Neural fields: from single neurons to populations

Axel Hutt

Team NEUROSYS

INRIA Nancy France

Structure

- traversing scales
- neural mass models

• neural field models

perspectives

• traversing scales

- neural mass models
- neural field models

perspectives

From single neurons to populations

(adapted from Segev and Schneidmann (1999))

synaptic activity

- about 6000-10000 chemical synapses at each dendritic tree of a single neuron
- excitatory and inhibitory synapses depolarize and hyperpolarize the membrane potential on the dendrite

neurotransmit ter	receptor	
glutamate	NMDA	excitatory
glutamate	non-NMDA	excitatory
GABA	GABAA	inhibitory
GABA	GABAB	inhibitory

synaptic response on the dendrite

 $V_1(t) = \frac{\bar{u}}{\tau_s} e^{-t/\tau_s} H(t)$

$$V_2(t) = \frac{\bar{u}}{\tau_2 - \tau_2} \left(e^{-t/\tau_1} - e^{t/\tau_2} \right) H(t)$$

(taken from Spruston, Nature Rev. Neurosc. (2008))

distribution of synapses

(taken from Shigenaga et al, Neuroscience (2005))

motor neurons in cat

the cortex exhibits

columnar structures called

macrocolumns

neural populations

- spatial patches of 500µm to 1mm width → coarse graining in space
- patch contains from 1000 to 10⁵ neurons
- observation: collective behavior (e.g. Wilson and Cowan 1972)
- Mean impulse response response → coarse graining in time

• traversing scales

- neural mass models
 - * basic assumptions
 - * Local Field Potentials and EEG

• neural field models

perspectives

single neuron

$$C\dot{V}(t) = -g_l(V(t) - E_l) - g(t)(V(t) - E)$$

If V decays fast to resting state and g(t) evolves slowly:

$$V(t) \approx V_{rest} = const$$

then $I(t) \approx g(t)(V_{rest} - E) \rightarrow V_{extra} = RI(t) \sim g(t)$ \uparrow

extra-cellular potential

sum of post-synaptic currents in the population generates extra-cellular electric field

mesoscopic scale

network of neurons

neural mini-column

$$\bar{V}_{extra}(t) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} V_{extra}(T) dT = \frac{1}{\Delta t} \int_{0}^{\infty} h(t') \int_{t}^{t+\Delta t} s(T-t') dT dt'$$

 Δt : short time interval (~1ms)

s(t) : spike train of all neurons in a neuron population

$$\bar{V}_{extra}(t) = \int_0^\infty h(t')P(t-t')dt'$$
$$P(t) = \int_t^{t+\Delta} \sum_i \frac{s_i}{\Delta t} \delta(t'-t_i)dt' = \frac{n(t)}{\Delta t}$$

P(t): number of spikes in time interval Δt (population firing rate)

pulse train of all pulses in population at time t $\bar{P}_{e,i}(x,t)$:

$$\bar{V}^{\mathrm{e,i}}(x,t) = \int_{-\infty}^{t} \mathrm{d}\tau \, h_{\mathrm{e,i}}(t-\tau) \bar{P}_{\mathrm{e,i}}(x,\tau)$$

e,i: excitatory and inhibitory synapses

probability density finding membrane potential $V=V_e-V_i$ at the soma:

$$p_{\rm S}(V - \bar{V}) = \frac{1}{2\pi} \int dz \,\phi_{\rm S}^{\rm e}(z) \phi_{\rm S}^{\rm i}(-z) \,{\rm e}^{-{\rm i}zV}$$

 $D_k(V_{th} - \bar{V}_{th}, t)$: number of neurons with firing threshold V_{th} that fire at time t $N_k(t)$: number of neurons that fire at time t

$$\begin{split} N_{k}(t) &= \int_{V_{\min}}^{V_{\max}} \mathrm{d}V \; p_{\mathrm{S}}(V - \bar{V}(t)) \int_{V_{1}}^{V_{\mathrm{h}}} \mathrm{d}V_{\mathrm{th}} \; \Theta(V - V_{\mathrm{th}}) \; D_{k}(V_{\mathrm{th}} - \bar{V}_{\mathrm{th}}, t) \\ &= \int_{V_{\min}-\bar{V}}^{V_{\max}-\bar{V}} \mathrm{d}w \int_{V_{1}-\bar{V}_{\mathrm{th}}}^{V_{\mathrm{h}}-\bar{V}_{\mathrm{th}}} \mathrm{d}u \; \Theta(w + \bar{V}(t) - \bar{V}_{\mathrm{th}}) \; p_{\mathrm{S}}(w) D_{k}(u, t). \end{split}$$

