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NEURON is a sim u la tion envi ron ment for mod els of indi vid ual neu rons and net works of neu rons that are
closely linked to exper i men tal data. NEURON pro vides tools for con ve niently con struct ing, exer cis ing, and
man ag ing mod els, so that spe cial exper tise in numer i cal meth ods or pro gram ming is not required for its
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Over the past 2 de cades, the ap pli ca tion of new ex per i -
men tal tech niques has yielded a wealth of in for ma tion
about the an a tom i cal and bio phys i cal prop er ties of neu -
rons and neu ral cir cuits. This ex pan sion of knowl edge is 
es sen tial for un der stand ing the bi o log i cal ba sis of brain
func tion, yet it co mes at a cost of its own, be cause most 
data can now only be in ter preted in terms of the in ter ac -
tion of many com plex mech a nisms. In creas ingly aware
of the dif fi culty of es tab lish ing con sis tency be tween
data and the ory, grow ing num bers of neuroscientists
have found em pir i cally based mod el ing to be a use ful
tool for study ing the func tional im pli ca tions of anat omy 
and bio phys ics.

Two impor tant fac tors have facil i tated the wid en ing
accep tance of mod el ing among experimentalists. The
first is the avail abil ity of pow er ful yet inex pen sive com -
put ing hard ware, so that most small lab o ra to ries, and
even stu dents, can now afford machines whose per for -
mance rivals that of super com put ers of recent mem ory.
The sec ond fac tor is the devel op ment of domain-spe cific
sim u la tion tools such as NEURON (http://www.neu ron.
yale.edu), which is designed to pro vide a flex i ble and
con ve nient envi ron ment in which neuroscientists can
take advan tage of this raw com put ing power.

These cir cum stances have driven a pro gres sive shift
in mod el ing away from spec u la tion to mod els that are
highly con strained by bio log i cal data. In this arti cle, we
pro vide a brief over view of why NEURON is par tic u -
larly well suited to this kind of mod el ing and dis cuss in
greater detail the most recent enhance ments to this pro -
gram that address exist ing and emerg ing needs of

inves ti ga tors who are con cerned with rec on cil ing the ory 
and exper i ment.

Back ground

NEU RON can sim u late in di vid ual neu rons and net -
works of neu rons with prop er ties that may in clude, but
are not lim ited to, com plex branch ing mor phol ogy, mul -
ti ple chan nel types, inhomogeneous chan nel dis tri bu -
tion, ionic dif fu sion, and the ef fects of sec ond
mes sen gers. It pro vides tools for con struct ing, ex er cis -
ing, and man ag ing mod els, so that spe cial ex per tise in
nu mer i cal meth ods or pro gram ming is not re quired for
its pro duc tive use.

These at trib utes are re spon si ble for the ap pli ca tion of
NEU RON to a broad range of re search ques tions, from
the ba sic cel lu lar mech a nisms that un der lie neuronal
func tion, to in for ma tion en cod ing and the op er a tion of
large-scale net works in volved in con scious ness, per cep -
tion, learn ing, and mem ory, and for ex am in ing the roles
of neuronal and net work prop er ties in dis eases such as
ep i lepsy, mul ti ple scle ro sis, and dis or ders of learn ing
and mem ory. NEU RON has been used in re search re -
ported in more than 220 sci en tific ar ti cles, 81 of which
were pub lished in the past 2 years. A sur vey of the re -
cent lit er a ture finds that it has been used for mod el ing
in di vid ual cells or subcellular com po nents to ad dress
top ics that in clude

• presynaptic and postsynaptic mech a nisms in volved in
syn ap tic trans mis sion (Ahmed and oth ers 1998; Baccus
1998; Dzubay and Jahr 1999; Kits and oth ers 1999;
Neville and Lyt ton 1999; Thomson and Destexhe 1999)

• den dritic electrotonus and syn ap tic in te gra tion (Larkum
and oth ers 1998; Migliore and Culotta 1998; Raastad and
oth ers 1998; Thurbon and oth ers 1998; Cameron and oth -
ers 1999; Chitwood and oth ers 1999; Destexhe and Pare
1999; Jaffe and Carnevale 1999; Kulagina 1999; Lon don
and oth ers 1999; Wins low and oth ers 1999)

• am pli fi ca tion and sup pres sion of postsynaptic po ten tials
by den dritic ac tive cur rents (Destexhe, Neubig, and oth ers 
1998; Korogod and Kulagina 1998; Pare, Lang, and oth ers 
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1998; Stu art and Spruston 1998; Takagi and oth ers 1998;
Cook and Johnston 1999; Korogod and Kulagina 1998)

• spike ini ti a tion, in clud ing den dritic spikes (Lüscher and
Larkum 1998; Pare, Lang, and oth ers 1998; Migliore and
oth ers 1999; Shen and oth ers 1999)

• in trin sic neuronal ac tiv ity (Canavier 1999; Elaagouby and 
Yuste 1999; Zhu, Lyt ton, and oth ers 1999; Zhu, Uhlrich,
and oth ers 1999) and its mod u la tion by neuropeptides
(Sohal and oth ers 1998)

• neu ral code (Mukherjee and Kaplan 1998; Brown and oth -
ers 1999; Engel and oth ers 1999; Neubig and Destexhe
1999; Shao and oth ers 1999; Sheasby and Fohlmeister
1999; Tang and oth ers 1999)

• neuronal changes dur ing de vel op ment (Ivanov and oth ers
1999; Vabnick and oth ers 1999)

• extracellular stim u la tion (Maccabee and oth ers 1998;
Greenberg and oth ers 1999; McIntyre and Grill 1999) and
re cord ing (Sahin and Durand 1998)

• net work mod u la tion of cel lu lar ac tiv ity (Nadim and oth ers 
1998; Bernasconi and oth ers 1999)

• mech a nisms of mo tor con trol (Herrmann and Flan ders
1998)

• cel lu lar mech a nisms in volved in vi sual di rec tion and ori -
en ta tion se lec tiv ity (Mel and oth ers 1998; An der son and
oth ers 1999) and stereoacusis (Zacksenhouse and oth ers
1998; Si mon and oth ers 1999)

