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ABSTRACT

Neuronal function involves the interaction of electrical and chemical signals that are
distributed in time and space. The mechanisms that generate these signals and regulate their
interactions are marked by a rich diversity of properties that precludes a “one size fits all”
approach to modeling. This paper shows how the model description language NMODL enables
the neuronal simulation environment NEURON to accommodate these differences.

INTRODUCTION

Recently we described the core concepts and strategies that are responsible for much of the
utility of NEURON as a tool for empirically-based neuronal mode(idmes and Carnevale
1997) That paper focused on the strategy used in NEURON to deal with the problem of mapping
a spatially distributed system into a discretized (compartmental) representation in a manner that
ensures conceptual control while at the same time maintaining numeric accuracy and
computational efficiency. Now we shift our attention to another important feature of NEURON:
its special facility for expanding and customizing its library of biophysical mechanisms.

The need for this facility stems from the fact that experimentalists are applying an ever-
growing armamentarium of techniques to dissect neuronal operation at the cellular level. There is
a steady increase in the number of phenomena that are known to participate in electrical and
chemical signaling and that are characterized well enough to support empirically-based
simulations. Since the mechanisms that underlie these phenomena differ across neuronal cell
class, developmental stage, and species (e.g. chaptéighinston and Wu 19953lso see
(McCormick 1998), a simulator that is useful in research must provide a flexible and powerful
means for incorporating new biophysical mechanisms in models. It must also help the user
remain focused on the model instead of programming. Such a means is provided to the
NEURON simulation environment by NMODL, a high-level language that was originally
implemented for NEURON by Michael Hines and later extended by him and Upinder Bhalla to
generate code suitable for linking with GENE$W8ilson and Bower 1989)

A brief overview of how NMODL is used will clarify its underlying rationale. The first step
is to write a text file (a odfile”) that describes a mechanism as a set of nonlinear algebraic
equations, differential equations, or kinetic reaction schemes. The description employs a syntax
that closely resembles familiar mathematical and chemical notation. This text is passed to a
translatorthat converts each statement into many statements in C, automatically generating code
that handles details such as mass baldmceach ionic species and producing code suitable for
each of NEURON's integration methods. The output of the translator is then compiled for
computational efficiency. This achieves tremendous conceptual levemdgaavings of effort not
only because the high-levelechanism specification is much easier to understand and far more
compact than the equivalent C code, but also because it spares the user from having to bother
with low-level programming issues like how to “interface” the code with other mechanisms and
with NEURON itself.

Because of the unusual structure and features of the NMODL language, it would be futile to attempt
explanation without illustration. Therefore this paper is organized around a sequence of exafnples
increasing complexity and sophisticatitiat introduce important topics in the context of problems of
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scientific interestThese examples show how to take advantage of the leverage provided by
NMODL for creating representations of biophysical mechanisms.

DESCRIBING MECHANISMS WITH NMODL

NMODL is a descendant of the MOdel Description Langu@d®DL (Kohn et al. 1994))
which was developed at Duke University by the National Biomedical Simulation Resource
projectfor the purpose of building models that would be exercised by the Simulation Control
Program(SCoP(Kootsey et al. 1986) NMODL has the same basic syntax and style of
organizing model source code into nantacks as MODL. Variable declaratidohocks, such as
PARAMETERSTATE andASSIGNED specify names and attributes of variables that are used in
the model. Other blocks are directly involved in setting initial conditions or generating solutions
at each time step (the equation definitiincks, e.gINITIAL , BREAKPOINTDERIVATIVE,
KINETIC , FUNCTION PROCEDUREFurthermore, C code can be inserted inside the model
source code to accomplish implementation-specific goals.
NMODL recognizes all the keywords of MODL, but we will limit this dission to those
that are relevant to NEURON simulations. We will also examine the changes and extensions that
were necessary to endow NMODL with NEURON-specific features. To give these ideas real
meaning, they will be presented in the context of NMODL text for models of the following
mechanisms:
» apassive “leak” current and a localized transmembrane shunt (density mechanisms vs. point
processes)
* an electrode stimulus (discontinuous parameter changes with variable time step methods)
» voltage-gated channels (differential equations vs. kinetic schemes)
+ ion accumulation in a restricted space (extracellulgr K
« buffering, diffusion, and active transport (C@ump)
* synaptic transmission
This paper makes extensive use of specialized concepts and terminology that pertain to
NEURON itself; for definitive treatment of these the reader is referred to prior publications
((Hines 1984; Hines 1989; Hines 1993; Hines 1994; Hines and Carnevale b8®particularly
(Hines and Carnevale 19989nd NEURON's on-line help files, which are available through
links at http://www.neuron.yale.edu.