 $ar{N}_k(t)$: number of neurons in time interval Δt that fire at time t (population firing rate)

$$\bar{N}_{k}(t) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} N_{k}(\tau) d\tau$$

$$\approx \int_{V_{\min}-\bar{V}}^{V_{\max}-\bar{V}} dw \, p_{\mathrm{S}}(w) \int_{V_{1}-\bar{V}_{\mathrm{th}}}^{V_{\mathrm{h}}-\bar{V}_{\mathrm{th}}} du \, \Theta(w+\bar{V}(t)-\bar{V}_{\mathrm{th}}-u) \bar{D}_{k}(u,t)$$

$$\bar{N}_{k}(x,t) = \int_{-\infty}^{\infty} dw \int_{-\infty}^{w+\bar{V}(x,t)-\bar{V}_{\mathrm{th}}} du \, p_{\mathrm{S}}(w) D_{k}(u,t) \text{ for infinite borders}$$

for Gaussian distributed PSPs and firing threshold distributions:

$$p_{\rm S} \sim \mathcal{N}(0, \sigma_{\rm S}^2)$$
 $\bar{D}_k(u, t) = \frac{P_{\rm max}}{\sqrt{2\pi}\sigma_k} e^{-u^2/2\sigma_k^2}$

$$\bar{N}_k(x,t) = P_{\max} \underbrace{\frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{\bar{V}(x,t) - \bar{V}_{\text{th}}}{\sqrt{2}\eta_k}\right) \right)}_{\Gamma_k(V(x,t))}$$

 $S_k(V(x,t)),$

sigmoidal firing rate function

firing thresholds are Gauss-distributed \rightarrow sigmoidal firing function

mean impulse reponse function

mpulse response h(t) [mv]

time t [ms]

these are the major elements of neural mass models:

- mean synaptic response functions
- population firing rate nonlinear transfer function

neural mass models

* basic assumptions

* Local Field Potentials and EEG

• neural field models

perspectives

electroencephalographic activity (EEG)

(taken from Freeman, Int. J. Bif. Chaos (1992))

Local Field Potentials

А

Pettersen et al., In: Handbook of Neural Activity Measurement (2010)

Extracellular potential, pyramidal neuron model

0.05 µV

20 ms

spatial structure of dendrites

(taken from Spruston, Nature Rev. Neurosc. (2008))

neocortical pyramidal cells have apical dendrites orthogonal to cortex surface

model example of simple neural population

simulation of EEG activity

static dipol placed in a three-sphere head model:

(thanks to Christoph Herrmann, University of Oldenburg)

map on cortical surface

(taken from Bojak et al., Brain Top. (2010))

neuronal populations are spatially extended:

spatial interaction play an important role

(visual cortex)

<u>Modell</u>: mean-field approach --> coarse-grained field

"each grain is a location x"

- neural mass models
- neural field models
 - * spatial connectivity
 - * axonal transmission speed
 - * various models

axonal connectivity

K(x,y): axonal connectivity function from neurons at spatial patch x to synapses in spatial patch y:

$$\bar{P}(x,t) = \int_{\Omega} K(x,y) S\left[V(y,t-\frac{|x-y|}{c})\right] dy$$

example for axonal connectivity: prefrontal cortex in monkeys

(taken from J.B.Levitt et al., J.Comp.Neur.338,360(1993))

- short-range lateral connections in layer 5
- periodic connectivity in layer 3

$$\rightarrow K_e(x,y) \sim K_h(x-y) + K_p(x,y)$$

 \blacksquare $K_p(x,y)$: inhomogenous, anisotropic and periodic

visual cortex in monkeys

(taken from P.C.Bressloff, Physica D 185, 131(2003))

