initialization is generally accomplished by inserting additional statements after
the call to f i ni t i al i ze( ) . These statements often have the effect of changing one or
more state variables, i.e. variables associated with differential equations, such as gating
states, membrane potential, chemical kinetic states, or ion concentrations in accumulation
models. This invalidates the initialization of the variable time step integrator, making it
necessary to call cvode. r e_i ni t ( )  to notify the variable step integrator that its copy of
the initial states needs to be updated. If instead fixed step integration is being used, 
f cur r ent ( )  should be called to make the values of conductances and currents
consistent with the new states. Changing state variables after calling f i ni t i al i ze( )
can also cause incorrect values to be stored as the first element of recorded vectors.
Adding f r ecor d_i ni t ( )  to the end of i ni t ( )  prevents this. 

INITIAL blocks in NMODL
I NI TI AL blocks for channel models generally set the gating states to their steady

state values with respect to the present value of v. Hodgkin-Huxley style models do this
easily and explicitly by calculating the voltage sensitive alpha and beta rates for each
gating state and using the two state formula for the steady state, e.g.
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PROCEDURE r at es( v( mv) )  {
  mi nf  = al pha( v) / ( al pha( v)  + bet a( v) )
  .  .  .
}

and then

I NI TI AL {
  r at es( v)
  m = mi nf
  .  .  .
}

When channel models are described by kinetic schemes, it is common to calculate the
steady states with the idiom

I NI TI AL {
  SOLVE scheme STEADYSTATE spar se
}

where scheme is the name of a KI NETI C block. To place this in an almost complete
setting, consider this implementation of a three state potassium channel with two closed
states and an open state:

NEURON {
  USEI ON k READ ek WRI TE i k
}

STATE {  c1 c2 o }

I NI TI AL {
  SOLVE scheme STEADYSTATE spar se
}

BREAKPOI NT {
  SOLVE scheme METHOD spar se
  i k  = gbar * o* ( v  -  ek)
}

KI NETI C scheme {
  r at es( v)  :  cal cul at e t he 4 k r at es.
  ~ c1 <- > c2 ( k12,  k21)
  ~ c2 <- > o (  k2o,  ko2)
}

(the r at es( )  procedure and some minor variable declarations are omitted for clarity).
As mentioned earlier in Default initialization in the standard run system: stdinit()
and init(), when initialization has been customized so that states are changed after
f i ni t i al i ze( )  has been called, it is generally useful to call the f cur r ent ( )  function
to make the values of all conductances and currents consistent with the newly initialized
states. In particular this will call the BREAKPOI NT block (twice, in order to compute the
Jacobian (di/dv) elements for the voltage matrix equation) for all mechanisms in all
segments, and on return the ionic currents such as i na, i k , and i ca will equal the
corresponding net ionic currents through each segment.
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Default vs. explicit initialization of STATEs

In model descriptions, a default initialization of the STATEs of the model occurs just
prior to the execution of the I NI TI AL block. However, this default initialization is rarely
useful, and one should always explicitly implement an I NI TI AL block. If the name of a
STATE variable is st at e, then there is also an implicitly declared parameter called
st at e0. The default value of st at e0 is specified either in the PARAMETER block

PARAMETER {
  st at e0 = 1
}

or implicitly in the STATE declaration with the syntax

STATE {
  st at e START 1
}

If a specific value for st at e0 is not declared by the user, st at e0 will be assigned a
default value of 0. st at e0 is not accessible from the interpreter unless it is explicitly
mentioned in the GLOBAL or RANGE list of the NEURON block. For example, 

NEURON {
  GLOBAL m0
  RANGE h0
}

specifies that every m will be set to the single global m0 value during initialization, while
h will be set to the possibly spatially-varying h0 values. Clarity will be served if, in using
the st at e0 idiom, you explicitly use an I NI TI AL block of the form

I NI TI AL {
  m = m0
  h = h0
  n = n0
}

Ion concentrations and equilibrium potentials

Each ion type is managed by its own separate ion mechanism, which keeps track of
the total membrane current carried by the ion, its internal and external concentrations,
and its equilibrium potential. The name of this mechanism is formed by appending the
suffix _i on to the name of the ion specified in the USEI ON statement. Thus if cai  and
cao are integrated by a model that declares