There are also many reports of net work mod els
imple mented with NEURON. These mod els have been
used to study phe nom ena such as

• thalamic and thalamocortical os cil la tions (Destexhe
1998; Sohal and Huguenard 1998; Destexhe and oth ers
1999; Houweling and oth ers 1999; Sohal and oth ers 2000)

• syn chro ni za tion of net work os cil la tions by gap junc tions
(Moortgat and oth ers 2000)

• en cod ing of tem po ral in for ma tion (Lyt ton and Lipton
1999; Buonomano 2000)

• net work mech a nisms un der ly ing ori en ta tion se lec tiv ity in
vi sion (Bush and Priebe 1998)

• mech a nisms of ep i lepsy (Lyt ton and oth ers 1998; Bush
and oth ers 1999; Destexhe 1999)

• ac tions of anticonvulsant drugs (Thomas and Lyt ton
1998)

This diver sity is tes ti mony to the wide util ity of
NEURON in neu ro sci ence research, par tic u larly for
experimentalists who are con cerned with empir i cally
based mod el ing. An impor tant side effect of these appli -
ca tions of NEURON has been the emer gence of a com -
mu nity of users who have made their own con tri bu tions
to the util ity of this pro gram. Sev eral authors have
devel oped and pub lished strat e gies for design of accu -
rate and effi cient mod els of indi vid ual cells and net -
works with NEURON (Destexhe and oth ers 1995a,
1995b, 1996; Lyt ton 1996; Destexhe 1997; Jack son and
Cauller 1997; Destexhe, Mainen, and oth ers 1998;
Mainen and Sejnowski 1998), while oth ers have used it
to imple ment new tools for the anal y sis of neuronal
prop er ties (Carnevale and oth ers 1996; O’Boyle and
oth ers 1996; Carnevale and oth ers 1997).

Over view of NEU RON

NEU RON was ini tially de signed to fa cil i tate deal ing
with neuronal mod els in which com plex mem brane
prop er ties and ex tended ge om e try play im por tant roles
(Hines 1989, 1993, 1995). Sub se quently, its do main of
ap pli ca bil ity has been in creased by add ing fa cil i ties for
de scr ib  ing lon gi  tu  di  nal  ionic dif  fu  s ion and
computationally ef fi cient rep re sen ta tion of con nec tions
in a net work (Hines and Carnevale 2000).

The fun da men tal prin ci ples behind the design and
imple men ta tion of NEURON are detailed else where
(Hines and Carnevale 1997, 2000), but it is use ful to
sum ma rize them briefly here. NEURON is for mu lated
around the notion of con tin u ous cable “sec tions,” which 
can be con nected together to form any kind of branched 
cable. A sec tion can be assigned prop er ties that vary
con tin u ously with posi tion along its length. The aim is
to com pletely sep a rate the phys i cal prop er ties of the
neu ron from the numer i cal issue of size of spa tial com -
part ments and thus to help the inves ti ga tor focus on the
biol ogy rather than com pu ta tional details (Hines and
Carnevale 1997).

User-defined bio phys i cal prop er ties of mem brane
(e.g., ion chan nels, pumps) and cyto plasm (e.g., buff ers
and sec ond mes sen gers) are described in terms of dif fer -
en tial equa tions, kinetic schemes, and sets of simul ta -
neous equa tions. These model descrip tions are com piled 
so that mem brane volt age and gating states can be com -
puted effi ciently using an implicit inte gra tion method
opti mized for branched struc tures (Hines and Carnevale
2000).

NEURON derives its flex i bil ity and con ve nience
from two fea tures. The first is a graph i cal inter face
(GUI) that can be used to cre ate mod els, run ini tial
explor atory sim u la tions, set param e ters, con trol com -
mon volt age and cur rent stim uli, and graph vari ables as
func tions of time and posi tion. The sec ond is an
object-ori ented inter preter that pro vides a com plete pro -
gram ming lan guage that is use ful for cus tom iz ation of
the GUI, advanced data anal y sis, and opti mi za tion.

Thus, NEURON puts a great deal of com pu ta tional
power at the dis posal of the user, espe cially for the
study of mod els that have a close rela tion ship to exper i -
men tal data. Yet, this facil ity as a vehi cle for imple -
ment ing empir i cally based mod els imme di ately raises a
new set of prob lems that are related to man ag ing ana -
tom i cal and bio phys i cal com plex ity so as to achieve
com pu ta tional effi ciency and accu racy while min i miz -
ing the effort required of the user. In this arti cle, we
describe fea tures of NEURON that can help users deal
suc cess fully with the prob lem of bal anc ing com pu ta -
tional effi ciency with numeric accu racy in space and
time.

Spatiotemporal Ac cu racy ver sus 
Com pu ta tional Speed

As men tioned above, NEU RON is de signed so that us -
ers can spec ify mod els with out be ing con cerned about
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com part ment size or time step du ra tion. These are mere
com pu ta tional de tails that ought not to in trude on the
pro cess of pre scrib ing what as pects of the bi o log i cal
sys tem should be in cluded in the model. The NEU RON
sim u la tion en vi ron ment al lows such dis trac tions to be
put off un til it is time to launch a sim u la tion. Fur ther -
more, it has fea tures and tools that help us ers deal eas ily 
and ef fec tively with these two pre vi ously vex ing prob -
lems of mod el ing.

Time and space are con tin u ous vari ables in bio log i cal 
neu rons, and the spread of elec tri cal and chem i cal sig -
nals is gov erned by the dif fu sion equa tion, a par tial dif -
fer en tial equa tion in which poten tial (volt age,
con cen tra tion) and flux (cur rent, move ment of sol ute)
are smooth func tions of time and space (Rall 1977; Jack 
and oth ers 1983). A stan dard strat egy is to approx i mate
the dif fu sion equa tion with a set of alge braic dif fer ence
equa tions that can be solved numer i cally (Crank 1979;
Carslaw and Jae ger 1980). This is anal o gous to approx i -
mat ing the orig i nal con tin u ous sys tem by another sys -
tem that is dis con tin u ous in time and space, and it is the 
approach used by NEURON (Hines and Carnevale
1997).