Example 1: a passive “leak” current

A passive “leak” currenis one of the simplest biophysical mechanisms. Because it is
distributedover the surface of a cell, it is described in terms of conductance per unit area and
current per unit area, and therefore belongs to the class of “density mechatsnes and
Carnevale 1997)0ther density mechanismgclude ion accumulation in a restricted space and
active transport.
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Figure 1 illustrates a branch of a neuron Vin
with a distributed leak current (left) and the () )
equivalent circuit of a model of the passive R lioak
current mechanism (right): a distributed |
constant conductan@gakin series with a
voltage sourc& .« equal to the equilibrium I TITII Eeak
potential for the ionic current. The leak current - T T T
density is given bYieak = Gieak (Vm — Eieal), Figure 1
whereVy, is the membrane potential. Because
this is a model of a physical system that is distributed in space, the vangklaadV,, and the
parametergeak aNdEeak are all functions of position.

Let us examine the NMODL text for an implementation of this model (Listing 1). Inline
commentsstart with a colon and terminate at the end of the line. NMODL also allows comment
blocks, which are demarcated by the keywd@@VIMENT.. ENDCOMMENIN passing it
should be noted that a similar syntax can be used to embed Grcadedfile, e.qg.

leak gleak

VERBATIM
/* ¢ statements */
ENDVERBATIM

The statements betwe®ERBATIMandENDVERBATIMvill appear without change in the output
file that is written by the NMODL translator. Although this should be done only with great care,
VERBATIMcan be a convenient and effective way for individual users to add new features to
NEURON or even to employ NEURON as a “poor man’s C compiler.”

: A passive leak current

NEURON {
SUFFIX leak
NONSPECIFIC_CWRRENT i
RANGE |, e, g

}

PARAMETER {
g=0.001 (siemens/cm2) <0, 1e9 >
e=-65 (millivolt)

}

ASSIGNED {
i (milliamp/cm?2)
v (millivolt)

}

BREAKPOINT {i=g*(v-e)}
Listing 1.leak.mod

Named block$ave the general fortdEYWORD statement$, and keywordsare all upper
case. User-defined variable nanme®MODL can be up to 20 characters long. Each variable
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must be definetbefore it is used. The variable names chosen for this examplei wgreande
for the leak current, its specific conductance, and its equilibrium potential, respectively. Some
variables are not “owned” by any mechanism but are available to all mechatheseinclude
v, celsius ,t,dt,diam, andarea .

As an aside, it should be noted that useliofin NMODL is neither necessary nor good
practice. Prior to the availability of variable time stepthods in NEURON, analytic expressions
involving dt were frequently used for efficient modeling of voltage sensitive channel states. This
idiom is now built-in and employed automatically when such models are described in their
underlying derivative form.

The NEUROMIock

The principal extensiothat differentiates NMODL from its MODIorigins is that there are
separate instances of mechanism data, with different values of states and parameters, in each
segment (compartment) of a model cell. NMeUROMIock was introduced to make this possible
by defining what the model of the mechanism looks like from the “outside” when there are many
instances of the model sprinkled at different locations on the cell. The specifications entered in
this block are independent of any particular simulator, but the detailed “interface code”
requirements of a particular simulator determine whether the output C file is suitable for
NEURON (NMODL) or GENESISGMODL). For this paper, we assume the translator is
NMODL and that it produces code accepted by NEURON.