USEI ON ca READ i ca WRI TE cai ,  cao

there would also be an automatically created mechanism called ca_i on, with associated
variables i ca, cai , cao, and eca. The initial values of cai  and cao are set globally to
the values of cai 0_ca_i on and cao0_ca_i on, respectively (see Initializing
concentrations in hoc below). 
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Prior to version 4.1, model descriptions
could not initialize concentrations, or at
least it was very cumbersome to do so.
Instead, the automatically created ion
mechanism would initialize the ionic
concentration adjacent to the membrane
according to global variables. The reason
that model mechanisms were not allowed to
specify ion variables (or other potentially
shared variables such as cel s i us ) was that
confusion could result if more that one mechanism at the same location tried to assign
different values to the same variable. The unintended consequence of this policy is
confusion of a different kind, which happens when a model declares an ion variable, such
as ena, to be a PARAMETER and attempts to assign a value to it. The attempted
assignment has no effect, other than to generate a warning message. Consider the
mechanism

NEURON {
  SUFFI X t est
  USEI ON na READ ena
}

PARAMETER {
  ena = 25 ( mV)
}

When this model is translated by nr ni vmodl  (or mknr ndl l ) we see 
$ nr ni vmodl  t es t . mod
Tr ans l at i ng t es t . mod i nt o t est . c
War ni ng:  Def aul t  25 of  PARAMETER ena wi l l  be i gnor ed and set  by NEURON.

and use of the model in NEURON shows that the value of ena is that defined by the
na_i on mechanism itself, instead of what was asserted in the t est  model.

$ nr ngui
 .  .  .
Addi t i onal  mechani sms f r om f i l es
 t est . mod
 .  .  .
oc>cr eat e soma
oc>access soma
oc>i nser t  t est
oc>ena
        50

If we add the initialization

I NI TI AL {
  pr i nt f ( " ena was %g\ n" ,  ena)
  ena = 30
  pr i nt f ( " we t hi nk we changed i t  t o %g\ n" ,  ena)
}

to t est . mod, we quickly discover that ena remains unchanged. 
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oc>f i ni t i al i ze( - 65)
ena was 50
we t hi nk we changed i t  t o 30
        1
oc>ena
        50

It is perhaps not a good idea to invite diners into the kitchen, but the reason for this
can be seen from the careful hiding of the ion variables by making local copies of them in
the C code generated by the nocmodl  translator. Translation of the I NI TI AL block into a
model-specific i ni t model  function is an almost verbatim copy, except for some trivial
boiler plate. However, f i ni t i al i ze( )  calls this indirectly via the model-generic
nr n_i ni t  function, which can be seen in all its gory detail in the C file output from
nocmodl  t est . mod :
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * /
st at i c nr n_i ni t ( _count ,  _nodes,  _dat a,  _pdat a,  _t ype_i gnor e)
        i nt  _count ,  _t ype_i gnor e;  Node* *  _nodes;  doubl e* *  _dat a;  Dat um* *  _pdat a;
{  i nt  _i x;  doubl e _v;
 _p = _dat a;  _ppvar  = _pdat a;
   
#i f  _CRAY
#pr agma _CRI  i vdep
#endi f
        f or  ( _i x = 0;  _i x < _count ;  ++_i x)  {
 _v = _nodes[ _i x] - >_v;
                v = _v;
  ena = _i on_ena;
                i ni t model ( _i x) ;
        }
}
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * /

It suffices merely to call attention to the statement

ena = _i on_ena;

which shows the difference between the local copy of ena and the pointer to the ion
variable itself. The model description can touch only the local copy and is unable to
change the value referenced by _i on_ena. Some old model descriptions circumvented
this hiding by using the actual reference to the ion mechanism variables in the I NI TI AL
block (from a knowledge of the translation implementation), but that was always
considered an absolutely last resort.

This hands-off policy for ion variables has recently been relaxed for the case of
models that WRI TE ion concentrations, but only if the concentration is declared to be a
STATE and the concentration is initialized explicitly in an I NI TI AL block. It is
meaningless for more than one model at the same location to specify the same
concentrations, and an error is generated if multiple models WRI TE the same
concentration variable at the same location.