- tangential section through layer 2/3 showing lateral projections
- periodically spaced connection patches
 → $K_e(x,y) \sim K_h(x-y) + K_p(x,y)$
 - \blacksquare $K_p(x,y)$: inhomogenous, anisotropic and periodic

spatially homogeneous axonal connectivity

axon-dendrite connectivity in layer 2 and 3 in rat visual cortex

- neural mass models
- neural field models
 - * spatial connectivity
 - * axonal transmission speed
 - * various models

passive axonal propagation

speed of action potential in a passive (un-myelinated) cable:

$$v_{passive} = \left(\frac{d}{R_m R_i C_m^2}\right)^{1/2}$$

d : diameter of the cable, R_i : intracellular resistivity, R_m : cross-membrane resistance, C_m :membrane capacitance

simulation of cable equation (GR=8):

$$GR = \sum_{i=1}^{2} (d_i/d_p)^{3/2}$$

(taken from Segev and Schneidmann, J. Physiol. (Paris), 1999)

myelination

intra-cortical axons : not myelinated

axons between cortical areas : myelinated oligodendrocyte Axons node of Ranvier Myelin Myelin sheath

the myelination level may change on single axonal branch

finite axonal conduction speed

assumption of homogeneous axonal connectivity:

$$\bar{P}_{e,i}(x,t) = \int_{\Omega} K(x-y) S_{e,i} \left[V(y,t-\frac{|x-y|}{c}) \right] dy$$

$$\bar{V}^{e,i}(x,t) = \int_{-\infty}^{t} h_{e,i}(t-\tau) \int_{\Omega} K(x-y) S_{e,i} \left[V(y,t-\frac{|x-y|}{c}) \right] dy$$

if only one synapse type: $h_e(t)=h_i(t)$:

$$\hat{L}_t V(x,t) = \int_{\Omega} dy K(y) S[V(x-y,t-\frac{|y|}{c})] + E(x,t)$$

neural field equation E(x,t): input

mathematical remark: what is the operator L?

assume
$$h(t) = \frac{h_0}{\tau_1 - \tau_2} \left(e^{-t/\tau_1} - e^{t/\tau_2} \right)$$

 $V(t) = \int_{-\infty}^t h(t - \tau) P(\tau) d\tau$
 $\frac{d^2}{dt^2} V(t) = \frac{\bar{h}_0}{\tau_1 \tau_2} P(t) + \frac{\bar{h}_0}{\tau_1 - \tau_2} \int_{-\infty}^t \left(\frac{1}{\tau_1^2} e^{-t/\tau_1} - \frac{1}{\tau_2^2} e^{-t/\tau_2} \right) P(\tau) d\tau$
 $= \frac{\bar{h}_0}{\tau_1 \tau_2} P(t) - \left(\frac{1}{\tau_1} + \frac{1}{\tau_2} \right) \frac{d}{dt} V(t) - \frac{1}{\tau_1 \tau_2} V(t)$

	$\hat{L}V(t) = \bar{h}_0 P(t)$	with	$\hat{L}\left(\frac{d}{dt}\right)$	$= \tau_1 \tau_2 \frac{d^2}{dt^2} + $	$(\tau_1 + \tau_2) \frac{d}{dt} + 1$
--	--------------------------------	------	------------------------------------	---------------------------------------	--------------------------------------

- neural mass models
- neural field models
 - * spatial connectivity
 - * axonal transmission speed
 - * various models

Integral-differential equations

considers probability that two neural grains are connected

Integral-differential equations

spatio-temporal dynamics of population firing rates

Wilson and Cowan, Kybernetik (1973)

 $\tau \frac{\partial E(x,t)}{\partial t} = -E(x,t) + [1 - r_e E(x,t)] S_e \left[\alpha K_{ee} \otimes E - \beta K_{ie} \otimes I + P(x,t) \right]$

$$\tau \frac{\partial I(x,t)}{\partial t} = -I(x,t) + [1 - r_i I(x,t)] S_i \left[\alpha K_{ei} \otimes E - \beta K_{ii} \otimes I + Q(x,t) \right]$$

$$K \otimes V = \int_{-\infty}^{\infty} K(|x - y|) V(y) dy$$

Integral-differential equations

spatio-temporal dynamics of mean membrane potential

$$\tau_i \frac{\partial u_i(x,t)}{\partial t} = -u_i(x,t) + \sum_{j=1}^m K_{ij} \otimes S_j[u_j] + h_i + s_i(x,t)$$

link to partial-differential equations

$$\left(1 + \frac{1}{\alpha}\frac{\partial}{\partial t}\right)u = \psi$$

$$\psi(x,t) = \int_{-\infty}^{\infty} K(x-y) S\left[u(y,t-\frac{|x-y|}{v})\right] dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x - y, t - s)\rho(y, s)dyds$$

$$G(x,t) = K(x)\delta\left(t - \frac{|x|}{v}\right) \qquad \rho = S[u]$$

$$\left(1+i\frac{w}{\alpha}\right)\tilde{u}(k,w) = \tilde{G}(k,w)\tilde{\rho}(k,w)$$