The actual name of the current NMODanslator imocmodl (nocmodl.exe on the PC).

This translator is consistent with the object-oriented extensions that were introduced with version
3 of NEURON. However, the older translator which predated these extensions was called
nmodl , and we will use the generic name NMODL to refer to NEURON-compatible translators.

The SUFFIX keyword has two consequences. First, it identifies this to be a density
mechanism, which can be incorporated into a NEURON cable sectionibyean statement
(seeUsagebelow). Second, it tells the NEURON interpreter that the names for variables and
parameters that belong to this mechanism will include the suléiak , so there will be no
conflict with similar names in other mechanisms.

The stipulation thait is aNONSPECIFIC_CURRENalso has two consequences. First, the
value ofi will be reckoned in charge balanegquations. Second, this current will make no direct
contribution to mass balaneguations (it will have no direct effect on ionic concentrations). We
will show how to model mechanisms with specific ionic currents that can change concentrations
in later examples.

The RANGEeyword asserts that the values ok, andg are functions of position. In other
words, each of these variables can have a different value in each of the segments that make up a
section. In the NEURON interpreter, manipulation of these variables useg\th@Evariable
syntax(Hines and Carnevale 1997he alternative tRANGES GLOBAL which is discussed
below inThe PARAMETERIock.

The membrane potentialis not mentioned in thSIEUROMIock for two reasons. First, is
one of the variables that are available to all mechanisms. Second, it is not necessary to assert that
v is aRANGEvariable because membrane potential AN GE/ariable by default. However, for
model completeness in non-NEURON contexts, and to enableal@tkingy should be
declared in théASSIGNEDblock (see below).
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Variable declaration blocks

As noted above, each user-defined variable must be declared before it is used. Even ifitis
named in theNEUROMIOCK, it still has to appear in a variable declaration block

Mechanisms frequently involve expressions that contain a mix of constadtgariables
whose unitdelong to different scales of investigation and which may themselves be defined in
terms of other, more “fundamental” units. This can easily lead to arithmetic errors that can be
difficult to isolate and rectify. Therefore NMODL has special provisions for establishing and
maintaining consistency of unit§o facilitate unit checking, each variable declaration includes a
specification of its unitén parentheses. The names used for these specifications are based on the
UNIX units databaseA variable whose units are not specified is taken to be dimensionless

The user may specify whatever units are appropriate except for variables that are defined by
NEURON itself. These include (millivolts), t (milliseconds)celsius (°C),diam (um), and
area (umd). Currents, concentrations, and equilibrium potentials created hySBE&ON
statement also have specific units (3&e NEUROMIock in Example 6: extracellular
potassium accumulationbelow). In this particular density mechanismandg are given units
of current per unit area (milliamperes/@nand conductance per unit area (siemeng/cm
respectively.

The PARAMETERIock

Variableswhose values are normally specified by the user are parameters and are declared in
aPARAMETERIock In the NEURON graphical user interface (G H)parameter is viewed
using a special field editor which is designed to facilitate the entry of new valueg¢sge
below).

While parameters generally remain constant during a simulation, they can be changed in mid-
runif necessary to emulate some external influence on the characteristic properties of a model.
To avoid confusion, such changes should only be performed through the hoc interpreter or the
GUI, and not by statements in thedfile.

ThePARAMETERIock in this example gives default values of 0.001 siemerfsérrd —65
mV to g ande, respectively. The pair of values in angle brackets specifies the default minimum
and maximum value®r g that can be entered into the field editor of the GUI. In this case, we
merely ensure that conductangeannot be negative.

Becausey ande arePARAMETER their values are visible at the hoc leaeld can be
overridden by hoc commands or altered through the BARAMETERordinarily have global
scope, which means that changing the valuePARAMETERffects every instance of that
mechanism throughout an entire model. HoweverNBEROMIock for this particular
mechanism stipulates thgtande areRANGE/ariables so they can be given different values in
every segment where the leak current has been inserted.