If we try this mechanism

NEURON {
  SUFFI X t est 2
  USEI ON na WRI TE nai
  RANGE nai 0
}
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PARAMETER {
  nai 0 = 20 ( mi l l i / l i t er )
}

STATE {
  nai  ( mi l l i / l i t er )
}

I NI TI AL {
  nai  = nai 0
}

we get this result

oc>cr eat e soma
oc>access soma
oc>i nser t  t est 2
oc>nai
        10
oc>f i ni t i al i ze( - 65)
        1
oc>nai
        20
oc>nai 0_t est 2 = 30
oc>f i ni t i al i ze( - 65)
        1
oc>nai
        30

If the I NI TI AL block is not present, the nai 0_t est 2 starting value will have no effect.

Initializing concentrations in hoc

The best way to initialize concentrations depends on the design and intended use of
the model. One must ask whether the concentration is supposed to start at the same value
in all sections where the mechanism has been inserted, or should it be nonuniform from
the outset?

Take the case of a mechanism that WRI TEs an ion concentration. Such a mechanism
has an associated global variable that can be used to initialize the concentration to the
same value in each section where the mechanism exists. These global variables have
default values for [Na], [K] and [Ca] that are broadly "reasonable" but probably incorrect
for any particular case. The default concentrations for ion names created by the user are
1 mM; these should be assigned correct values in hoc . A subsequent call to
f i ni t i al i ze( )  will use this to initialize ionic concentrations.

The name of the global variable is formed from the name of the ion that the
mechanism uses and the concentration that it WRI TEs. For example, suppose we have a
mechanism kext  that implements extracellular potassium accumulation as described by
Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956). The kext
mechanism WRI TEs ko, so the corresponding global variable is ko0_k_i on. The
sequence of instructions

ko0_k_i on = 10      / /  seawat er ,  4 x def aul t  val ue ( 2. 5)
ki 0_k_i on = 4* 54. 4  / /  4 x def aul t  val ue,  pr eser ves ek
f i ni t i al i ze( v_i ni t )  / /  v_i ni t  i s  t he st ar t i ng Vm
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will set ko to 10 mM and ki  to 217.6 mM in every segment that has the kext
mechanism.

What if one or more sections of the model are supposed to have different initial
concentrations? For these particular sections we can use the i on_st y l e( )  function to
assert that the global variable is not to be used to initialize the concentration for this
particular ion. A complete discussion of i on_st y l e( ) , its arguments, and its actions is
contained in NEURON's help system, but we will consider one specific example here.
Let's say we have inserted kext  into section dend. Then the numeric arguments in the
statement 

dend i on_st y l e( " k_i on" , 3, 2, 1, 1, 0)

would have the following effects on the kext  mechanism in the dend section (in
sequence): treat ko as a STATE variable; treat ek  as an ASSI GNED variable; on call to
f i ni t i al i ze( )  use the Nernst equation to compute ek  from the concentrations;
compute ek  from the concentrations on every call to f advance( ) ; do not use
ko0_k_i on or ki 0_k_i on to set the initial values of ko and ki . The proper
initialization is to set ko and ki  explicitly for this section, e.g. 

ko0_k_i on = 10  / /  al l  sect i ons st ar t  wi t h ko = 10 mM
dend { ko = 5  k i  = 2* 54. 4}   / /   .  .  .  except  dend
f i ni t i al i ze( v_i ni t )

Examples of custom initializations

Initializing to a particular resting potential
Perhaps the most trivial custom initialization is to force the initialized voltage to be

the resting potential. Returning our consideration to initialization of the HH membrane
compartment,

f i ni t i al i ze( - 65)

will indeed set the voltage to -65 mV, and m, h, and n will be in steady state relative to
that voltage. However, this must be considered analogous to a voltage clamp initialization
since the sum of all the currents may not be 0 at this potential, i.e. -65 mV may not be the
resting potential. For this reason it is common to adjust the equilibrium potential of the
leak current so that the resting potential is precisely -65 mV.

