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NEURON is a simulation environment for models of individual neurons and networks of neurons that are
closely linked to experimental data. NEURON provides tools for conveniently constructing, exercising, and
managing models, so that special expertise in numerical methods or programming is not required for its
productive use. This article describes two tools that address the problem of how to achieve computational
efficiency and accuracy. NEUROSCIENTIST 7(2):123-135, 2001
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Over the past 2 decades, the application of new experi-
mental techniques has yielded a wealth of information
about the anatomical and biophysical properties of neu-
rons and neural circuits. This expansion of knowledge is
essential for understanding the biological basis of brain
function, yet it comes at a cost of its own, because most
data can now only be interpreted in terms of the interac-
tion of many complex mechanisms. Increasingly aware
of the difficulty of establishing consistency between
data and theory, growing numbers of neuroscientists
have found empirically based modeling to be a useful
tool for studying the functional implications of anatomy
and biophysics.

Two important factors have facilitated the widening
acceptance of modeling among experimentalists. The
first is the availability of powerful yet inexpensive com-
puting hardware, so that most small laboratories, and
even students, can now afford machines whose perfor-
mance rivals that of supercomputers of recent memory.
The second factor is the development of domain-specific
simulation tools such as NEURON (http://www.neuron.
yale.edu), which is designed to provide a flexible and
convenient environment in which neuroscientists can
take advantage of this raw computing power.

These circumstances have driven a progressive shift
in modeling away from speculation to models that are
highly constrained by biological data. In this article, we
provide a brief overview of why NEURON is particu-
larly well suited to this kind of modeling and discuss in
greater detail the most recent enhancements to this pro-
gram that address existing and emerging needs of
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investigators who are concerned with reconciling theory
and experiment.

Background

NEURON can simulate individual neurons and net-
works of neurons with properties that may include, but
are not limited to, complex branching morphology, mul-
tiple channel types, inhomogeneous channel distribu-
tion, ionic diffusion, and the effects of second
messengers. It provides tools for constructing, exercis-
ing, and managing models, so that special expertise in
numerical methods or programming is not required for
its productive use.

These attributes are responsible for the application of
NEURON to a broad range of research questions, from
the basic cellular mechanisms that underlie neuronal
function, to information encoding and the operation of
large-scale networks involved in consciousness, percep-
tion, learning, and memory, and for examining the roles
of neuronal and network properties in diseases such as
epilepsy, multiple sclerosis, and disorders of learning
and memory. NEURON has been used in research re-
ported in more than 220 scientific articles, 81 of which
were published in the past 2 years. A survey of the re-
cent literature finds that it has been used for modeling
individual cells or subcellular components to address
topics that include

presynaptic and postsynaptic mechanisms involved in
synaptic transmission (Ahmed and others 1998; Baccus
1998; Dzubay and Jahr 1999; Kits and others 1999,
Neville and Lytton 1999; Thomson and Destexhe 1999)
dendritic electrotonus and synaptic integration (Larkum
and others 1998; Migliore and Culotta 1998; Raastad and
others 1998; Thurbon and others 1998; Cameron and oth-
ers 1999; Chitwood and others 1999; Destexhe and Pare
1999; Jaffe and Carnevale 1999; Kulagina 1999; London
and others 1999; Winslow and others 1999)
amplification and suppression of postsynaptic potentials
by dendritic active currents (Destexhe, Neubig, and others
1998; Korogod and Kulagina1998; Pare, Lang, and others
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1998; Stuart and Spruston 1998; Takagi and others 1998;
Cook and Johnston 1999; Korogod and Kulagina 1998)
spike initiation, including dendritic spikes (Llscher and
Larkum 1998; Pare, Lang, and others 1998; Migliore and
others 1999; Shen and others 1999)

intrinsic neuronal activity (Canavier 1999; Elaagouby and
Yuste 1999; Zhu, Lytton, and others 1999; Zhu, Uhlrich,
and others 1999) and its modulation by neuropeptides
(Sohal and others 1998)

neural code (Mukherjeeand Kaplan 1998; Brown and oth-
ers 1999; Engel and others 1999; Neubig and Destexhe
1999; Shao and others 1999; Sheasby and Fohlmeister
1999; Tang and others 1999)

neuronal changes during development (Ivanov and others
1999; Vabnick and others 1999)

extracellular stimulation (Maccabee and others 1998;
Greenberg and others 1999; Mclntyreand Grill 1999) and
recording (Sahin and Durand 1998)

network modulation of cellular activity (Nadimand others
1998; Bernasconi and others 1999)

mechanisms of motor control (Herrmann and Flanders
1998)

cellular mechanismsinvolved in visual direction and ori-
entation selectivity (Mel and others 1998; Anderson and
others 1999) and stereoacusis (Zacksenhouse and others
1998; Simon and others 1999)