The ASSIGNEDblock

The ASSIGNEDblockis used for declaring two kinds of variabiesose that are given values
outside themodfile, and those that appear on the left hand side of assignment statements within
themodfile. The first group includes variables that are potentially available to every mechanism
such aw, celsius , t, and ionic variablegionic variables are discussed in connection Witle
NEUROMIlock in Example 6: extracellular potassium accumulatiorbelow). The second group
specifically omits variables that are unknowns in a set of simultaneous linear or nonlinear
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algebraic equationsr that are dependent variables in differential equations or kinetic reaction
schemeswhich are handled differently (s&xample 4: a voltage-gated currenbelow for a
discussion of th&TATEDblock).

Mechanism-specifiaSSIGNEDvariables ar&RANGE/ariablesby default. For a mechanism-
specificASSIGNEDvariable to be visible outside of tmeodfile, it must be declared &ANGEr
GLOBALIn theNEURONMIock. ASSIGNEDvariables that are not “owned” by any mechan{sim
celsius ,t,dt,diam, andarea ) are not mentioned in theEURONbIOCKk.

The current is not a state variable because the model of the leak current mechanism does
not define it in terms of a differential equation or kinetic reaction scheme; that is to sag,no
dynamics of its own. Furthermore it is not an unknown in a set of equations. Instead, it is
calculated by direct assignment. Therefore it is declared iA88GNEDblock.

For similar reasons membrane potentias also declared in theSSIGNEDblock. Although
membrane potential is unquestionably a state varialdenodel of a cell, to the leak current
mechanism it is a driving force rather than a state variable

Equation definition blocks
In this simple model there is only one equation, which is defined iBREAKPOINTblock.
The BREAKPOINTblock

This is the main computation bloegk NMODL. Its name derives from SCol which
simulations are executed by incrementing an independent variable through a sequence of steps or
“breakpoints” at which the dependent variables of the model are computed and digplaad
et al. 1994)

At exit from theBREAKPOINTblock, all variables should be consistent with the independent
variable. The independent variable in NEURGMNlways timea , and neithet nor the time step
dt should be changed in NMODL.

A single formula is all that is necessary for the leak current model. As we shall see later,
more complicated models may require invoking NMODL’s built-in routines to solve families of
simultaneous algebraic equations or perform numeric integration.

Usage

The following hoc code illustrates how this mechanism might be used. Note the use of
RANGEsyntax to examine the value ofeak near one end afable .

cable {
nseg=>5
insert leak
/I override defaults
g_leak =0.002 // S/lcm2
e leak=-70 /ImV

}

/I show leak current density near O end of cable
print cable.i_leak(0.1)
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Because of the interface code generated as a consequence o [EINEEEEEurve |
definitions in theNEUROMIlock, theleak mechanism will appear | Close

with the other density mechanisms in tistributed cable
Mechanism Manager andViewer windows This is illustrated in T
Figure 2, which shows thiistributed Mechanism Inserter . hh
The check mark signifies that theak mechanism has been v leak

inserted into the section nameable .

Figure 2

Example 2: a localized shunt

At the opposite end of the spatial scale from a distributed passive current is a localized shunt
induced by microelectrode impaleméburand 1984, Staley et al. 1992 shunt is restricted to
a small enough region that it can be described in terms of a net conductance (or resistance) and
total current, i.e. it is a point proce@dines and Carnevale 199'Nlost synapses are also best
represented by point processes.

The localized nature of the shunt is emphasized Vin
in the cartoon of the neurite (Fig.3 left). The () )
equivalent circuit of the shunt (right) is similar to the D |shunt
equivalent circuit of the distributed leak current | Fepunt
(Fig.1 right), but here the resistance and current are shont
understood to be concentrated in a single, I Eshunt

circumscribed part of the cell. We will focus on how
the NMODL code for this model differs from the

; . : Figure 3
density mechanism presented earlier.

