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From single neurons to populations

myelin sheeth

node of Ranvier

neuron soma

oligodendrocyte

axonal terminal
dendrites and synapses

(adapted from Segev and Schneidmann (1999) )
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synaptic activity 

spike

synapse

• about 6000-10000 chemical synapses     
   at each dendritic tree of a single neuron

• excitatory and inhibitory synapses 
  depolarize and hyperpolarize the
  membrane potential on the dendrite

receptors

AP

neurotransmitter

vesicles synaptic bouton

synaptic cleft

membrane

neurotransmit
ter

receptor

glutamate NMDA excitatory

glutamate non-NMDA excitatory

GABA GABAA inhibitory

GABA GABAB inhibitory
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synaptic  response on the dendrite

(taken from Spruston, Nature Rev. Neurosc. (2008))
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distribution of synapses 

motor neurons in cat

(taken from Shigenaga et al, Neuroscience (2005))

300   mµ

GABA
glutamate
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the cortex exhibits 

columnar structures called 

macrocolumns 
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neural populations

conversion at 
soma

conversion at 
synapse
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CV̇ (t) = −gl(V (t)− El)− g(t)(V (t)− E)

g(t) ∼ e−αtΘ(t), (e−αt − e−βt)Θ(t)

single neuron

receptor response to incoming spike

If  V decays fast to resting state and g(t) evolves slowly: 

V (t) ≈ Vrest = const

I(t) ≈ g(t)(Vrest − E) → Vextra = RI(t) ∼ g(t)then

extra-cellular potential
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consider a population 
of neurons 

with 
population spike train s(t) 

sum of post-synaptic currents in the population 
generates extra-cellular electric field
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mesoscopic scale

network of neurons

neural mini-column

Netzwerk von NeuronenNetzwerk von Neuronen 13



Vextra(t) =
�

i

� t

−∞
h(t− τ)siδ(τ − τi)dτ

spike train s(t)synaptic response

=

� ∞

0
h(t�)s(t− t�)dt�
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V̄extra(t) =

� ∞

0
h(t�)P (t− t�)dt�

: short time interval (~1ms)∆t

s(t) : spike train of all neurons in a neuron population

: number of spikes in time interval        (population firing rate)∆tP (t)

P (t) =

� t+∆

t

�

i

si
∆t

δ(t� − ti)dt
� =

n(t)

∆t

V̄extra(t) =
1

∆t

� t+∆t

t
Vextra(T )dT =

1

∆t

� ∞

0
h(t�)

� t+∆t

t
s(T − t�)dTdt�
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synaptic response to a single pulse he,i(t)

probability density finding membrane potential  V=Ve-Vi 
at the soma:

pulse train of all pulses in population at time t            : P̄e,i(x, t)

spike

synapse

e,i: excitatory and inhibitory synapses
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: number of neurons with firing threshold Vth that fire at time t 

: number of neurons that fire at time t 

: number of neurons in time interval Δt that fire at time t (population firing rate) 

Dk(Vth − V̄th, t)

Nk(t)

N̄k(t)

for infinite borders
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for Gaussian distributed PSPs and firing threshold distributions:

sigmoidal firing rate function
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these are the major elements of 
neural mass models:

• mean synaptic response functions

• population firing rate - nonlinear transfer function

Example: 
 Jansen-Rit model 

for cortical coloumn
(Jansen and Ritt, Biol. Cybern. (1995))
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current source 

AP

induced current I(t)

membrane

synaptic bouton

j

single (inhibitory) synapse example: sum of synaptic currents

origin of 
Local Field Potentials and EEG

(taken from Freeman, Int. J. Bif. Chaos (1992))

electroencephalographic activity (EEG)
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Local Field Potentials

Pettersen et al., In: Handbook of Neural Activity Measurement (2010)

see also Tutorial 3: 
Modeling and interpretation 

of extracellular potentials
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(taken from Spruston, Nature Rev. Neurosc. (2008))

spatial structure of dendrites 

neocortical pyramidal cells have apical dendrites 
orthogonal to cortex surface 
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model example of simple neural population

inhibitory currents

excitatory currents

scalp

local current I

local current I

~ mean excitatory 
extracellular current

~ mean inhibitory 
extracellular current

mesoscopic dipol moment

volume current source density

(Nunez and Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG (2006))
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simulation of EEG activity

static dipol placed in a three-sphere head model:

(thanks to Christoph Herrmann, University of Oldenburg)
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(taken from Bojak et al., Brain Top. (2010))

map on cortical surface
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neuronal populations are spatially extended:

spatial interaction play an important role

neural fields

(prefrontal cortex)

(visual cortex)
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delay 

delay 

delay 

Input

Modell: mean-field approach      coarse-grained field

“each grain is a location x”
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K(x,y): axonal connectivity function from neurons at spatial 
patch x to synapses in spatial patch y:

P̄ (x, t) =
�
Ω K(x, y)S

�
V (y, t− |x−y|

c )
�
dy

example for axonal connectivity: prefrontal cortex in monkeys

axonal connectivity
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visual cortex in monkeys
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spatially homogeneous  axonal connectivity

axon-dendrite connectivity in layer 2 and 3 in rat visual cortex

assumption of homogeneous distribution reasonable 

spike

synapse

(taken from Hellwig, Biol. Cybern. (2000))

32



• traversing scales

• neural mass models

• neural field models

✴ spatial connectivity

✴ axonal transmission speed

✴ various models

• perspectives

33



passive axonal propagation

vpassive =

(

d
RmRiC2

m

)1/2

speed of action potential in a passive (un-myelinated ) cable:

d : diameter of the cable, Ri : intracellular resistivity, Rm : cross-membrane resistance, 
Cm :membrane capacitance 

geometrical ratio

GR =
∑2

i=1
(di/dp)3/2

simulation of cable equation (GR=8):

spike

synapse

(taken from Segev and Schneidmann, J. Physiol. (Paris), 1999)
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myelination

intra-cortical axons : 
not myelinated

axons between cortical areas : 
myelinated

the myelination level may change on single axonal branch
35



finite axonal conduction speed

(taken from Girard_etal, J Neurophysiol 85: 1328–1331 (2001))

cortico-cortical connections between 
V1 and V2 in monkeys

cortico-cortical connections 
in mice

(taken from P. Nunez, Neocortical Dynamics and Human ECG Rhythms (1995)

spike

synapse
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P̄e,i(x, t) =
�
Ω K(x− y)Se,i

�
V (y, t− |x−y|

c )
�
dy

V̄ e,i(x, t) =
� t

−∞
he,i(t− τ)

�

Ω
K(x− y)Se,i

�
V (y, t− |x− y|

c
)
�

dy

assumption of homogeneous axonal connectivity:

if only one synapse type: he(t)=hi(t) :

L̂tV (x, t) =

∫
Ω

dyK(y)S[V (x − y, t −
|y|

c
)] + E(x, t)

neural field equation E(x,t): input
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V (t) =

� t

−∞
h(t− τ)P (τ)dτ

h(t) =
h̄0

τ1 − τ2

�
e−t/τ1 − et/τ2

�

=
h̄0

τ1τ2
P (t)−

�
1

τ1
+

1

τ2

�
d

dt
V (t)− 1

τ1τ2
V (t)

d2

dt2
V (t) =

h̄0

τ1τ2
P (t) +

h̄0

τ1 − τ2

� t

−∞

�
1

τ21
e−t/τ1 − 1

τ22
e−t/τ2

�
P (τ)dτ

mathematical remark: what is the operator L ?

assume

L̂

�
d

dt

�
= τ1τ2

d2

dt2
+ (τ1 + τ2)

d

dt
+ 1L̂V (t) = h̄0P (t) with
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Integral-differential equations

delay 

delay 

delay 

Input

considers probability that 
two neural grains are connected
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Wilson and Cowan,  
Kybernetik (1973)

Integral-differential equations

spatio-temporal dynamics of population firing rates

τ
∂E(x, t)

∂t
= −E(x, t) + [1− reE(x, t)]Se [αKee ⊗ E − βKie ⊗ I + P (x, t)]