NEURON com putes the val ues of spatiotemporally
con tin u ous vari ables over a set of dis crete points in
space (“nodes”) for a finite num ber of instants in time.
When NEU RON’s sec ond-order cor rect inte gra tion
method is used, these val ues are a piecewise lin ear
approx i ma tion to the con tin u ous sys tem, so that lin ear
inter po la tion will give the val ues of con tin u ous vari -
ables at inter me di ate loca tions and times with sec ond-
order accu racy. The size of the time step ∆t and the
fine ness of the spa tial grid jointly deter mine the accu -
racy of the solu tion. How faith fully the com puted solu -
tion emu lates the behav ior of the con tin u ous sys tem
depends on the spa tial inter vals between adja cent nodes
and the tem po ral inter vals between solu tion times.
These should be small enough that the piecewise lin ear
approx i ma tion can fol low the cur va ture of the solu tion
for the con tin u ous sys tem in space and time.

Fig ure 1 shows how this works in a sit u a tion where
the size of the time step is the only con sid er ation. These 
charg ing curves were com puted from a model of a small 
spher i cal cell with pas sive mem brane that was sub jected 
to a depo lar iz ing cur rent pulse. Because the cell was
isopotential, the spa tial grid con sisted of a sin gle node.
Fig ure 1B shows the ana lytic solu tion for mem brane
poten tial Vm (dashed orange line) along with numeric
solu tions that were com puted using sev eral dif fer ent
val ues of ∆t (solid black lines). As time advanced, even
the least accu rate numeric solu tion became indis tin -
guish able from the ana lytic solu tion. How ever, solu tions 
com puted with large ∆t lack the high-fre quency terms
needed to fol low the ini tial rapid change of Vm.
Decreasing ∆t pro duced a pro gres sive improve ment in
how closely the piecewise lin ear approx i ma tion
approached the smooth curve of the ana lytic solu tion,
espe cially at early times (Fig. 1C). That is, using a

smaller ∆t allowed the numeric solu tion to better cap -
ture the cur va ture of Vm(t).

But a short time step alone does not guar an tee good
tem po ral accu racy. If prop a ga tion of elec tri cal or chem i -
cal sig nals through the cell involves sig nif i cant delay,
then the spa tial grid is also impor tant. To see how the
spa tial grid affects accu racy, we turn to a model of fast
excit atory syn ap tic input onto a den dritic branch in
mam ma lian brain. In this model, the syn apse is attached 

Fig. 1. A, This model rep re sents a spher i cal cell with a sur face
area of 100 µm2 (diam e ter = 5.64 µm). The rest ing poten tial of
the cell is –70 mV, and the spe cific capac i tance and resis tance
of its mem brane are Cm = 1 µf/cm2 and Rm = 20,000 Ωcm2,
respec tively (τm = 20 ms). A 1 pA depo lar iz ing cur rent is
injected start ing at t = 0 ms. B, The dashed orange line is the
ana lytic solu tion for Vm dur ing the first 100 ms., and the solid
black lines are the numeric solu tions com puted with time steps
∆t = 40 ms (open cir cle) and 20 ms (×). C, The first 15 ms of
the response are shown at an expanded scale. The numeric
solu tion for ∆t = 10 ms is marked by an open cir cle; the solu -
tions for ∆t = 20 and 40 ms are labeled.
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to the mid dle of an unbranched cyl in der (Fig. 2A) with
pas sive mem brane that is 5 DC length con stants long to
avoid pos si ble con found ing effects of com plex geom e -
try and active cur rent kinet ics. The bio phys i cal prop er -
ties are within the range reported for mam ma lian cen tral 
neu rons (Spruston and Johnston 1992). The time course
of the syn ap tic con duc tance fol lows an alpha func tion
(Fig. 2B) with time con stant τs and rever sal poten tial Es

cho sen to emu late an AMPA syn apse (Kleppe and Rob -
in son 1999) and gmax selected to pro duce a peak depo lar -
iza tion of ~10 mV. We use this model to com pare the
ana lytic solu tion for Vm as a func tion of space and time
with the numeric solu tion com puted with a very small
time step (∆t = 1 µs = 0.001 ms) but a very coarse spa -
tial grid (∆x = 1 λ).

The time course of Vm at the site of syn ap tic input
(Fig. 3) shows that the numeric solu tion (solid black
line) rises and falls more slowly than the ana lytic solu -
tion (dashed orange line) and has a peak depo lar iza tion
that is sub stan tially smaller and delayed. These dif fer -
ences occurred even though ∆t was more than two
orders of mag ni tude smaller than nec es sary to fol low
the EPSP wave form. They reflect the fact that solu tions
based on the coarse grid lack suf fi cient ampli tude in the 
high fre quency terms that are needed to repro duce rap -
idly chang ing sig nals. Such errors could lead to seri ous
mis in ter pre ta tions if the pur pose of the model were to
exam ine con di tions under which syn ap tic input might

acti vate depo lar iza tion-acti vated cur rents, espe cially
those with fast kinet ics like IA, spike sodium cur rent,
and tran sient ICa.

The graphs in Fig ure 4 pres ent the spa tial pro file of
Vm along the den drite at two times, selected from the
ris ing and fall ing phases of the EPSP. These curves,
which are rep re sen ta tive of the early and late response
to syn ap tic input, show that the error of the numeric
solu tion is most pro nounced in the part of the cell
where Vm changes most rap idly, i.e., in the near neigh -
bor hood of the syn apse. How ever, at greater dis tances
the ana lytic solu tion itself changes much more slowly
because of low-pass fil ter ing pro duced by cyto plas mic
resis tiv ity and mem brane capac i tance. At these dis -
tances, the error of the numeric solu tion is sur pris ingly
small, even though it was com puted with a very crude
spa tial grid. Fur ther more, error decreases pro gres sively
as time advances and high fre quency terms become less
impor tant.