: A shunt current

NEURON {
POINT_PROCESS Shunt
NONSPECIFIC_CURRENT i

RANGE i, e, r
}
PARAMETER {
r=1(gigaohm) <1e-9, 1e9 >
e = 0 (millivolt)
}
ASSIGNED {
i (nanoamp)
v (millivolt)
}

BREAKPOINT {i = (0.001)*(v - e)/r }

Listing 2.shunt.mod
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The NEUROMIock

TheNEUROMIockidentifies this mechanism as a point process, which means that it will be
managed in hoc using an object-oriented syntax (segebelow). Makingi , e, andr RANGE
variables means that each instance of this point process can have separate values for these
variables. If a variable is instead asserted t@&h©®BAL. then its value would be shared among all
instances of the mechanism.

Variable declaration blocks

These are nearlylentical to theeARAMETERNAASSIGNEDbIocks of thdeak mechanism.
However,Shunt is a point process so all of its current flows at one site instead of being
distributed over an area. Thereforeiitandr are in units of nanoamperes (total current) and
gigaohms (0.001total conductance in microsiemens), respectively.

This code specifies default values for P @RAMETE®R ande. Allowing a minimum value
of 107 for r prevents an inadvertent divide by 0 error (infinite conductance) by ensuring that a
user cannot setto 0 in its GUI field editor This protection, however, only holds for field
editors and does not prevent an interpreter statement from seting or even a negative value.

Equation definition blocks

Like the leak current mechanism, the shunt mechanism is extremely simple and involves no
state variablesThe single equation is defined in tBREAKPOINTblock.

The BREAKPOINTblock

The sole “complication” in this block is that the calculation ahcludes a factor of 0.001 to
reconcile the uniten the left and right hand sides of this assignment (nanoamperes vs. millivolts
divided by gigaohms). The parenthesasrounding this conversion factor are a convention that
is necessary for units checkirtgey disambiguate it from mere multiplication by a number.

When NEURON'’s unit checking utilitynodlunit  is used to check the NMODL code in Listing
2, it will find no errors and will exit without an error message.

f:\modfils\leak\shunt>modIlunit shunt.mod
model $Revision: 1.1.1.1 $ $Date: 1994/10/12 17:22:51 $
Checking units of shunt.mod

f:\modfils\leak\shunt>

However if the parentheses were omitted, an error message would be emitted that reports
inconsistent unit factors.

fAmodfils\leak\shunt>modlunit shunt.mod
model $Revision: 1.1.1.1$ $Date: 1994/10/12 17:22:51 $
Checking units of shunt.mod
The previous primary expression with units: 1-12 coul/sec
is missing a conversion factor and should read:

(0.002)*()

at line 20 in file shunt.mod

i =0.001*(v - e)/r<<ERROR>>
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An error message would also result if parentheses Close

surrounded a number which the user intended to be a
guantity, since the unit factors would be inconsistent.
The convention of using single numbers enclosed in
parentheses to signify unit conversion factors is simple a
minimizes the possibility of mistakes either by the user ol | at: ¢able(0.)
by the software. It is important to note that expressions tt

SelectPeintProcess
Show
Shunt[0]

) ) Shunt
involve more than one number, such as “(1 + 1)”, it u'_‘ 2 N
be interpreted as conversion factors. r (gigachm) | 0.1 v
Usage e (millivelt) 0 =

This hoc code illustrates how the shunt mechanism | i{nanoamp) 0

might be applied to a section calledble ; note the object
syntax for specifying the shunt resistance and current (see

(Hines and Carnevale 1997) Figure 4

objref s

/I put near 0 end of cable
cable s = new Shunt(0.1)

/I not bad for a sharp electrode
s.r=0.2

/I show shunt current

print s.i

The definitions in theNEUROMIock of this particular model enable NEURON'’s graphical
tools to include th&hunt object in the menus of itBoint Process Manager andViewer
windows(Fig.4). The check mark on the button adjacent to the numeric field fiadicates that
the shunt resistance has been changed from its default value (0.2 gigaohm when the shunt was
created by the hoc code immediately above) to 0.1 gigaohm.