This can be done with a user-defined i ni t ( )
procedure based on the idea that total membrane
current at steady state must be 0. For our single
compartment HH model, this means that 

0 = i na + i k  + gl _hh* ( v -  el _hh)

so our custom i ni t ( )  is 
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pr oc i ni t ( )  {
  f i ni t i al i ze( - 65)
  el _hh = ( i na + i k  + gl _hh* v) / gl _hh
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

The cvode. r e_i ni t ( )  call is not essential here since states have not been changed, but
it is still good practice since it will update the calculation of all the dstate/dt (note that
now dv/dt should be 0 as a consequence of the change in el _hh) as well as internally
make a call to f cur r ent ( )  (necessary because changing el _hh requires recalculation
of i l _hh).

Calculating the value of leak equilibrium potential in order to realize a specific
resting potential is not fail-safe in the sense that the resultant value of el _hh may be very
large and out of its physiological range--after all, gl _hh may be a very small quantity. It
may sometimes be better to introduce a constant current mechanism and set its value so
that

0 = i na + i k  + i ca + i _const ant

holds at the desired resting potential. An example of such a mechanism is 

:  const ant  cur r ent  f or  cust om i ni t i al i zat i on

NEURON {
  SUFFI X const ant
  NONSPECI FI C_CURRENT i
  RANGE i ,  i c
}

UNI TS {
  ( mA)  = ( mi l l i amp)
}

PARAMETER {
  i c  = 0 ( mA/ cm2)
}

ASSI GNED {
  i  ( mA/ cm2)
}

BREAKPOI NT {
  i  = i c
}

and the corresponding custom i ni t ( )  would be 
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pr oc i ni t ( )  {
  f i ni t i al i ze( - 65)
  i c_const ant  = - ( i na + i k  + i l _hh)
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

Before moving on to the next example, we should mention that testing is required to
verify that the system is stable at the desired v_i ni t , i.e. that the system returns to
v_i ni t  after small perturbations.

Initializing to steady state
In Chapter 4 we mentioned that NEURON's default integrator uses the backward

Euler method, which can find the steady state of a linear system in a single step if the
integration step size is large compared to the longest system time constant. Backward
Euler can also find the steady state of many nonlinear systems, but it may be necessary to
perform several iterations with large dt . An i ni t ( )  that takes advantage of this fact is

pr oc i ni t ( )  {  l ocal  dt sav,  t emp
  f i ni t i al i ze( v_i ni t )
  t  = - 1e10
  dt sav = dt
  dt  = 1e9
  / /  i f  cvode i s  on,  t ur n i t  of f  t o do l ar ge f i xed st ep
  t emp = cvode. act i ve( )
  i f  ( t emp! =0)  {  cvode. act i ve( 0)  }
  whi l e ( t <- 1e9)  {
    f advance( )
  }
  / /  r est or e cvode i f  necessar y
  i f  ( t emp! =0)  {  cvode. act i ve( 1)  }
  dt  = dt sav
  t  = 0
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

This first performs a preliminary "voltage clamp" initialization to v_i ni t . Then it sets
time to a very large negative value (to prevent triggering point processes and other
events) and integrates over several steps with a large fixed dt  so that the system can
reach steady state. The procedure wraps up by returning dt  to its original value, setting t
back to 0, and, if necessary, reactivating the variable step integrator. The last few
statements are the familiar re-initialization of cvode or invocation of f cur r ent ( ) ,
followed by initialization of vector recording.
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This initialization strategy generally works well, but there are circumstances in which
it may fail. Active transport mechanisms can be troublesome with fixed time step
integration if dt  is large, because even a small pump rate may produce a negative
concentration. To see a more mundane example of instability with large dt , construct a
single compartment model that has the hh mechanism. With the default hh parameters,
and in the absence of any injected current, this is quite stable even for huge values of dt

(e.g. 105 ms). Now reduce gnabar _hh to 0, increase dt  to 100 ms, and watch what
happens over the course of 5000 ms. The result is an oscillation whose peak-to-peak
amplitude gradually increases to ~ 10 mV. It would be all to easy to miss such
oscillations when using steady state initialization with large steps. This underscores the
need for careful testing of any initialization strategy, since in a sense all of them work
"behind the scenes."