There are also many reports of network models
implemented with NEURON. These models have been
used to study phenomena such as

thalamic and thalamocortical oscillations (Destexhe
1998; Sohal and Huguenard 1998; Destexhe and others
1999; Houweling and others 1999; Sohal and others 2000)
synchronization of network oscillations by gap junctions
(Moortgat and others 2000)

encoding of temporal information (Lytton and Lipton
1999; Buonomano 2000)

network mechanismsunderlying orientation selectivity in
vision (Bush and Priebe 1998)

mechanisms of epilepsy (Lytton and others 1998; Bush
and others 1999; Destexhe 1999)

actions of anticonvulsant drugs (Thomas and Lytton
1998)

This diversity is testimony to the wide utility of
NEURON in neuroscience research, particularly for
experimentalists who are concerned with empirically
based modeling. An important side effect of these appli-
cations of NEURON has been the emergence of a com-
munity of users who have made their own contributions
to the utility of this program. Several authors have
developed and published strategies for design of accu-
rate and efficient models of individual cells and net-
works with NEURON (Destexhe and others 1995a,
1995h, 1996; Lytton 1996; Destexhe 1997; Jackson and
Cauller 1997; Destexhe, Mainen, and others 1998;
Mainen and Sejnowski 1998), while others have used it
to implement new tools for the analysis of neuronal
properties (Carnevale and others 1996; O'Boyle and
others 1996; Carnevale and others 1997).

Overview of NEURON

NEURON was initially designed to facilitate dealing
with neuronal models in which complex membrane
properties and extended geometry play important roles
(Hines 1989, 1993, 1995). Subsequently, its domain of
applicability has been increased by adding facilities for
describing longitudinal ionic diffusion and
computationally efficient representation of connections
in a network (Hines and Carnevale 2000).

The fundamental principles behind the design and
implementation of NEURON are detailed elsewhere
(Hines and Carnevale 1997, 2000), but it is useful to
summarize them briefly here. NEURON is formulated
around the notion of continuous cable “sections,” which
can be connected together to form any kind of branched
cable. A section can be assigned properties that vary
continuously with position along its length. The aim is
to completely separate the physical properties of the
neuron from the numerical issue of size of spatial com-
partments and thus to help the investigator focus on the
biology rather than computational details (Hines and
Carnevale 1997).

User-defined biophysical properties of membrane
(e.g., ion channels, pumps) and cytoplasm (e.g., buffers
and second messengers) are described in terms of differ-
ential equations, kinetic schemes, and sets of simulta-
neous equations. These model descriptions are compiled
so that membrane voltage and gating states can be com-
puted efficiently using an implicit integration method
optimized for branched structures (Hines and Carnevale
2000).

NEURON derives its flexibility and convenience
from two features. The first is a graphical interface
(GUI) that can be used to create models, run initial
exploratory simulations, set parameters, control com-
mon voltage and current stimuli, and graph variables as
functions of time and position. The second is an
object-oriented interpreter that provides a complete pro-
gramming language that is useful for customization of
the GUI, advanced data analysis, and optimization.

Thus, NEURON puts a great deal of computational
power at the disposal of the user, especially for the
study of models that have a close relationship to experi-
mental data. Yet, this facility as a vehicle for imple-
menting empirically based models immediately raises a
new set of problems that are related to managing ana-
tomical and biophysical complexity so as to achieve
computational efficiency and accuracy while minimiz-
ing the effort required of the user. In this article, we
describe features of NEURON that can help users deal
successfully with the problem of balancing computa-
tional efficiency with numeric accuracy in space and
time.

Spatiotemporal Accuracy versus
Computational Speed

As mentioned above, NEURON is designed so that us-
ers can specify models without being concerned about
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compartment size or time step duration. These are mere
computational details that ought not to intrude on the
process of prescribing what aspects of the biological
system should be included in the model. The NEURON
simulation environment allows such distractions to be
put off until it is time to launch a smulation. Further-
more, it has features and tools that help users deal easily
and effectively with these two previously vexing prob-
lems of modeling.

Time and space are continuous variables in biological
neurons, and the spread of electrical and chemica sig-
nals is governed by the diffusion equation, a partia dif-
ferential equation in which potential (voltage,
concentration) and flux (current, movement of solute)
are smooth functions of time and space (Rall 1977; Jack
and others 1983). A standard strategy is to approximate
the diffusion equation with a set of algebraic difference
equations that can be solved numerically (Crank 1979;
Cardaw and Jaeger 1980). This is analogous to approxi-
mating the original continuous system by another sys-
tem that is discontinuous in time and space, and it is the
approach used by NEURON (Hines and Carnevale
1997).

NEURON computes the values of spatiotemporally
continuous variables over a set of discrete points in
space (“nodes’) for a finite number of instants in time.
When NEURON'’s second-order correct integration
method is used, these values are a piecewise linear
approximation to the continuous system, so that linear
interpolation will give the values of continuous vari-
ables at intermediate locations and times with second-
order accuracy. The size of the time step Dt and the
fineness of the spatial grid jointly determine the accu-
racy of the solution. How faithfully the computed solu-
tion emulates the behavior of the continuous system
depends on the spatial intervals between adjacent nodes
and the temporal intervals between solution times.
These should be small enough that the piecewise linear
approximation can follow the curvature of the solution
for the continuous system in space and time.