τ
∂I(x, t)

∂t
= −I(x, t) + [1− riI(x, t)]Si [αKei ⊗ E − βKii ⊗ I +Q(x, t)]

K ⊗ V =

� ∞

−∞
K(|x− y|)V (y)dy
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Integral-differential equations

Amari (1977)

spatio-temporal dynamics of mean membrane potential

τi
∂ui(x, t)

∂t
= −ui(x, t) +

m�

j=1

Kij ⊗ Sj [uj ] + hi + si(x, t)
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link to partial-differential equations

=

� ∞

−∞

� ∞

−∞
G(x− y, t− s)ρ(y, s)dyds

ρ = S[u]G(x, t) = K(x)δ

�
t− |x|

v

�

ψ(x, t) =

� ∞

−∞
K(x− y)S

�
u(y, t− |x− y|

v
)

�
dy

�
1 + i

w

α

�
ũ(k,w) = G̃(k, w)ρ̃(k, w)
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K(x) = e−|x|/2 : G̃(k,w) =
1 + iwv

(1 + iwv )
2 + k2

k2 → −∂2/∂x2 , iw → ∂/∂t

�
1 + i

w

α

���
1 + i

w

v

�2
+ k2

�
ũ(k, w) =

�
1 + i

w

v

�
ρ̃(k, w)

nonlinear damped wave equation

�
1 +

1

α

∂

∂t

��
v2 + v

∂

∂t
− v2

∂2

∂x2

�
u(x, t) =

�
v2 + v

∂

∂t

�
S[u(x, t)]

Jirsa and Haken, Phys. Rev. Lett. (1997); Coombes et al., Phys. Rev. E (2007) 
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for more general spatial kernels:

� ∞

−∞
K(x− y)V (y)dy =

∞�

n=0

Kn
∂nV (x)

∂xn

Kn =
(−1)n

n!

� ∞

−∞
xnK(x)dx

partial differential equations 
are specific cases of 

integral-differential equations

(A. Hutt, Phys. Rev. E (2007))
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Partial differential equations

(adapted from Segev and Schneidmann (1999) )

consider wave propagation 
of pulse activity between 

neurons
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(Liley et al., Neurocomputing (1999))

Partial differential equations

B
∂he,i(t)

∂t
= hr − he,i + CIe,i(t) +DJe,i(t)

�
γe +

∂

∂t

�2

Ie,i = E (Se[he(x, t)] + Fφ(x, t) + p(x, t))

�
γi +

∂

∂t

�2

Je,i = G (Si[hi(x, t)] +Hφ(x, t))

pulse activity dendritic potential

exc. postsyn. potential

inh. postsyn. potential

A,B,..,H: constants

�
v2

∂2

∂t2
+ v

∂

∂t
− v2

∂2

∂x2

�
φ(x, t) =

�
v2 + v

∂

∂t

�
S[he(x, t)]

applications: 
EEG during epileptic seizures, general anaesthesia and sleep
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(Robinson et al., Phys. Rev. E (1997)

Partial differential equations

�
∂2

∂t2
+ 2α

∂

∂t
+ α2

�
Ve,i(x, t) = gα2Q[Ve,i(x, t),φe,i(x, t), x, t]

�
∂2

∂t2
+ 2γe,i

∂

∂t
+ γ2

e,i − v2
∂2

∂x2

�
φe,i(x, t) = γ2

e,iS[Ve,i(x, t)]

pulse activity dendritic potential

input to synapses: external stimulation, pulse activity

axonal propagation

synaptic response

includes spatial range axonal transmission speed

applications: 
EEG during epileptic seizures, general anaesthesia and sleep
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new field models

• single neurons are subjected to random fluctuations from e.g. 

✴ ion channel fluctuations

✴ spontaneous synaptic activity 

• how do fluctuations on single neuron level translate into 
    population fluctuations ?