Initializing to a desired state
Suppose the end of some run is to serve as the initial condition for subsequent runs;

this is a particularly useful strategy for dealing with models that oscillate or otherwise
lack a "resting" state. We can save all the states with

obj r ef  svst at e,  f
svst at e = new SaveSt at e( )
svst at e. save( )

The binary state information can be saved for use in later neuron sessions with

f  = new Fi l e( " s t at es. dat " )
svst at e. f wr i t e( f )

and future sessions can read the file into the SaveSt at e object with

obj r ef  svst at e,  f
svst at e = new SaveSt at e( )
f  = new Fi l e( " s t at es. dat " )
svst at e. f r ead( f )

Whether or not the state information comes from a svst at e. save( )  in this session
or was read from a file, we only have to make a minor change to i ni t ( )  in order to use
that information to initialize the system.

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  svst at e. r est or e( )
  t  = 0 / /  t  i s one of  t he " s t at es"
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

Now every simulation will start from the state that we saved earlier.

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

This might be called a "groundhog
day initialization," after the movie in
which the protagonist awakened to
the same day over and over again.



November 28, 2004 The NEURON Book: Chapter 8

Initializing by changing model parameters
Occasionally the aim is to bring a model to an initial condition that it would never

reach on its own. This can be a particular challenge if the model involves several
interacting nonlinear processes, making it difficult or impossible to know in advance
what values the states should have. Such problems can sometimes be circumvented by 
changing the parameters of the model so that initialization reaches the desired state, and
then restoring the original parameters of the model.

As a specific example, consider a conceptual model of the regulation of the calcium
concentration in a thin intracellular compartment ("shell") adjacent to the cell membrane
(Fig. 8.1). Calcium (Ca+2) can enter or leave the shell in one of three ways: by diffusion
between the shell and the core of the cell, by active transport via a membrane-bound
pump, or as a result of non-pump calcium current ICa (i.e. transmembrane calcium flux

not produced by the pump). For the sake of simplicity, we will assume that Cacore and

Cao ([Ca+2] in the core and extracellular solution) are constant. However, the problems

that we encounter, and the manner in which we solve them, would be the same even if
Cacore and Cao were allowed to vary.

ICa

Pump

Diffusion

core

shell

Fig. 8.1. Schematic diagram of a model of regulation of [Ca+2] in a thin shell
just inside the cell membrane.

Our goals are to:

1. initialize the internal calcium concentration next to the membrane [Ca+2]shell
(hereafter called Cashell) to a desired value and then plot Cashell and the pump

current ICa
pump

 as functions of time

2. plot the starting value of ICa
pump

 as a function of the initial Cashell 

To achieve these goals, we must be able to set the initial value of Cashell to whatever level

we want and ensure that the pump reaches its corresponding steady state. 

Details of the mechanism

The kinetic scheme that describes this mechanism of calcium regulation is 
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diffusion Cacore
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Cashell
Eq. 8.3a

active transport Cashell
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CaPump Eq. 8.3b and c

CaPump
�
�
k4

k3

Cao
�

Pump

calcium current Cashell
�1

�
2Fvol �

ICa Eq. 8.3d

where τ is the time constant for equilibration of Ca+2 between the shell and the core, F is
Faraday's constant, and vol is the volume of the shell. 

The NMODL code that implements this mechanism is 

NEURON {
  SUFFI X capmp
  USEI ON ca READ cao,  i ca,  cai  WRI TE cai ,  i ca
  RANGE t au,  wi dt h,  cacor e,  i ca,  pump0
}

UNI TS {
  ( um)      =  ( mi cr on)
  ( mol ar )   =  ( 1/ l i t er )
  ( mM)      =  ( mi l l i mol ar )
  ( uM)      =  ( mi cr omol ar )
  ( mA)      =  ( mi l l i amp)
  ( mol )     =  ( 1)
  FARADAY  =  ( f ar aday)   ( coul omb)
}

PARAMETER {
  wi dt h = 0. 1    ( um)
  t au = 1        ( ms)  :  cor r esponds t o D = 2e- 7 cm2/ s
  :  D f or  Ca i n wat er  i s  6e- 6 cm2/ s,  i . e.  30x f ast er
  k1 = 5e8       ( / mM- s)
  k2 = 0. 25e6    ( / s)
  k3 = 0. 5e3     ( / s)
  k4 = 5e0       ( / mM- s)
  cacor e = 0. 1   ( uM)
  pump0 = 3e- 14  ( mol / cm2)
}
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ASSI GNED {
  cao     ( mM)  :  on t he or der  of  10 mM
  cai      ( mM)  :  on t he or der  of  0. 001 mM
  i ca     ( mA/ cm2)
  i ca_pmp ( mA/ cm2)
  i ca_pmp_l ast  ( mA/ cm2)
}