Figure 1 shows how this works in a situation where
the size of the time step is the only consideration. These
charging curves were computed from a model of a small
spherical cell with passive membrane that was subjected
to a depolarizing current pulse. Because the cell was
isopotential, the spatial grid consisted of a single node.
Figure 1B shows the analytic solution for membrane
potential V_ (dashed orange line) along with numeric
solutions that were computed using severa different
values of Dt (solid black lines). As time advanced, even
the least accurate numeric solution became indistin-
guishable from the analytic solution. However, solutions
computed with large Dt lack the high-frequency terms
needed to follow the initial rapid change of V.
Decreasing Dt produced a progressive improvement in
how closely the piecewise linear approximation
approached the smooth curve of the analytic solution,
especialy at early times (Fig. 1C). That is, using a

A Injected

Cunnant

0 ms <] kil 1>

Fig. 1. A, This model represents a spherical cell with a surface
area of 100 mm® (diameter = 5.64 nm). The resting potential of
the cell is =70 mV, and the specific capacitance and resistance
of its membrane are C,, = 1 nf/cm® and R,, = 20,000 Wem?,
respectively (t,, = 20 ms). A 1 pA depolarizing current is
injected starting at t = 0 ms. B, The dashed orange line is the
analytic solution for V,, during the first 100 ms., and the solid
black lines are the numeric solutions computed with time steps
Dt = 40 ms (open circle) and 20 ms ("). C, The first 15 ms of
the response are shown at an expanded scale. The numeric
solution for Dt = 10 ms is marked by an open circle; the solu-
tions for Dt = 20 and 40 ms are labeled.

smaller Dt alowed the numeric solution to better cap-
ture the curvature of V (t).

But a short time step alone does not guarantee good
temporal accuracy. If propagation of electrical or chemi-
cal signals through the cell involves significant delay,
then the spatial grid is also important. To see how the
spatia grid affects accuracy, we turn to a model of fast
excitatory synaptic input onto a dendritic branch in
mammalian brain. In this model, the synapse is attached
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Fig. 2. Model of excitatory synaptic input onto a dendrite. A,
The dendrite is represented by an unbranched cylinder with
diameter = 1 nm, length = 2500 nm, R, = 180 Wcm, C =1 nf/
cm’, and R, = 16,000 W cm’, with a resting potential of =70 mV.
The DC length constant | = 500 nm, so the sealed-end termi-
nations of this model have little effect on the EPSP produced by
the synapse, which is attached at its midpoint. The dots are the
locations at which the numeric solution would be computed
using a grid with 1 | intervals, i.e., 250, 750, 1250, 1750, and
2250 mm. B, The synaptic conductance g, is governed by an
alpha function with t, = 1 ms, g,,,, = 10 siemens, and reversal
potential E;, = 0 mV.

to the middle of an unbranched cylinder (Fig. 2A) with
passive membrane that is 5 DC length constants long to
avoid possible confounding effects of complex geome-
try and active current kinetics. The biophysical proper-
ties are within the range reported for mammalian central
neurons (Spruston and Johnston 1992). The time course
of the synaptic conductance follows an apha function
(Fig. 2B) with time constant t_ and reversal potential E,
chosen to emulate an AMPA synapse (Kleppe and Rob-
inson 1999) and g, selected to produce a peak depolar-
ization of ~10 mV. We use this model to compare the
analytic solution for V_ as a function of space and time
with the numeric solution computed with a very small
time step (Dt = 1 ns = 0.001 ms) but a very coarse spa-
tial grid (Dx = 1 1).

The time course of V, at the site of synaptic input
(Fig. 3) shows that the numeric solution (solid black
line) rises and falls more slowly than the analytic solu-
tion (dashed orange line) and has a peak depolarization
that is substantially smaller and delayed. These differ-
ences occurred even though Dt was more than two
orders of magnitude smaller than necessary to follow
the EPSP waveform. They reflect the fact that solutions
based on the coarse grid lack sufficient amplitude in the
high frequency terms that are needed to reproduce rap-
idly changing signals. Such errors could lead to serious
misinterpretations if the purpose of the model were to
examine conditions under which synaptic input might

activate depolarization-activated currents, especially
those with fast kinetics like 1,, spike sodium current,
and transient |,

The graphs in Figure 4 present the spatial profile of
V_, aong the dendrite at two times, selected from the
rising and falling phases of the EPSP. These curves,
which are representative of the early and late response
to synaptic input, show that the error of the numeric
solution is most pronounced in the part of the cell
where V_ changes most rapidly, i.e., in the near neigh-
borhood of the synapse. However, at greater distances
the analytic solution itself changes much more slowly
because of low-pass filtering produced by cytoplasmic
resistivity and membrane capacitance. At these dis-
tances, the error of the numeric solution is surprisingly
small, even though it was computed with a very crude
spatia grid. Furthermore, error decreases progressively
as time advances and high frequency terms become less
important.