• to answer question, re-derivation of model equations 
    necessary by considering mean-field theory

49



new models - 2 -

old: Wilson-Cowan model

τ
∂f(x, t)

∂t
= −f(x, t) + S

��

Ω
K(x, y)f(y, t)dy

�

• assuming two-state neurons (no firing/firing) 

• a jump process between neurons (Master equation)

Bressloff, SIAM J. Appl. Math. (2009):

new: extended Wilson-Cowan model
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•  f(x,t) is mean firing rate, C(x,y,t) is covariance
• neglecting covariance yields original mean field equation

a more realistic mean-field equation 
implies the spatial covariance of the activity !

τ
∂C(x, y, t)

∂t
= −2C(x, y, t)+β

�
f(x, t) + S

��

Ω
K(x, y)f(y, t)dy

��
δ(x− y)

+
α

2N
S��

��

Ω
K(x, y)f(y, t)dy

� �

Ω

�

Ω
K(x, y)K(x, z)C(y, z, t)dydz

τ
∂f(x, t)

∂t
= −f(x, t) + S

��

Ω
K(x, y)f(y, t)dy

�

+γS�
��

Ω
K(x, z)f(z, t)dz

� �

Ω
K(x, z)C(z, y, t)dz

+γS�
��

Ω
K(y, z)f(z, t)dz

� �

Ω
K(y, z)C(z, y, t)dz

new
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new models - 2 -

• coupling of different populations, no spatial extension

• connections between single neurons are randomly
   distributed

Faugeras, Toboul and Cessac, Front. Comp. Neuroscience (2009):

dV̄α(t)

dt
= −1

τ
V̄α(t) +

�

β

J̄αβS
�
V̄β(t)

�
old: Amari-type model

new: extended Amari-type model
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∆β(t, s) =

�

R2

Sβ





�
Cββ(t, t)Cββ(s, s)− C2

ββ(t, s)
�

Cββ(t, t)
x+

Cββ(t, s)�
Cββ(t, t)

y + V̄β(s)





×Sβ

��
Cββ(t, t)y + V̄β(t)

�
Nx(0, 1)Ny(0, 1)dxdy

dV̄α(t)

dt
= −1

τ
V̄α(t) +

�

β

J̄αβ

�

R
S

�
x
�
Cββ(t, t) + V̄β(t)

�
Nx(0, 1)dx

Cββ(t, t) = Cββ



t,
�

β

σ2
αβ

� t

t0

� t

t0

e(u+w)/τ∆β(u, v)dudv





a more realistic mean-field equation 
implies the temporal covariance of the activity !

•     is the mean membrane potential,
           is the temporal correlation function
•               yields standard Amari model

V̄
C(t, s)
C(t, s) = 0
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new models - 3 - 

Baladron et al., J. Math. Neuroscience (2012): 
• mean field equation for spiking neural networks
• network exhibits all-to-all coupling
• leads to McKean-Vlasov Fokker-Planck equation 
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neural fields

• do 

• consider mean synaptic and 
dendritic currents in population

• involve 
threshold properties of neurons 

• consider axonal structures

• assume rate coding

• describe LFP+EEG

• do not 

• consider single neuron 
activity

• consider single dendritic 
branches

recent extensions:
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Effects of additive noise

dV (x, t) =

�
−V (x, t) +

� π

−π
K(x− y)S [V (y, t)] dy + I(x)

�
dt+

√
�dW (x, t)

Kilpatrick and Ermentrout, SIAM J. Appl. Dyn. Systems (2013):

extinction of bump by noise
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Hutt et al., Physica D (2008):

extinction of spatial pattern by noise

dV (x, t) =

�
−V (x, t) +

� ∞

−∞
K(x− y)S [V (y, t)] dy + I0

�
dt+ κdW (t)
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related workshops at CNS:

Network and Neuroscience: structure and dynamics 

Recent advances in experimental and computational characterization of neural assemblies 

Modeling general anaesthesia: from theory to experiment 

Validating neuro-computational models of neurological and psychiatric disorders 

Full brain network dynamics 

 Network and Neuroscience: structure and dynamics 

 Metastable dynamics of neural ensembles 

 Advances in neural mass modeling 

Thursday:

Wednesday:
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