Fig ures 1 and 3 dem on strated how accu racy depends
on both the size of the time step and the res o lu tion of
the spa tial grid. Using an inap pro pri ate value for either
can result in excess com pu ta tional bur den or inac cu rate
solu tions. Fur ther more, solu tions com puted by NEU -
RON’s sec ond-order inte gra tion method may oscil late if 
the time step is too large for the spa tial grid. This is
illus trated in Fig ure 5, which shows the response of
the model den drite of Fig ure 2 to a brief cur rent
pulse injected at its mid point. To pre vent oscil la tions in
the numeric solu tion, the nor mal ized incre ments in time 
(∆T = ∆t / τm) and space (∆X = ∆x / λ), where ∆x is the
dis tance between adja cent nodes must sat isfy the rela -
tion ship ∆T / ∆X ≤ ½ (see chap ter 8 in Crank 1979). In
this model with nodes spaced 20 µm apart, oscil la tions
will occur if ∆t > 0.0128 ms.

As these exam ples indi cate, choos ing an appro pri ate
spatiotemporal grid is a recur ring prac ti cal prob lem in
neu ral mod el ing. The accu racy required of a dis crete
approx i ma tion to a con tin u ous sys tem depends on the
ana tom i cal and bio phys i cal com plex ity of the orig i nal
sys tem and the ques tion that is being asked. Thus, find -
ing the steady-state (rest ing) Vm of an isopotential
model with pas sive mem brane may require only a few
large time steps at one point in space, but deter min ing
the time course of Vm through out a highly branched
model with active mem brane as it fires a burst of spikes
may demand much finer spatiotemporal res o lu tion. Par -
tic u lar care may be needed when select ing ∆x and ∆t
for com plex mod els, because the time required to com -
pute a sim u la tion run is directly pro por tional to the
prod uct of the num ber of nodes and the num ber of time
steps.

Choosing the Spa tial Grid

One time-hon ored way to check the ad e quacy of the
spa tial grid is to re peat edly in crease the num ber of grid
points and ex er cise the model un til fur ther in creases
cause no sig nif i cant change in sim u la tion re sults. A par -
tic u larly con ve nient way to do this in NEU RON is

Fig. 2. Model of excit atory syn ap tic input onto a den drite. A,
The den drite is rep re sented by an unbranched cyl in der with
diam e ter = 1 µm, length = 2500 µm, Ra = 180 Ω cm, Cm = 1 µf / 
cm2, and Rm = 16,000 Ω cm2, with a rest ing poten tial of –70 mV. 
The DC length con stant λ = 500 µm, so the sealed-end ter mi -
na tions of this model have lit tle effect on the EPSP pro duced by 
the syn apse, which is attached at its mid point. The dots are the
loca tions at which the numeric solu tion would be com puted
using a grid with 1 λ inter vals, i.e., 250, 750, 1250, 1750, and
2250 µm. B, The syn ap tic con duc tance gs is gov erned by an
alpha func tion with τs = 1 ms, gmax = 10–9 siemens, and rever sal
poten tial Es = 0 mV.



through the com mand forall nseg*=3, which tri -
ples the num ber of nodes through out the model. Be -
cause NEU RON so lu tions are sec ond-or der ac cu rate in
space, this re duces spa tial er ror by a fac tor of 9, al low -
ing easy de tec tion of in ad e qua cies of the spa tial grid.
Use of an odd mul ti ple (Fig. 6A) also has the dis tinct
ad van tage of in tro duc ing new nodes into the gaps be -
tween ex ist ing nodes while leav ing the po si tions of the
lat ter un changed. Ex isting nodes would be de stroyed if
an even mul ti ple were used (Fig. 6B), mak ing it im pos -
si ble to tell whether an ap par ent dif fer ence be tween
sim u la tions should be at trib uted to dif fer ent spa tial er -
rors or in stead to the fact that the so lu tions were com -
puted for dif fer ent points in space.

The sim ple and con ve nient strat egy of repeat edly tri -
pling the num ber of nodes through out an entire model is 
gen er ally not computationally effi cient, espe cially if
geom e try is com plex and bio phys i cal prop er ties are
non uni form. We have found that mod els that incor po -
rate quan ti ta tive morphometric data fre quently con tain
at least a few branches that need nine or more nodes,
yet many other branches need only one or three nodes.

Vol ume 7, Num ber 2, 2001 THE NEUROSCIENTIST   127

Fig. 3. Left: Time course of Vm at the loca tion of the syn apse. The dashed orange line is the ana lytic solu tion, and the solid black line
is the numeric solu tion com puted with time steps of ∆t = 1 µs. Right: An expanded view of the first 10 ms.

Fig. 4. Vm versus dis tance along the den drite com puted at two dif fer ent times: dur ing the ris ing (left) and fall ing (right) phases of the
EPSP. The ana lytic and numeric solu tions are shown with dashed orange and solid black lines, respec tively. The error of the numeric
solu tion is great est in the region where Vm changes most rap idly, i.e., in the neigh bor hood of the syn apse.

Fig. 5. Response of the model den drite of Fig ure 2 to a cur rent 
step of 0.25 nA last ing 0.05 ms applied at its mid point. The spa -
tial grid used to com pute the numeric solu tions con tained 125
nodes (∆x = 20 µm) so oscil la tions occur if ∆t > 0.0128 ms. The 
dashed orange line is the ana lytic solu tion for Vm at the site of
cur rent injec tion, and the thick and thin solid black lines were
com puted with time steps of ∆t = 0.05 and 0.025 ms, respec -
tively. In this fig ure, the numeric solu tion for ∆t = 0.0125 ms is
indis tin guish able from the ana lytic solu tion.
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In such mod els, by the time the spa tial grid is just ade -
quate in some regions, else where it will be much finer
than nec es sary, requir ing more stor age and pro long ing
run times.