Figures 1 and 3 demonstrated how accuracy depends
on both the size of the time step and the resolution of
the spatial grid. Using an inappropriate value for either
can result in excess computational burden or inaccurate
solutions. Furthermore, solutions computed by NEU-
RON'’s second-order integration method may oscillate if
the time step is too large for the spatial grid. This is
illustrated in Figure 5, which shows the response of
the model dendrite of Figure 2 to a brief current
pulse injected at its midpoint. To prevent oscillations in
the numeric solution, the normalized increments in time
(DT =Dt/ t,) and space (DX = Dx /| ), where Dx is the
distance between adjacent nodes must satisfy the rela
tionship DT / DX £ % (see chapter 8 in Crank 1979). In
this model with nodes spaced 20 mm apart, oscillations
will occur if Dt > 0.0128 ms.

As these examples indicate, choosing an appropriate
spatiotemporal grid is a recurring practical problem in
neural modeling. The accuracy required of a discrete
approximation to a continuous system depends on the
anatomical and biophysical complexity of the original
system and the question that is being asked. Thus, find-
ing the steady-state (resting) V, of an isopotential
model with passive membrane may require only a few
large time steps at one point in space, but determining
the time course of V _ throughout a highly branched
model with active membrane as it fires a burst of spikes
may demand much finer spatiotemporal resolution. Par-
ticular care may be needed when selecting Dx and Dt
for complex models, because the time required to com-
pute a simulation run is directly proportional to the
product of the number of nodes and the number of time
steps.

Choosing the Spatial Grid

One time-honored way to check the adequacy of the
spatial grid is to repeatedly increase the number of grid
points and exercise the model until further increases
cause no significant change in simulation results. A par-
ticularly convenient way to do this in NEURON is
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Fig. 3. Left: Time course of V,, at the location of the synapse. The dashed orange line is the analytic solution, and the solid black line
is the numeric solution computed with time steps of Dt = 1 ns. Right: An expanded view of the first 10 ms.
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Fig. 4. V,, versus distance along the dendrite computed at two different times: during the rising (left) and falling (right) phases of the
EPSP. The analytic and numeric solutions are shown with dashed orange and solid black lines, respectively. The error of the numeric
solution is greatest in the region where V  changes most rapidly, i.e., in the neighborhood of the synapse.
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Fig. 5. Response of the model dendrite of Figure 2 to a current
step of 0.25 nA lasting 0.05 ms applied at its midpoint. The spa-
tial grid used to compute the numeric solutions contained 125
nodes (Dx = 20 mm) so oscillations occur if Dt > 0.0128 ms. The
dashed orange line is the analytic solution for V  at the site of
current injection, and the thick and thin solid black lines were
computed with time steps of Dt = 0.05 and 0.025 ms, respec-
tively. In this figure, the numeric solution for Dt = 0.0125 ms is
indistinguishable from the analytic solution.

through the command f oral | nseg*=3, which tri-
ples the number of nodes throughout the model. Be-
cause NEURON solutions are second-order accurate in
space, this reduces spatial error by a factor of 9, alow-
ing easy detection of inadequacies of the spatial grid.
Use of an odd multiple (Fig. 6A) aso has the distinct
advantage of introducing new nodes into the gaps be-
tween existing nodes while leaving the positions of the
latter unchanged. Existing nodes would be destroyed if
an even multiple were used (Fig. 6B), making it impos-
sible to tell whether an apparent difference between
simulations should be attributed to different spatial er-
rors or instead to the fact that the solutions were com-
puted for different points in space.

The simple and convenient strategy of repeatedly tri-
pling the number of nodes throughout an entire model is
generally not computationally efficient, especially if
geometry is complex and biophysical properties are
nonuniform. We have found that models that incorpo-
rate quantitative morphometric data frequently contain
at least a few branches that need nine or more nodes,
yet many other branches need only one or three nodes.
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Fig. 6. A, Increasing the density of the spatial grid by an odd
multiple, such as 3, preserves existing grid points (filled circles)
while adding new ones (empty circles). The presence of grid
points at identical locations in these two different grids allows
direct comparison of simulations. B, Attempts to compare simu-
lations generated with grid densities that differ by an even multi-
ple are confounded by the fact that the solutions were
computed at completely different points in space.

In such models, by the time the spatial grid is just ade-
guate in some regions, elsewhere it will be much finer
than necessary, requiring more storage and prolonging
run times.