$$K(x) = e^{-|x|/2} : \tilde{G}(k, w) = \frac{1 + i\frac{w}{v}}{(1 + i\frac{w}{v})^2 + k^2}$$

$$\left(1+i\frac{w}{\alpha}\right)\left(\left(1+i\frac{w}{v}\right)^2+k^2\right)\tilde{u}(k,w)=\left(1+i\frac{w}{v}\right)\tilde{\rho}(k,w)$$

$$k^2 \to -\partial^2/\partial x^2$$
, $iw \to \partial/\partial t$

$$\left(1 + \frac{1}{\alpha}\frac{\partial}{\partial t}\right)\left(v^2 + v\frac{\partial}{\partial t} - v^2\frac{\partial^2}{\partial x^2}\right)u(x,t) = \left(v^2 + v\frac{\partial}{\partial t}\right)S[u(x,t)]$$

nonlinear damped wave equation

Jirsa and Haken, Phys. Rev. Lett. (1997); Coombes et al., Phys. Rev. E (2007)

for more general spatial kernels:

$$\int_{-\infty}^{\infty} K(x-y)V(y)dy = \sum_{n=0}^{\infty} K_n \frac{\partial^n V(x)}{\partial x^n}$$

$$K_n = \frac{(-1)^n}{n!} \int_{-\infty}^{\infty} x^n K(x) dx$$

partial differential equations are specific cases of integral-differential equations

(A. Hutt, Phys. Rev. E (2007))

Partial differential equations

consider wave propagation of pulse activity between neurons

(adapted from Segev and Schneidmann (1999))

Partial differential equations

$$\begin{pmatrix} v^2 \frac{\partial^2}{\partial t^2} + v \frac{\partial}{\partial t} - v^2 \frac{\partial^2}{\partial x^2} \end{pmatrix} \phi(x,t) = \begin{pmatrix} v^2 + v \frac{\partial}{\partial t} \end{pmatrix} S[h_e(x,t)] \\ \uparrow \\ \text{pulse activity} \\ \text{dendritic potential} \\ B \frac{\partial h_{e,i}(t)}{\partial t} = h_r - h_{e,i} + CI_{e,i}(t) + DJ_{e,i}(t) \\ \text{exc. postsyn. potential} \\ \left(\gamma_e + \frac{\partial}{\partial t} \right)^2 I_{e,i} = E \left(S_e[h_e(x,t)] + F\phi(x,t) + p(x,t) \right) \\ A,B,..,H: constants \\ \end{pmatrix}$$

inh. postsyn. potential $\left(\gamma_i + \frac{\partial}{\partial t}\right)^2 J_{e,i} = G\left(S_i[h_i(x,t)] + H\phi(x,t)\right)$

(Liley et al., Neurocomputing (1999))

<u>applications:</u>

EEG during epileptic seizures, general anaesthesia and sleep

Partial differential equations

$$\left(\frac{\partial^2}{\partial t^2} + 2\alpha \frac{\partial}{\partial t} + \alpha^2\right) V_{e,i}(x,t) = g\alpha^2 Q[V_{e,i}(x,t), \phi_{e,i}(x,t), x,t]$$
synaptic response

input to synapses: external stimulation, pulse activity

(Robinson et al., Phys. Rev. E (1997)

<u>applications:</u>

EEG during epileptic seizures, general anaesthesia and sleep

new field models

- single neurons are subjected to random fluctuations from e.g.
 - * ion channel fluctuations
 - * spontaneous synaptic activity

 how do fluctuations on single neuron level translate into population fluctuations ?

 to answer question, re-derivation of model equations necessary by considering mean-field theory

new models - 2 -

Bressloff, SIAM J. Appl. Math. (2009):

- assuming two-state neurons (no firing/firing)
- a jump process between neurons (Master equation)

old:Wilson-Cowan model

$$\tau \frac{\partial f(x,t)}{\partial t} = -f(x,t) + S\left[\int_{\Omega} K(x,y)f(y,t)dy\right]$$

new: extended Wilson-Cowan model

$$\begin{split} \tau \frac{\partial f(x,t)}{\partial t} &= -f(x,t) + S \left[\int_{\Omega} K(x,y) f(y,t) dy \right] \\ &+ \frac{\alpha}{2N} S'' \left[\int_{\Omega} K(x,y) f(y,t) dy \right] \int_{\Omega} \int_{\Omega} K(x,y) K(x,z) C(y,z,t) dy dz \\ &\text{new} \\ \tau \frac{\partial C(x,y,t)}{\partial t} &= -2C(x,y,t) + \beta \left(f(x,t) + S \left[\int_{\Omega} K(x,y) f(y,t) dy \right] \right) \delta(x-y) \\ &+ \gamma S' \left[\int_{\Omega} K(x,z) f(z,t) dz \right] \int_{\Omega} K(x,z) C(z,y,t) dz \\ &+ \gamma S' \left[\int_{\Omega} K(y,z) f(z,t) dz \right] \int_{\Omega} K(y,z) C(z,y,t) dz \end{split}$$