Alter na tively, one might try the com mon prac tice of
keep ing the dis tance between adja cent grid points less
than a small frac tion (e.g., 5%–10%) of the DC length
con stant λDC of an infi nite cyl in der with iden ti cal diam e -
ter, cyto plas mic resis tiv ity, and spe cific mem brane resis -
tance (Mainen and Sejnowski 1998; Segev and Burke
1998). This plau si ble approach has two chief lim i ta -
tions. First, large changes in Rm and λDC can be pro -
duced by acti va tion of volt age-depend ent chan nels (e.g., 
Ih; Magee 1998; Stu art and Spruston 1998), Ca2+-gated
chan nels (Wessel and oth ers 1999), or syn ap tic inputs
(Bernander and oth ers 1991; Häusser and Clark 1997;
Pare, Shink, and oth ers 1998; Destexhe and Pare 1999).
The sec ond and more fun da men tal prob lem is that the
spa tial decay of tran sient sig nals is unre lated to λDC.
Cyto plas mic resis tance Ra and mem brane capac i tance
Cm con sti tute a spa tially dis trib uted low-pass fil ter, so
tran sient sig nals are sub ject to greater dis tor tion and
atten u a tion with dis tance than DC or slowly chang ing
sig nals are. In other words, by vir tue of their high fre -
quency com po nents in time, tran sient sig nals also have
high fre quency com po nents in space. Just as high tem -
po ral fre quen cies demand a short time step, high spa tial
fre quen cies demand a fine grid.

As a ratio nal revi sion to the pres ent prac tice, we pro -
pose a cri te rion based on the length con stant λf com -
puted at a fre quency f  that is high enough for
transmembrane cur rent to be pri mar ily capac i tive, yet
still within the range of fre quen cies rel e vant to neuronal 
func tion. Ionic and capac i tive transmembrane cur rents
are equal at the fre quency fm = 1/2πτm, so Rm has lit tle
effect on the prop a ga tion of sig nals ≥ 5fm. For instance,

a mem brane time con stant of 30 ms cor re sponds to fm

~5 Hz, so Rm would be irrel e vant to sig nal spread at fre -
quen cies ≥ 25 Hz. Most cells of cur rent inter est have τm

≥ 8 ms (fm ~20 Hz), so we sug gest that the dis tance
between adja cent nodes should be no larger than a
user-spec i fied frac tion of λ100, the length con stant at 100 
Hz. This fre quency is high enough for sig nal prop a ga -
tion to be insen si tive to shunt ing by ionic con duc tances, 
but it is not unrea son ably high because the rise time τr

of fast EPSPs and spikes is ~1 ms, which cor re sponds to 
a bandpass of 1 2/ τ πr  ~400 Hz.

At fre quen cies where Rm can be ignored, the atten u a -
tion of sig nal ampli tude is described by

log
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,
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where f is in Hz. As an ex am ple, the model den drite of
Fig ure 2 has λDC = 500 µm, but λ100 is only ~225 µm.

In NEURON, this rule is imple mented in the
CellBuilder, a GUI tool for con struct ing and man ag ing
mod els of cells. The CellBuilder allows the max i mum
ana tom i cal dis tance between grid points to be spec i fied
as a frac tion of λ100 using an adjust able param e ter called 
d_lambda. The default value of d_lambda is 0.3,
which is more than ade quate for most pur poses, but a
smaller value can be used if τm is shorter than 8 ms. For
increased flex i bil ity, the CellBuilder also pro vides two
alter na tive strat e gies: spec i fy ing nseg, the actual num -
ber of grid points; spec i fy ing d_X, the max i mum ana -
tom i cal dis tance between grid points in µm. Each of
these strat e gies delib er ately sets nseg to an odd num -
ber, which guar an tees that every branch will have a
node at its mid point (e.g., Fig. 6). These strat e gies can
be applied to any sec tion or set of sec tions in a model,
each sec tion or set of sec tions hav ing its own rule and
param e ter value. How ever, bar ring spe cial cir cum -
stances, for exam ple, local ized high mem brane con duc -
tance, it is usu ally suf fi cient to use the d_lambda
strat egy for the entire model. Regard less of which strat -
egy is selected, it is always advis able to try a few
explor atory runs with a finer grid to be sure that spa tial
error is accept able.

To see how the d_lambda rule works in prac tice,
con sider the model in Fig ure 7A, which rep re sents a
gran ule cell from the dentate gyrus of the rat hip po cam -
pus. The com plex archi tec ture of this model is taken
directly from quan ti ta tive morphometric data pro vided
by Den nis Turner (http://www.neuro.soton.ac.uk/cells/
cellArchive.html), and the bio phys i cal param e ters are
the same as those reported by Spruston and Johnston
(1992): Rm = 40k Ω cm2, Cm = 1 µf / cm2, and Ra = 200

Fig. 6. A, Increasing the den sity of the spa tial grid by an odd
mul ti ple, such as 3, pre serves exist ing grid points (filled cir cles)
while add ing new ones (empty cir cles). The pres ence of grid
points at iden ti cal loca tions in these two dif fer ent grids allows
direct com par i son of sim u la tions. B, Attempts to com pare sim u -
la tions gen er ated with grid den si ties that dif fer by an even mul ti -
ple are con founded by the fact that the solu tions were
com puted at com pletely dif fer ent points in space.
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Ω cm. Attached to the soma is an excit atory syn apse;
this is iden ti cal to the AMPA syn apse of Fig ure 2
except that gmax has been reduced to 2 • 10–9 siemens.

Fig ure 7B shows the time course of Vm at the soma
com puted with ∆t = 25 µs using three dif fer ent meth ods 
of spec i fy ing the spa tial grid: one or three nodes in each 
branch (thick blue and thin black traces, respec tively),
and d_lambda = 0.3. On the scale of this fig ure, solu -
tions with d_lambda ≤ 0.3 and ∆t ≤ 25 µs are indis tin -
guish able from each other, so the d_lambda = 0.3
trace (dashed orange) serves as the stan dard for accu -
racy. Plots gen er ated with con stant nseg per branch
con verged toward this trace with increas ing nseg.
From this fig ure, we can see that even the crud est spa -
tial grid (nseg = 1) would suf fice if the pur pose of the
model were to eval u ate effects of syn ap tic input on Vsoma

well after the peak of the EPSP (t > 7 ms). How ever, a
finer grid is clearly nec es sary if the max i mum somatic
depo lar iza tion pro duced by the EPSP is of con cern.