Alternatively, one might try the common practice of
keeping the distance between adjacent grid points less
than a small fraction (e.g., 5%-10%) of the DC length
constant | . of an infinite cylinder with identical diame-
ter, cytoplasmic resistivity, and specific membrane resis-
tance (Mainen and Sejnowski 1998; Segev and Burke
1998). This plausible approach has two chief limita-
tions. First, large changes in R, and | . can be pro-
duced by activation of voltage-dependent channels (e.g.,
I, Magee 1998; Stuart and Spruston 1998), Ca’-gated
channels (Wessel and others 1999), or synaptic inputs
(Bernander and others 1991; Hausser and Clark 1997;
Pare, Shink, and others 1998; Destexhe and Pare 1999).
The second and more fundamental problem is that the
spatial decay of transient signals is unrelated to | ..
Cytoplasmic resistance R, and membrane capacitance
C,, constitute a spatially distributed low-pass filter, so
transient signals are subject to greater distortion and
attenuation with distance than DC or dowly changing
signals are. In other words, by virtue of their high fre-
guency components in time, transient signals also have
high frequency components in space. Just as high tem-
poral frequencies demand a short time step, high spatial
frequencies demand a fine grid.

As arational revision to the present practice, we pro-
pose a criterion based on the length constant |, com-
puted at a frequency f that is high enough for
transmembrane current to be primarily capacitive, yet
till within the range of frequencies relevant to neuronal
function. lonic and capacitive transmembrane currents
are equal at the frequency f, = 1/2pt , so R, has little
effect on the propagation of signals® 5f . For instance,

a membrane time constant of 30 ms corresponds to f
~5Hz, so R would be irrelevant to signal spread at fre-
quencies 25 Hz. Most cells of current interest have t |
3 8 ms (f, ~20 Hz), so we suggest that the distance
between adjacent nodes should be no larger than a
user-specified fraction of | ,, the length constant at 100
Hz. This frequency is high enough for signa propaga
tion to be insensitive to shunting by ionic conductances,
but it is not unreasonably high because the rise time t,
of fast EPSPs and spikes is ~1 ms, which corresponds to
a bandpass of 1/tr@ ~400 Hz.

At frequencies where R can be ignored, the attenua
tion of signal amplitude is described by

» 2X, 7p f zacm ) @)

so the distance over which an e-fold attenuation occurs

is
1 d 2
| »= | ———,
2\pfRC,

where f isin Hz. As an example, the model dendrite of
Figure2 has| .. =500 nm, but | , isonly ~225 nm.

In NEURON, this rule is implemented in the
CellBuilder, a GUI tool for constructing and managing
models of cells. The CellBuilder alows the maximum
anatomical distance between grid points to be specified
as afraction of | ,, using an adjustable parameter called
d_| anbda. The default value of d_I anbda is 0.3,
which is more than adequate for most purposes, but a
smaller value can be used if t_ is shorter than 8 ms. For
increased flexibility, the CellBuilder also provides two
dternative strategies. specifying nseg, the actual num-
ber of grid points; specifying d_X, the maximum ana-
tomical distance between grid points in nm. Each of
these strategies deliberately sets nseg to an odd num-
ber, which guarantees that every branch will have a
node at its midpoint (e.g., Fig. 6). These strategies can
be applied to any section or set of sections in a model,
each section or set of sections having its own rule and
parameter value. However, barring special circum-
stances, for example, localized high membrane conduc-
tance, it is usually sufficient to use the d_I anbda
strategy for the entire model. Regardless of which strat-
egy is selected, it is always advisable to try a few
exploratory runs with a finer grid to be sure that spatial
error is acceptable.

To see how the d_I| anbda rule works in practice,
consider the model in Figure 7A, which represents a
granule cell from the dentate gyrus of the rat hippocam-
pus. The complex architecture of this model is taken
directly from quantitative morphometric data provided
by Dennis Turner (http://www.neuro.soton.ac.uk/cells/
cellArchive.html), and the biophysical parameters are
the same as those reported by Spruston and Johnston
(1992): R =40k Wem?, C = 1 nf / em’, and R, = 200

log

Vo
Y

X
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Fig. 7. A, Anatomically detailed model of a granule cell from
the dentate gyrus of the rat hippocampus. A fast AMPA synapse
is attached to the soma (location indicated by arrow and orange
dot). See text for details. B, Time course of V., computed
using spatial grids with one or three nodes per branch (thick
blue and thin black traces for nseg = 1 and 3, respectively) or
specified by the d_l| anmbda = 0.3 criterion (dashed orange
trace).

W cm. Attached to the soma is an excitatory synapse;
this is identical to the AMPA synapse of Figure 2
except that g, has been reduced to 2 - 10° siemens.
Figure 7B shows the time course of V _ at the soma
computed with Dt = 25 s using three different methods
of specifying the spatial grid: one or three nodes in each
branch (thick blue and thin black traces, respectively),
and d_I| anbda = 0.3. On the scale of this figure, solu-
tionswith d_I anbda £ 0.3 and Dt £ 25 s are indistin-
guishable from each other, so the d_| anbda = 0.3
trace (dashed orange) serves as the standard for accu-
racy. Plots generated with constant nseg per branch
converged toward this trace with increasing nseg.
From this figure, we can see that even the crudest spa-
tia grid (nseg = 1) would suffice if the purpose of the
mode! were to evaluate effects of synaptic input on V__,
well after the peak of the EPSP (t > 7 ms). However, a
finer grid is clearly necessary if the maximum somatic
depolarization produced by the EPSP is of concern.
Additional refinements to the grid are necessary if we
are interested in how the EPSP spreads into other parts
of the cell, e.g., the path marked by orange in Figure
8A. To compute the maximum depolarization produced
by a somatic EPSP along this path, the model can get
along with a grid that has only three nodes per branch
(Fig. 8B). If the timing of this peak is important, e.g.,