Example 3: an intracellular stimulating electrode

An intracellular stimulating electrods similar to a shunt in the sense that both are localized
sources of current that are modeled as point procesisegever, the current from a stimulating
electrode is not generated by an opening in the cell membrane but instead is injected directly into
the cell. This particular model of a stimulating electrode has the additional difference that the
current changes discontinuougl. it is a pulse with distinct start and stop times.

: Current clamp

NEURON {
POINT_PROCESS IClamp1
RANGE del, dur, amp, i
ELECTRODE_CURRENT

}
UNITS { (nA) = (nanoamp) }
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PARAMETER {
del (ms)
dur (ms) <0, 1e9 >
amp (nA)

ASSIGNED {i (nA) }

INITIAL{i=0}

BREAKPOINT {
at_time(del)
at_time(del+dur)

if (t <del +dur && t>del) {

i=amp
}else {
i=0
}
}
Listing 3.iclampl.mod
The NEURONock

This mechanism is identical to the builtd@lamp model. Calling itiClamp1 allows the
reader to test and modify it without conflict with the existi@iamp point process.

This model of a current clamp generates a rectangular current pulse whose anaptipude
nanoamperes, start tindel in milliseconds, and duratiodur in milliseconds are all adjustable
by the user. Furthermore, these parameters are individually adjustable for each separate instance
of this mechanism. Therefore they are declaredAasGEariables in theNEUROMIock

The current delivered byiClamp1 is declared in th&dEURONbock to make it available for
examination TheELECTRODE_CURREMNTatement has two important consequences: positive
values ofi will depolarize the cell (in contrast to the hyperpolarizing effect of positive
transmembrane currents), and whenedkieacellular mechanisms present there will be a
change in the extracellular potenti@ixt . Further discussion of extracellular fields is beyond the
scope of this paper.

Equation definition blocks
The BREAKPOINTblock

The logic for deciding whether =0 ori =ampis straightforward, but thet_time()  calls
need explanation. To work properly with variable time stegthods, e.g. CVODE, models that
change parameters discontinuouslying a simulation must notify NEURON when such events
take place. With fixed time stepethods, users implicitly assume that evdake place on time
step boundaries (integer multiplesdxf), and they would never consider defining a pulse
duration narrower thadt . Neither eventuality can be left to chance with variable time step
methods.
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During a variable time step simulation, the first
at time()  call guarantees that a time step boundary wil = Clese
be atdel —¢, wheree is on the order of 10 ms.
Integration will then restart from its new initial condition a
del + €. For more information, seliscontinuities in
PARAMETE®below.

The INITIAL block
The code in theNITIAL blockis executed when the

SelectPeintProcess
Show
IClamp 1[0]

at: soma(0.5)

IC1amp1[0]

hoc functionfinitialize() is called. Initialization of dal (ms) | ¥ s
more complex mechanisnssdiscussed below iBxample dur(ms) v 2 2
4: a voltage-gated currentandExample 6: extracellular amp (r8) [ 657 -

potassium accumulation The initialization here consists

of making sure thaiClampl.i is O whent =0. i(na) 0
Usage
Regardless of whether a fixed or variable time step Figure 5

integrator is chosenClampl looks the same to the user. In either case, a current stimulus of
0.01 nA amplitude that starts at= 1 ms and lasts for 2 ms would be created by this hoc code or
through the GUI pandFig.5).

obijref ccl
/l put at middle of soma
soma ccl = new IClamp1(0.5)

ccl.del=1
ccl.dur=2
ccl.amp =0.01

Example 4: a voltage-gated current

One of the particular strengths of NMODL is its flexibility in dealing with ion channels
whose conductances are not constant but instead are regulated by factors such as the
transmembrane potential gradient and/or the concentrations of ligands on one or both sides of the
membrane. Here we will use the well-known Hodgkin-Huxley (HH) delayed rediifiginow
how a voltage-gated currecd&n be implemented, and later we will examine a model of a
potassium (K) current that depends on both voltage and intracellular calcium concentration.