Addi tional refine ments to the grid are nec es sary if we 
are inter ested in how the EPSP spreads into other parts
of the cell, e.g., the path marked by orange in Fig ure
8A. To com pute the max i mum depo lar iza tion pro duced
by a somatic EPSP along this path, the model can get
along with a grid that has only three nodes per branch
(Fig. 8B). If the tim ing of this peak is impor tant, e.g.,

for coin ci dence detec tion or acti va tion of volt age-gated
cur rents, a finer grid must be used (Fig. 8C).

Fig. 7. A, Ana tomically detailed model of a gran ule cell from
the dentate gyrus of the rat hip po cam pus. A fast AMPA syn apse 
is attached to the soma (loca tion indi cated by arrow and orange 
dot). See text for details. B, Time course of Vsoma com puted
using spa tial grids with one or three nodes per branch (thick
blue and thin black traces for nseg = 1 and 3, respec tively) or
spec i fied by the d_lambda = 0.3 cri te rion (dashed orange
trace).

Fig. 8. A, The EPSP evoked by acti va tion of a syn apse at the
soma (arrow) spread into the den drites, pro duc ing a tran sient
depo lar iza tion that grew smaller and occurred later as dis tance
from the soma increased. Parts B and C of this fig ure show how 
the mag ni tude and tim ing of this depo lar iza tion var ied along the 
path marked here by a dashed orange line. B, Peak ampli tude
of the den dritic depo lar iza tion as a func tion of dis tance from the 
soma along the path shown in A. The results com puted with
nseg = 3 through out the model (thin black trace) are nearly
iden ti cal to the stan dard for accu racy (dashed orange trace,
com puted with d_lambda = 0.3). C, Time of the peak den dritic
depo lar iza tion as a func tion of dis tance from the soma along
the path shown in A. Over the range of ~–150 to –300 µm there 
is a sub stan tial dif fer ence between the curve com puted with
three nodes per branch (thin black trace) and the stan dard for
accu racy (dashed orange trace). This dif fer ence dis ap pears if
nseg is set to 9 in each branch (results not shown).



The com pu ta tional cost of these sim u la tions is
approx i mately pro por tional to the num ber of nodes.
Least bur den some, but also least accu rate, were the sim -
u la tions gen er ated with 1 node per branch, which
involved 28 nodes in the model. Increasing the num ber
of nodes per branch to three (total nodes in model = 84) 
improved accu racy sub stan tially, but notice able errors
remained (Fig. 8C) that dis ap peared only after an addi -
tional tri pling of the num ber of nodes per branch (total
nodes = 252; results not shown). The great est accu racy
with out sac ri fic ing effi ciency was achieved with the grid 
spec i fied by the d_lambda = 0.3 cri te rion, which con -
tained only 110 nodes.

As these fig ures sug gest, the advan tages of the
d_lambda strat egy will be most appar ent when sig nal
prop a ga tion through out the entire model must be sim u -
lated to a sim i lar level of accu racy. If the focus is on a
lim ited region, then a grid with fewer nodes and a sim -
pler rep re sen ta tion of elec tri cally remote areas may be
accept able. Spe cial fea tures of the model may also
allow a sim pler grid to be used. For exam ple, in prin ci -
pal neu rons of mam ma lian cor tex, prox i mal den dritic
branches tend to have larger diam e ters (Rall 1959; Hill -
man 1979) and shorter lengths (Can non and oth ers
1999) than dis tal branches. In mod els based on quan ti ta -
tive morphometry, grids spec i fied with either a
d_lambda or d_X cri te rion will have fewer nodes in
prox i mal branches than in more dis tal branches. Indeed, 
many prox i mal branches may have only one or three
nodes, regard less of which cri te rion is applied; dif fer -
ences between gridding strat e gies will man i fest only in
the thin ner and lon ger dis tal branches. Such dif fer ences
will have lit tle effect on sim u la tion results if sig nals in
the vicin ity of the soma are the only con cern, and the
rel a tive advan tage of the d_lambda strat egy will be
smaller.

Choosing the Time Step

The choice of an ap pro pri ate time step ∆t is the tem po -
ral cor ol lary of as sign ing a spa tial grid, and it raises
sim i lar con cerns. We have seen how grid spac ing af fects 
the abil ity of the com pu ta tional so lu tion to fol low spa -
tial nonlinearities in state vari ables (e.g., cur va ture in
the plot of Vm ver sus dis tance; Fig. 8); like wise, the size 
of ∆t should be set ac cord ing to the de gree to which
state vari ables change nonlinearly with time (Fig. 1).

There is a wide vari ety of prob lems for which an
adap tive time step method would be expected to have
much higher per for mance than a fixed step method, i.e., 
∆t could grow very large when all states are vary ing
slowly, as in interspike inter vals. On the other hand, in
prob lems that involve prop a gat ing action poten tials or
net works of cells, it may hap pen that some state some -
where in the sys tem is always vary ing quickly. In such
cases, ∆t must always be small in order to fol low
which ever state is vary ing fast est. It is often not obvi ous 
in advance whether the increased over head of an adap -
tive time step method will be repaid with an occa sional

series of long time steps. Even so, the great est ben e fit of 
an adap tive time step method may be that it offers the
user a direct choice of local step accu racy rather than
∆t.

To this end, NEURON has adopted CVODE (Cohen
and Hind marsh 1994), one of the stan dard vari able
timestep/vari able order inte gra tion meth ods. With
CVODE, the user spec i fies a max i mum allow able abso -
lute error rather than ∆t. The inte gra tor then dynam i -
cally adjusts ∆t so that the esti mated local error of each
state vari able is always less than the max i mum abso lute
error. The default value cho sen for the max i mum abso -
lute error was 0.01 so that the clas si cal Hodg kin-Huxley 
action poten tial sim u la tion at 6.3 °C had accu racy com -
pa ra ble to a sec ond-order cor rect sim u la tion with fixed
∆t = 25 µs. The user can spec ify an error cri te rion that
involves rel a tive tolerance, but this is gen er ally not
advis able in neu ral mod el ing because there is rarely a
rea son to require increas ing abso lute accu racy around
the 0 value of most states, espe cially volt age. How ever,
the scale of states is often a cru cial con sid er ation, and
the max i mum abso lute error must be con sis tent with the 
desired res o lu tion of each state. An extreme exam ple is
a model of a cal cium pump in which pump den sity is
mea sured in moles/cm2. Here, an appro pri ate value is
10–14 mole/cm2, and an allow able error of 0.01 is clearly
non sense. For this rea son, it is essen tial that each state
that is badly scaled, e.g., [Ca2+]i mea sured in mM, be
given its own explicit max i mum abso lute error.
NEURON accom mo dates this need by allow ing the user 
to set spe cific error cri te ria for indi vid ual states that
take pre ce dence over any global cri te rion.