100 0 500

] gl __§
-500pm 300 100 100

SO0 HE

Fig. 8. A, The EPSP evoked by activation of a synapse at the
soma (arrow) spread into the dendrites, producing a transient
depolarization that grew smaller and occurred later as distance
from the soma increased. Parts B and C of this figure show how
the magnitude and timing of this depolarization varied along the
path marked here by a dashed orange line. B, Peak amplitude
of the dendritic depolarization as a function of distance from the
soma along the path shown in A. The results computed with
nseg = 3 throughout the model (thin black trace) are nearly
identical to the standard for accuracy (dashed orange trace,
computed with d_| anbda = 0.3). C, Time of the peak dendritic
depolarization as a function of distance from the soma along
the path shown in A. Over the range of ~—150 to —300 mm there
is a substantial difference between the curve computed with
three nodes per branch (thin black trace) and the standard for
accuracy (dashed orange trace). This difference disappears if
nseg is set to 9 in each branch (results not shown).

for coincidence detection or activation of voltage-gated
currents, a finer grid must be used (Fig. 8C).
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The computational cost of these simulations is
approximately proportional to the number of nodes.
Least burdensome, but also least accurate, were the sim-
ulations generated with 1 node per branch, which
involved 28 nodes in the model. Increasing the number
of nodes per branch to three (total nodes in model = 84)
improved accuracy substantialy, but noticeable errors
remained (Fig. 8C) that disappeared only after an addi-
tional tripling of the number of nodes per branch (tota
nodes = 252; results not shown). The greatest accuracy
without sacrificing efficiency was achieved with the grid
specified by the d_I anbda = 0.3 criterion, which con-
tained only 110 nodes.

As these figures suggest, the advantages of the
d_| anbda strategy will be most apparent when signal
propagation throughout the entire model must be simu-
lated to a similar level of accuracy. If the focusis on a
limited region, then a grid with fewer nodes and a sim-
pler representation of electrically remote areas may be
acceptable. Special features of the model may also
alow a simpler grid to be used. For example, in princi-
pa neurons of mammalian cortex, proxima dendritic
branches tend to have larger diameters (Rall 1959; Hill-
man 1979) and shorter lengths (Cannon and others
1999) than distal branches. In models based on quantita-
tive morphometry, grids specified with either a
d_I anbda or d_X criterion will have fewer nodes in
proximal branches than in more distal branches. Indeed,
many proxima branches may have only one or three
nodes, regardless of which criterion is applied; differ-
ences between gridding strategies will manifest only in
the thinner and longer distal branches. Such differences
will have little effect on simulation results if signals in
the vicinity of the soma are the only concern, and the
relative advantage of the d_| anbda strategy will be
smaller.

Choosing the Time Step

The choice of an appropriate time step Dt is the tempo-
ral corollary of assigning a spatial grid, and it raises
similar concerns. We have seen how grid spacing affects
the ability of the computational solution to follow spa-
tia nonlinearities in state variables (e.g., curvature in
the plot of V_ versus distance; Fig. 8); likewise, the size
of Dt should be set according to the degree to which
state variables change nonlinearly with time (Fig. 1).
There is a wide variety of problems for which an
adaptive time step method would be expected to have
much higher performance than a fixed step method, i.e.,
Dt could grow very large when al states are varying
slowly, as in interspike intervals. On the other hand, in
problems that involve propagating action potentials or
networks of cells, it may happen that some state some-
where in the system is aways varying quickly. In such
cases, Dt must always be small in order to follow
whichever state is varying fastest. It is often not obvious
in advance whether the increased overhead of an adap-
tive time step method will be repaid with an occasiona

series of long time steps. Even so, the greatest benefit of
an adaptive time step method may be that it offers the
user a direct choice of local step accuracy rather than
Dt.

To this end, NEURON has adopted CVODE (Cohen
and Hindmarsh 1994), one of the standard variable
timestep/variable order integration methods. With
CVODE, the user specifies a maximum allowable abso-
lute error rather than Dt. The integrator then dynami-
cally adjusts Dt so that the estimated local error of each
state variable is always less than the maximum absolute
error. The default value chosen for the maximum abso-
lute error was 0.01 so that the classical Hodgkin-Huxley
action potential simulation at 6.3 °C had accuracy com-
parable to a second-order correct simulation with fixed
Dt = 25 ms. The user can specify an error criterion that
involves relative tolerance, but this is generally not
advisable in neural modeling because there is rarely a
reason to require increasing absolute accuracy around
the 0 value of most states, especially voltage. However,
the scale of states is often a crucia consideration, and
the maximum absolute error must be consistent with the
desired resolution of each state. An extreme example is
a model of a calcium pump in which pump density is
measured in moles’em’. Here, an appropriate value is
10™ mole/cm?’, and an allowable error of 0.01 is clearly
nonsense. For this reason, it is essential that each state
that is badly scaled, e.g., [C&"], measured in mM, be
given its own explicit maximum absolute error.
NEURON accommodates this need by allowing the user
to set specific error criteria for individual states that
take precedence over any global criterion.