- f(x,t) is mean firing rate, C(x,y,t) is covariance
- neglecting covariance yields original mean field equation

a more realistic mean-field equation implies the spatial covariance of the activity !

new models - 2 -

Faugeras, Toboul and Cessac, Front. Comp. Neuroscience (2009):

- coupling of different populations, no spatial extension
- connections between single neurons are randomly distributed

old:Amari-type model

$$\frac{d\bar{V}_{\alpha}(t)}{dt} = -\frac{1}{\tau}\bar{V}_{\alpha}(t) + \sum_{\beta}\bar{J}_{\alpha\beta}S\left[\bar{V}_{\beta}(t)\right]$$

new: extended Amari-type model

$$\begin{aligned} \frac{d\bar{V}_{\alpha}(t)}{dt} &= -\frac{1}{\tau}\bar{V}_{\alpha}(t) + \sum_{\beta}\bar{J}_{\alpha\beta}\int_{\mathcal{R}}S\left[x\sqrt{C_{\beta\beta}(t,t)} + \bar{V}_{\beta}(t)\right]N_{x}(0,1)dx\\ C_{\beta\beta}(t,t) &= C_{\beta\beta}\left(t,\sum_{\beta}\sigma_{\alpha\beta}^{2}\int_{t_{0}}^{t}\int_{t_{0}}^{t}e^{(u+w)/\tau}\Delta_{\beta}(u,v)dudv\right)\\ \Delta_{\beta}(t,s) &= \int_{\mathcal{R}^{2}}S_{\beta}\left[\frac{\sqrt{C_{\beta\beta}(t,t)C_{\beta\beta}(s,s) - C_{\beta\beta}^{2}(t,s)}}{\sqrt{C_{\beta\beta}(t,t)}}x + \frac{C_{\beta\beta}(t,s)}{\sqrt{C_{\beta\beta}(t,t)}}y + \bar{V}_{\beta}(s)\right]\\ &\times S_{\beta}\left[\sqrt{C_{\beta\beta}(t,t)}y + \bar{V}_{\beta}(t)\right]N_{x}(0,1)N_{y}(0,1)dxdy\end{aligned}$$

V is the mean membrane potential, C(t, s) is the temporal correlation function
C(t, s) = 0 yields standard Amari model

a **more realistic mean-field equation** implies the temporal **covariance** of the activity !

new models - 3 -

Baladron et al., J. Math. Neuroscience (2012):

- mean field equation for spiking neural networks
- network exhibits all-to-all coupling
- leads to McKean-Vlasov Fokker-Planck equation

• traversing scales

- neural mass models
- neural field models

• perspectives

neural fields

• <u>do</u>

- consider mean synaptic and dendritic currents in population
- involve threshold properties of neurons
- consider axonal structures
- assume rate coding
- describe LFP+EEG

• <u>do not</u>

- consider single neuron activity
- consider single dendritic branches

Effects of additive noise

Kilpatrick and Ermentrout, SIAM J. Appl. Dyn. Systems (2013):

$$dV(x,t) = \left(-V(x,t) + \int_{-\pi}^{\pi} K(x-y)S\left[V(y,t)\right]dy + I(x)\right)dt + \sqrt{\epsilon}dW(x,t)$$

extinction of bump by noise

Hutt et al., Physica D (2008):

$$dV(x,t) = \left(-V(x,t) + \int_{-\infty}^{\infty} K(x-y)S\left[V(y,t)\right]dy + I_0\right)dt + \kappa dW(t)$$

extinction of spatial pattern by noise

related workshops at CNS:

Wednesday:

Network and Neuroscience: structure and dynamics

Metastable dynamics of neural ensembles

Advances in neural mass modeling

Thursday:

Network and Neuroscience: structure and dynamics

Recent advances in experimental and computational characterization of neural assemblies

Modeling general anaesthesia: from theory to experiment

Validating neuro-computational models of neurological and psychiatric disorders

Full brain network dynamics