For an exam ple of how CVODE can reduce the time
nec es sary to pro duce accu rate sim u la tions, we turn to
the neocortical layer V pyram i dal cell model described
by Mainen and Sejnowski (1996). We com puted the
response of this model over 1000 ms, dur ing which a
900 ms depo lar iz ing cur rent applied to the soma evoked 
two bursts of spikes (see Fig. 9A). Global error of the
sim u la tion was assessed by observ ing the effect of
reduc ing the inte gra tion time step or CVODE abso lute
tol er ance on the vari abil ity of the time tx at which the
last somatic action poten tial crossed above 0 mV. When
the fixed step, sec ond-order inte gra tion method was
used, tx con verged to 695.3 ms for ∆t ≤ 0.01 ms, and a
sim u la tion per formed with ∆t = 0.01 ms took 807 sec -
onds to com plete. Solu tions com puted with CVODE
con verged to the same tx when abso lute tol er ance was
2.5 • 10–3 for all states except for [Ca2+]i, which had an
abso lute tol er ance of 2.5 • 10–7; the solu tion gen er ated
with these tol er ances had a runtime of just 44 sec onds.
In other words, CVODE allowed us to achieve the same 
accu racy as the most accu rate fixed time step solu tion
but with a runtime that was more than 10 times faster.

Fig ure 9B reveals the con trol that CVODE exerted
over the inte gra tion step size through out the entire sim -
u la tion, cut ting ∆t to val ues much smaller than 0.01 ms
when states were chang ing most rap idly, and increas ing
it to a max i mum of ~4.4 ms dur ing the long interburst
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inter val. The small est steps were restricted to nar row
inter vals that began just before the thresh old and ended
shortly after the depo lar ized peak of each spike, as illus -
trated by an expanded view of the tran si tion from the
interburst inter val to the begin ning of the sec ond burst
(Fig. 10). The remark able accel er a tion of the sim u la tion 
by CVODE reflects the fact that ∆t was much larger
than 0.01 ms for most of the run.

An impor tant fea ture of the vari able step method is
the fact that it was incor po rated in NEURON in such a
way that users will find it as unob tru sive and easy to
apply as pos si ble. Care has been taken so that the same
descrip tion of a model neu ron or bio phys i cal mech a -
nism will work with each of NEU RON’s inte gra tion
meth ods. Fur ther more, once a model spec i fi ca tion has
been cre ated, switch ing between fixed and vari able time 
step meth ods is as sim ple as a but ton press. This con ve -
nience is cru cial because rel a tive per for mance between
high over head vari able step and low over head fixed step 
meth ods ranges widely. For exam ple, the dem on stra tion

sim u la tions by Mainen and Sejnowski (1996) slowed
down by a fac tor of 2 or sped up by a fac tor of 7,
depend ing on the num ber of spikes in a sim u la tion run
and whether there are long inter vals in which no state is 
rap idly chang ing.

NEURON pro vides a net work con nec tion class
(NetCon) for net work sim u la tions in which cell to cell
com mu ni ca tion can be abstractly rep re sented by the
(pos si bly delayed) deliv ery of log i cal events, as opposed 
to graded inter ac tion via gap junc tions or elec tri cal syn -
ap ses. The notion of a cell driven by dis crete input
events nat u rally sug gests a pos si ble expan sion of the
sim u la tion domain where vari able time step meth ods
pro vide sub stan tial per for mance gains. Recall that in
net works it may hap pen that only a few cells are active
at any one time, but with a global time step these active
cells gov ern the time step for all. The local vari able
time step method uses a sep a rate CVODE solver
instance for each cell, which inte grates that cell’s states
with time steps gov erned only by those state dynam ics
and the dis crete input events, and can effi ciently (with -
out inte grat ing equa tions) retreat from its cur rent time to 
any time as far back as the begin ning of its pre vi ous
time step.
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Fig. 9. A, Somatic Vm(t) in a model of a neocortical layer V
pyram i dal cell sub jected to a long depo lar iz ing pulse. At the
scale of this fig ure, solu tions com puted with the fixed and vari -
able order/vari able time step meth ods are indis tin guish able
from each other. See text for details. B, The ∆t used by CVODE
var ied over a wide range, drop ping below 0.01 ms tran siently
dur ing each action poten tial, and at three instants: the very
begin ning of the sim u la tion (t = 0 ms) and at the abrupt start
and end of the injected cur rent pulse (5 ms and 905 ms). How -
ever for most of the sim u la tion ∆t was much larger than 0.01
ms. The order of inte gra tion (not shown) ranged from 2 to 5,
with most steps using sec ond- or third-order inte gra tion.

Fig. 10. A, An expanded view of the begin ning of the sec ond
burst. The + sym bols mark the times at which the solu tion was
com puted using CVODE. See text for details. B, The ∆t used by 
CVODE was > 0.01 ms through out the entire sim u la tion except
for brief inter vals that extended from just before the thresh old of 
each spike until shortly after its peak.
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All cells are always on a list ordered by their cur rent
time and all out stand ing events are on a list ordered by
their deliv ery time. The net work pro gresses for ward in
time by find ing the least time cell or event and inte grat -
ing that cell by one step or deliv er ing the event to the
proper cell. In the lat ter case, the cell retreats to the
deliv ery time and becomes the least time cell. The
event, of course, is removed from the list and dis carded. 
In the for mer case, the cell is inte grated accord ing to its
cur rent time step and moves to a loca tion on the cell list 
appro pri ate to its new time.