For an example of how CVODE can reduce the time
necessary to produce accurate simulations, we turn to
the neocortical layer V pyramidal cell model described
by Mainen and Sejnowski (1996). We computed the
response of this model over 1000 ms, during which a
900 ms depolarizing current applied to the soma evoked
two bursts of spikes (see Fig. 9A). Global error of the
simulation was assessed by observing the effect of
reducing the integration time step or CVODE absolute
tolerance on the variability of the time t_at which the
last somatic action potential crossed above 0 mV. When
the fixed step, second-order integration method was
used, t,_ converged to 695.3 ms for Dt £ 0.01 ms, and a
simulation performed with Dt = 0.01 ms took 807 sec-
onds to complete. Solutions computed with CVODE
converged to the same t, when absolute tolerance was
2.5 - 10° for all states except for [C&],, which had an
absolute tolerance of 2.5 - 107; the solution generated
with these tolerances had a runtime of just 44 seconds.
In other words, CVODE alowed us to achieve the same
accuracy as the most accurate fixed time step solution
but with a runtime that was more than 10 times faster.

Figure 9B revedls the control that CVODE exerted
over the integration step size throughout the entire sim-
ulation, cutting Dt to values much smaller than 0.01 ms
when states were changing most rapidly, and increasing
it to a maximum of ~4.4 ms during the long interburst
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Fig. 9. A, Somatic V,_(t) in a model of a neocortical layer V
pyramidal cell subjected to a long depolarizing pulse. At the
scale of this figure, solutions computed with the fixed and vari-
able order/variable time step methods are indistinguishable
from each other. See text for details. B, The Dt used by CVODE
varied over a wide range, dropping below 0.01 ms transiently
during each action potential, and at three instants: the very
beginning of the simulation (t = 0 ms) and at the abrupt start
and end of the injected current pulse (5 ms and 905 ms). How-
ever for most of the simulation Dt was much larger than 0.01
ms. The order of integration (not shown) ranged from 2 to 5,
with most steps using second- or third-order integration.

interval. The smallest steps were restricted to narrow
intervals that began just before the threshold and ended
shortly after the depolarized peak of each spike, asillus-
trated by an expanded view of the transition from the
interburst interval to the beginning of the second burst
(Fig. 10). The remarkable acceleration of the simulation
by CVODE reflects the fact that Dt was much larger
than 0.01 ms for most of the run.

An important feature of the variable step method is
the fact that it was incorporated in NEURON in such a
way that users will find it as unobtrusive and easy to
apply as possible. Care has been taken so that the same
description of a model neuron or biophysical mecha-
nism will work with each of NEURON'’s integration
methods. Furthermore, once a model specification has
been created, switching between fixed and variable time
step methods is as simple as a button press. This conve-
nience is crucial because relative performance between
high overhead variable step and low overhead fixed step
methods ranges widely. For example, the demonstration
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Fig. 10. A, An expanded view of the beginning of the second
burst. The + symbols mark the times at which the solution was
computed using CVODE. See text for details. B, The Dt used by
CVODE was > 0.01 ms throughout the entire simulation except
for brief intervals that extended from just before the threshold of
each spike until shortly after its peak.

simulations by Mainen and Sejnowski (1996) slowed
down by a factor of 2 or sped up by a factor of 7,
depending on the number of spikes in a ssmulation run
and whether there are long intervals in which no state is
rapidly changing.

NEURON provides a network connection class
(NetCon) for network simulations in which cell to cell
communication can be abstractly represented by the
(possibly delayed) delivery of logical events, as opposed
to graded interaction via gap junctions or electrical syn-
apses. The notion of a cell driven by discrete input
events naturally suggests a possible expansion of the
simulation domain where variable time step methods
provide substantial performance gains. Recall that in
networks it may happen that only a few cells are active
at any one time, but with a global time step these active
cells govern the time step for all. The local variable
time step method uses a separate CVODE solver
instance for each cell, which integrates that cell’s states
with time steps governed only by those state dynamics
and the discrete input events, and can efficiently (with-
out integrating equations) retreat from its current time to
any time as far back as the beginning of its previous
time step.
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All cells are always on a list ordered by their current
time and all outstanding events are on a list ordered by
their delivery time. The network progresses forward in
time by finding the least time cell or event and integrat-
ing that cell by one step or delivering the event to the
proper cell. In the latter case, the cell retreats to the
delivery time and becomes the least time cell. The
event, of course, is removed from the list and discarded.
In the former case, the cell is integrated according to its
current time step and moves to a location on the cell list
appropriate to its new time.