The delayed rectifier and all other voltage-gated channels that are distributed over the cell
surface are density mechanismberefore their NMODL representations and hoc usage will
have many similarities to those of the passive leak current presented in Example 1. The following
discussion focuses on the significant differences between the models of the delayed rectifier and
the passive leak current.

In this example, membrane potential is in absolute millivolts, i.e. reversed in polarity from
the original Hodgkin-Huxley convention and shifted to reflect a resting potential of —65 mV.
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: HH voltage-gated potassium current

NEURON {

}

SUFFIX kd
USEION k READ ek WRITE ik
RANGE gkbar, gk, ik

UNITS {

(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)

PARAMETER { gkbar = 0.036 (S/cm2) }

ASSIGNED {

}

% (mV)
ek (mV) : typically ~-77.5

ik (mA/cm2)
gk (S/lcm2)

STATE{n}

BREAKPOINT {

SOLVE states METHOD cnexp
gk = gkbar * n"4
ik =gk *(v-ek)

INITIAL {

: Assume v has been constant for a long time
n = alpha(v)/(alpha(v) + beta(v))

DERIVATIVE states {

: Computes state variable n at present v & t
n' = (1-n)*alpha(v) - n*beta(v)

FUNCTION alpha(Vm (mV)) (/ms) {

LOCALx
UNITSOFF
x = (Vm+55)/10
if (fabs(x) > 1e-6) {
alpha = 0.1*x/(1 - exp(-x))

}else{
alpha =0.1/(1 - 0.5*x)
}
UNITSON
}
Revised 4/6/2000
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FUNCTION beta(Vm (mV)) (/ms) {

UNITSOFF
beta = 0.125*exp(-(Vm+65)/80)
UNITSON
}
Listing 4.kd.mod
The NEURONlock

As with the passive mode§UFFIX marks this as a density mechanism, whose variables and
parameters will be identified in hoc by a particular suffix. THRENGEvariables are declared in
this block: the peak conductance densitpar (the product of channel density and “open”
conductance per channel), the macroscopic conductgnftbe product ofykbar and the
fraction of channels that are open at any moment), and the cikreéhat passes througik . At
the level of hoc, these will be availablegibar_kd , gk _kd , andik_kd .

This model also has a fourANGEvariable: the gating variable which is declared in the
STATEDlock (seeThe STATEblock below). STATEvariablesare automaticalllRANGE/ariables
and do not need to be declared in tfieUROMIoCk.

A mechanism needs a separd&EIONstatement for each of the ions that it affects or is
affected by. This example has od8EIONstatement, which includé®EADek because the
potential gradient that drivés kd depends on the equilibrium potential fof kSince the
resulting ionic flux may affect local [K, this example also include&/RITEik so that
NEURON can keep track of the total outward current that is carried by an ion, its internal and
external concentrations, and its equilibrium potential. We will return to this point in the context
of a model with extracellular Kaccumulation.

The UNITS block

The statements in tHeNITS block define new names for units terms of existing names in
the UNIX units databasé his can increase legibility and convenience, and is helpful both as a
reminder to the user and as a means for automating the process of checking for consistency of
units

Variable declaration blocks
The ASSIGNEDblock

This is analogous to theSSIGNEDblock of theleak mechanism. For the sake of clarity,
variables whose values are computed outsidentbigfile are listed first. Note thatk is listed as
anASSIGNEDvariable, unlikee of the leak mechanism which wa®ARAMETERT he reason for
this difference is that mechanisms that produédlitxes may cause the equilibrium potentdl
to change in the course of a simulatittowever, the equilibrium potential for the leak current
was hot linked to a specific ionic species and therefore will remain fixgess explicitly altered
by hoc statements or the GUI.
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The STATEDblock

If a model involves differential equations, families of algebraic equations, or kinetic reaction
schemes, their dependent variables or unknowns are to be listedSmah&block Therefore
gating variables such as the delayed rectifiersse declared here.