In peri ods of syn chro nous activ ity, the local time step 
method yields no ben e fit. If events are extremely
numer ous, nei ther the local nor the global vari able time
step method gives a per for mance boost. When mul ti ple
events per rea son able ∆t arrive reg u larly, the fixed time
step nicely aggre gates all events in a step with out regard 
to their micro tem po ral struc ture, whereas the vari able
step method’s scru pu lous han dling of each event is out
of all pro por tion to the con cep tual approx i ma tion of the
net work. On the other hand, it is easy to devise net -
works in which the speed improve ment of the local step 
approach is arbi trarily great, e.g., chains of neu rons.
The fact that the inte gra tion method is so depend ent on
both the prob lem and the inten tion of the user under -
scores the impor tance of allow ing easy selec tion of any
of them with no changes to the user-level spec i fi ca tion
of the model.

One lim it ing case of the vari able step sim u la tion style 
is the event-driven sim u la tion, in which the cell jumps
from event to event. Here, a sin gle com part ment is used
merely as a stage in which the volt age never changes
(the nat u ral time step is infi nite) and the cells are rep re -
sented by POINTPROCESSes that receive events from,
and pro vide events to, the NetCon instances. A wide
range of abstract neuronal phe nom ena use ful in arti fi cial 
neu ral nets, such as inte grate and fire, fir ing fre quency
depend ent on input, and use depend ent syn ap tic plas tic -
ity, have equa tions that can be solved ana lyt i cally so
that “cell” state needs only to be com puted at the event.

Dis cus sion

A com pu ta tional model of a neurobiological sys tem is
ac tu ally a model of a model. The first level of mod el ing 
oc curs when, mo ti vated by some phe nom e non of in ter -
est, one for mu lates a hy poth e sis that in cludes just those
prop er ties of the orig i nal sys tem that are judged to be
es sen tial. This hy poth e sis it self is a con cep tual model,
de rived from the real world by a pro cess of ab strac tion
and sim pli fi ca tion that re lies heavily on sci en tific in -
sight about the bi ol ogy. Some con cep tual mod els are so
sim ple that their im pli ca tions are ob vi ous. How ever,
most in ter est ing neu ral phe nom ena in volve cells and cir -
cuits whose an a tom i cal and bio phys i cal com plex i ties
con found in tu ition. In such a case it can be help ful to
cre ate a com pu ta tional model that em u lates the op er a -
tion of the con cep tual model. This is the sec ond level of 
mod el ing, and if it is to re li ably il lus trate the con se -

quences of the hy poth e sis, then the trans la tion from
con cep tual model to com pu ta tional model must be as
faith ful as pos si ble. The util ity of a sim u la tion en vi ron -
ment in neu ro sci ence re search de rives largely from how
well it fa cil i tates the cre ation of com pu ta tional mod els
that closely match their con cep tual an te ced ents. This
has al ways been a key con sid er ation in the de sign and
im ple men ta tion of NEU RON (Hines 1998).

The util ity of a sim u la tion envi ron ment also depends
strongly on the ease with which com pu ta tional mod els
can be exer cised. This degrades rap idly when users are
forced to divert their atten tion from the biol ogy of the
prob lem to deal with arbi trary com puter issues that have 
noth ing to do with neu ro sci ence. A major pur pose of
NEURON is to release the indi vid ual user from such
con cerns, or at least pro vide guid ance regard ing their
safe man age ment. The d_lambda heu ris tic for deal ing 
with the spa tial grid and the CVODE method for auto -
mat i cally adjust ing the order and time step used in
numer i cal inte gra tion are effec tive and robust, and both
have been incor po rated in NEURON in such a way that
they are quite easy to apply. These are vital attrib utes in
a sim u la tion envi ron ment that is designed to be par tic u -
larly well suited for com pu ta tional mod els that are
closely linked to exper i men tal data.

We must note that although the d_lambda cri te rion
for the spa tial grid is based on an esti mate of the spread
of mem brane poten tial, Vm is not the only state that may 
vary nonlinearly in space. Other fac tors need to be
weighed in mod els where spa tially non uni form chem i -
cal sig nals play an impor tant role. The obvi ous exam ple 
is [Ca2+]i, which may be sub ject to nonuniformities as a
result of chan nel clus ter ing, local ized release from
intracellular stores, and the effects of dif fu sion and
buff er ing.

We should also point out that the default inte gra tion
method in NEURON is a fixed-step-first-order implicit
scheme that is numer i cally sta ble when extremely stiff
ODEs and even alge braic equa tions are pres ent in the
sys tem, as when volt age clamps are included in the
model. All of the sim u la tions pre sented in this arti cle
were gen er ated with either NEU RON’s Crank-Nichol son-
like inte gra tion method or CVODE. The Crank-Nichol son- 
like method uses an algo rithm with a per for mance that
is almost iden ti cal to the sim pler first-order implicit
method (Hines, 1984), but it is sec ond-order cor rect
when chan nel mem brane cur rent is instan ta neously lin -
ear in volt age (e.g., equa tions of Hodg kin-Huxley
form). Con se quently, it can use a larger ∆t to achieve
the same accu racy as the first-order method, result ing in 
shorter runtimes.

An impor tant issue in the use of the CVODE method
is selec tion of appro pri ate val ues for local error con trol.
Expe ri ence so far sug gests that the abso lute local error
tol er ance is much more impor tant than the rel a tive error. 
The default error set ting (10 µV for mem brane poten tial 
and 0.1 nanomolar for free [Ca2+]i) is approx i mately
equiv a lent to the default fixed ∆t = 0.025 ms for spike
tran sients, but occa sion ally it gives inac cu rate interspike 



inter vals unless the local error tol er ance for Vm is very
small.

No col lec tion of algo rithms can cover all con tin gen -
cies, how ever, and the user’s own judg ment must be the
final arbi ter of whether a sim u la tion achieves the goal of 
“phys i o log i cal accu racy,” i.e., suf fi ciently accu rate to
give use ful insight into the ques tion under study. It is
essen tial that com pu ta tional mod els be tested so that the 
errors due to the finite spa tial grid and ∆t or error tol er -
ance do not affect the inter pre ta tion of results.
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