In periods of synchronous activity, the local time step
method yields no benefit. If events are extremely
numerous, neither the local nor the global variable time
step method gives a performance boost. When multiple
events per reasonable Dt arrive regularly, the fixed time
step nicely aggregates al events in a step without regard
to their micro tempora structure, whereas the variable
step method's scrupulous handling of each event is out
of al proportion to the conceptua approximation of the
network. On the other hand, it is easy to devise net-
works in which the speed improvement of the local step
approach is arbitrarily great, e.g., chains of neurons.
The fact that the integration method is so dependent on
both the problem and the intention of the user under-
scores the importance of alowing easy selection of any
of them with no changes to the user-level specification
of the model.

One limiting case of the variable step simulation style
is the event-driven simulation, in which the cell jumps
from event to event. Here, a single compartment is used
merely as a stage in which the voltage never changes
(the natural time step is infinite) and the cells are repre-
sented by POINTPROCESSes that receive events from,
and provide events to, the NetCon instances. A wide
range of abstract neuronal phenomena useful in artificial
neural nets, such as integrate and fire, firing frequency
dependent on input, and use dependent synaptic plastic-
ity, have equations that can be solved analytically so
that “cell” state needs only to be computed at the event.

Discussion

A computational model of a neurobiological system is
actually amodel of a model. Thefirst level of modeling
occurs when, motivated by some phenomenon of inter-
est, one formulates a hypothesis that includes just those
properties of the original system that are judged to be
essential. This hypothesis itself is a conceptual model,
derived from the real world by a process of abstraction
and simplification that relies heavily on scientific in-
sight about the biology. Some conceptual models are so
simple that their implications are obvious. However,
most interesting neural phenomena involve cells and cir-
cuits whose anatomical and biophysical complexities
confound intuition. In such a case it can be helpful to
create a computational model that emulates the opera-
tion of the conceptual model. This is the second level of
modeling, and if it is to reliably illustrate the conse-

quences of the hypothesis, then the translation from
conceptual model to computational model must be as
faithful as possible. The utility of a smulation environ-
ment in neuroscience research derives largely from how
well it facilitates the creation of computational models
that closely match their conceptual antecedents. This
has always been a key consideration in the design and
implementation of NEURON (Hines 1998).

The utility of a simulation environment also depends
strongly on the ease with which computational models
can be exercised. This degrades rapidly when users are
forced to divert their attention from the biology of the
problem to deal with arbitrary computer issues that have
nothing to do with neuroscience. A major purpose of
NEURON is to release the individua user from such
concerns, or at least provide guidance regarding their
safe management. The d_| anbda heuristic for dealing
with the spatial grid and the CVODE method for auto-
matically adjusting the order and time step used in
numerical integration are effective and robust, and both
have been incorporated in NEURON in such a way that
they are quite easy to apply. These are vital attributes in
a simulation environment that is designed to be particu-
larly well suited for computational models that are
closely linked to experimental data.

We must note that although the d_| anbda criterion
for the spatial grid is based on an estimate of the spread
of membrane potential, V_ is not the only state that may
vary nonlinearly in space. Other factors need to be
weighed in models where spatialy nonuniform chemi-
cal signals play an important role. The obvious example
is [Ca™],, which may be subject to nonuniformities as a
result of channel clustering, localized release from
intracellular stores, and the effects of diffusion and
buffering.

We should also point out that the default integration
method in NEURON is a fixed-step-first-order implicit
scheme that is numerically stable when extremely stiff
ODEs and even algebraic equations are present in the
system, as when voltage clamps are included in the
model. All of the simulations presented in this article
were generated with either NEURON's Crank-Nicholson-
like integration method or CVODE. The Crank-Nicholson-
like method uses an agorithm with a performance that
is almost identical to the simpler first-order implicit
method (Hines, 1984), but it is second-order correct
when channel membrane current is instantaneoudly lin-
ear in voltage (e.g., equations of Hodgkin-Huxley
form). Consequently, it can use a larger Dt to achieve
the same accuracy as the first-order method, resulting in
shorter runtimes.

An important issue in the use of the CVODE method
is selection of appropriate values for local error control.
Experience so far suggests that the absolute local error
tolerance is much more important than the relative error.
The default error setting (10 nV for membrane potential
and 0.1 nanomolar for free [Ca’]) is approximately
equivalent to the default fixed Dt = 0.025 ms for spike
transients, but occasionally it gives inaccurate interspike
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intervals unless the local error tolerance for V| is very
small.

No collection of agorithms can cover al contingen-
cies, however, and the user’s own judgment must be the
final arbiter of whether a simulation achieves the goal of
“physiological accuracy,” i.e., sufficiently accurate to
give useful insight into the question under study. It is
essential that computational models be tested so that the
errors due to the finite spatia grid and Dt or error toler-
ance do not affect the interpretation of results.
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