STATE {
  cashel l   ( uM)        <1e- 6>
  pump     ( mol / cm2)   <1e- 16>
  capump   ( mol / cm2)   <1e- 16>
}

I NI TI AL {
  i ca = 0
  i ca_pmp = 0
  i ca_pmp_l ast  = 0
  SOLVE pmp STEADYSTATE spar se
}

BREAKPOI NT {
  SOLVE pmp METHOD spar se
  i ca_pmp_l ast  = i ca_pmp
  i ca = i ca_pmp
}

KI NETI C pmp {
  :  vol ume/ uni t  sur f ace ar ea has di mensi ons of  um
  :  ar ea/ uni t  sur f ace ar ea i s  di mensi onl ess
  COMPARTMENT wi dt h { cashel l }  
  COMPARTMENT ( 1e13)  { pump capump}
  COMPARTMENT 1( um)  { cacor e}
  COMPARTMENT ( 1e3) * 1( um)  { cao}
  CONSERVE pump + capump = ( 1e13) * pump0
  ~ cacor e <- > cashel l  ( wi dt h/ t au,  wi dt h/ t au)
  ~ cashel l  + pump <- > capump ( ( 1e7) * k1,  ( 1e10) * k2)
  ~ capump <- > cao + pump ( ( 1e10) * k3,  ( 1e10) * k4)
  i ca_pmp = ( 1e- 7) * 2* FARADAY* ( f _f l ux -  b_f l ux)

  :  i ca_pmp i s  t he " new"  val ue,  but  cashel l  must  be
  :  comput ed usi ng t he " ol d"  val ue,  i . e.  i ca_pmp_l ast
  ~ cashel l  << ( - ( i ca -  i ca_pmp_l ast ) / ( 2* FARADAY) * ( 1e7) )

  cai  = ( 0. 001) * cashel l
}

Initializing the mechanism

For the sake of convenience we will assume that our model cell has only one section
called soma, and that soma is the default section. Also suppose that we have already
assigned the desired value of Cashell to a parameter we will call ca_i ni t , e.g. with a

statement of the form ca_i ni t  = somevalue. Our problem is how to ensure that
initialization makes cashel l _capmp take on the value of ca_i ni t .
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As a naive first stab at this problem, we might try changing the i ni t ( )  procedure
like this 

pr oc i ni t ( )  {
  cashel l _capmp = ca_i ni t
  f i ni t i al i ze( v_i ni t )
}

i.e. inserting a line that sets the desired value of Cashell before calling f i ni t i al i ze( ) .

To see whether this has the desired effect, we need only to run a simulation and examine
the time course of Cashell and the pump current ICapump

. This quickly shows that, no

matter what value we first assign to cashel l _capmp, f i ni t i al i ze( )  drives Cashell
and ICapump

 to the same steady state levels (Fig. 8.2). We might have anticipated this

result, because it is what steady state initialization is supposed to do. If Cashell is too high,

the excess calcium will diffuse into the core or be pumped out of the cell until Cashell
returns to the steady state value. On the other hand, if Cashell is too low, calcium will

diffuse into the shell from the core, and the pump will slow or may even reverse, until
Cashell comes back to the steady state value. Thus, regardless of how we perturb Cashell,

steady state initialization always brings the model back to the same condition. 

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 5 10 15 20
ms

ica

mA/cm2

Fig. 8.2. Default initialization after setting cashel l _capmp to 0.1 µM leaves
Cashell (left) and ICapump

 (right) at their steady state levels of ~ 0.034 µM and

~ 1.3 × 10-4 mA/cm2, respectively.
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For our second attempt we try calling f i ni t i al i ze( )  first, and then setting the
desired value of Cashell. 

pr oc i ni t ( )  {
  f i ni t i al i ze( v_i ni t )
  cashel l _capmp = ca_i ni t
  / /  we' ve changed a s t at e,  so t he f ol l owi ng ar e needed
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

This is partly successful, in that it does affect Cashell and ICa
pump

, but plots of these

variables seem to start from the wrong initial conditions. For example, if we try
ca_i ni t  = 0.1 µM, the plot of cashel l _capmp appears to start with a value of
~ 0.044 µM instead. Using the Graph menu's Color/Brush to change the color and
thickness of the plots of cashel l _capmp and i ca, we discover the presence of early,
fast transients that overlie the y axis (Fig. 8.3 top). Thus cashel l _capmp really does
start at the right initial value, but in less than 5 microseconds it drops by ~ 56%. So we
have solved one mystery only to uncover another: what causes these fast transients?

Some reflection brings the realization that, although we changed the concentration in
the shell, we did not properly initialize the pump. Consequently, as soon as we launch a
simulation, Ca+2 starts binding to the pump, and this is responsible for the precipitous
drop of Cashell. At the same time, the rate of active transport begins to rise, which is

reflected in the increase of ICa
pump

. These changes produce the "pump transients" in

Cashell and ICa
pump

, which can be quite large as Fig. 8.3 shows. 
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Fig. 8.3. Time course of Cashell (left) and ICa
pump

 (right) following an

initialization that increased Cashell abruptly after calling i ni t ( ) . The traces in

the top figures were thickened to make the early fast transients easier to see.
The time scale of the bottom figures has been expanded to reveal the details of
these fast transients. The final steady state levels of Cashell and ICapump

 are the

same as in Fig. 8.2. 

A strategy that does what we want is to change the value of cacor e_capmp to
ca_i ni t  and make τ very fast before calling f i ni t i al i ze( ) , then wrap up by
restoring the values of cacor e_capmp and τ. This amounts to changing the model in
order to achieve the desired initialization. One example of such a custom i ni t ( )  is

pr oc i ni t ( )  {  l ocal  savcor e,  savt au
  / /  make cacor e equal  t o ca_i ni t
  savcor e = cacor e_capmp
  cacor e_capmp = ca_i ni t
  / /  i ni t i al i ze cashel l  t o cacor e
  savt au = t au_capmp
  t au_capmp = 1e- 6  / /  so cashel l  t r acks cacor e c l osel y
  f i ni t i al i ze( v_i ni t )
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  / /  r est or e cacor e and t au
  cacor e_capmp = savcor e
  t au_capmp = savt au
  i f  ( cvode. act i ve( ) )  {
    cvode. r e_i ni t ( )
  }  el se {
    f cur r ent ( )
  }
  f r ecor d_i ni t ( )
}

This code ensures that the difference between Cashell and Cacore becomes vanishingly

small, and at the same time allows the pump to initialize properly (Fig. 8.4).
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Fig. 8.4. Following proper initialization, plots of Cashell (left) and ICa
pump

 (right)

begin at the correct values and do not display the early fast transient that
appeared in Fig. 8.3. 

Now we can plot the starting value of ICa
pump

 as a function of the initial Cashell.

Figure 8.5 shows a Grapher configured to do this. To make this a semilog plot, we used
an independent variable x  to sweep ca_i ni t  from 10-4 to 102 µM in 30 logarithmically
equally spaced intervals. For each value of x  the Grapher calculated the corresponding
value of ca_i ni t  as 10x, called our custom i ni t ( ) , and plotted the resulting i ca_capmp
vs. l og10( cashel l _capmp) , i.e. log10(Cashell). Note that l og10( cashel l _capmp)

ranges from -4 to 2, which means that Cashell ranges from 10-4 to 102 µM, i.e. exactly the

same range of concentrations as ca_i ni t . This confirms the ability of our custom i ni t ( )  to
set cashel l _capmp to the desired values. 
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Plot Erase All

Indep Begin -4

Indep End 2

Steps 30

Independent Var x

X-expr log10(cashell_capmp)

Generator ca_init=10^x init()
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-4 -2 0 2
0
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0.002

0.003
ica_capmp
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Fig. 8.5. A Grapher used to plot of ICa
pump

 vs. initial Cashell. The Graph menu's

Change Text was used to add the mA/ cm2 label.
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