In this paper we will refer to variables that are declared irS&TEblock asSTATE
variables, or simphsTATEs. This NMODL-specific terminology should not be confused with the
physics or engineering concept of a “state variable” as a variable that describes the state of a
systemWhile membrane potential is a “state variable” in the engineering sense, it would never
be aSTATEbecause its value is calculated only by NEURON and never by NMODL code.
Likewise, the unknowns in a set of simultaneous equatierts specified in &INEAR or
NONLINEARblock) would not be state variables in an engineering sense, yet they would all be
STATES.

All STATEs are automaticallRANGEvariables This is appropriate, since channel gating can
vary with position along a neurite.

Equation definition blocks

In addition to theBREAKPOINTblock, this model also haslITIAL , DERIVATIVE, and
FUNCTIONDbIlocks.

The BREAKPOINTblock

This is the main computation block of the mechanism. By the end @REEAKPOINTblock,
all variables are consistent with the new time. If a mechanisn$MA3Es, this block must
contain oneSOLVEstatement that tell how the values of tBEATEs will be computed over each
time step. TheSOLVEstatement specifies a block of code that defines the simultaneous equations
that govern th&TATEs. Currents are set with assignment statements at the end of the
BREAKPOINTblock

There are two major reasons why variables tiegpend on the number of times they are
executed, such as counts or flags or random variables, should in general not be calculated in a
BREAKPOINTblock. First, the assignment statements BREAKPOINTblock are usually called
twice per time step. Second, with variable time stegthods the value af may not even be
monotonically increasing. The metaphor to keep in mind is thaBREAKPOINTblock is
responsible for making all variables consistent at im&hus assignment statements in this
block are responsible for trivially specifying the values of variables which depa@gdn the
values ofSTATEs, t , andv, while theSOLVEstatements perform the magic required to make the
STATES consistent at time. It is not belaboring the point to reiterate that the assignment
statements should produce the same result regardless of how manBREWKPOINTIs called
with the sameSTATES, t , andv. All too often errors have resulted from an attempt to explicitly
compute what is conceptuallySTATEIn aBREAKPOINTblock. Computations that must be
performed only once per time stepould be placed in BROCEDUREvhich in turn would be
invoked by aSOLVEstatement in BREAKPOINTblock.

In this connection it should be emphasized that3be VEstatement is not a function call
and that the body of theERIVATIVE block (or any other block specified bys®LVEstatement)
will be executed asynchronously with respedBREAKPOINTassignment statements. Therefore
it is incorrect to invoke rate functiorisom theBREAKPOINTblock; instead these must be called
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from the block that is specified by tl8OLVEstatement (in this example, from within the
DERIVATIVE block).

Models of active currents such ikskd are generally formulated in terms of ionic
conductances that are functions of voltage- and time-dependent gating variabls®LMie
statements at the beginning of BREAKPOINTblock specify the differential equations or
kinetic schemes that govern the kinetics of the gating variables. The algebraic equations that
compute the ionic conductances and currents followstbeVEstatements.

For mechanisms whoSTATEs are described by differential equations, it is often most
convenient and efficient to use one of NEURON'’s built-in numerical integrators. A good choice
for this particular mechanism ehexp , which is described below in connection with the
DERIVATIVE block.

The INITIAL block

TheINITIAL block may contain any instructions that should be executed when the hoc
functionfinitialize() is called. Though often overlooked, proper initializatioratf
STATEsIs as important as correctly computing their temporal evolution. This is accomplished for
the common case Hinitialize() , which executes the initialization strategy defined in the
INITIAL block for each mechanism. Prior to executing tRE'IAL  block, STATEvalues are
set to their values in th8TATEdeclaration block (or set to O if it was not given a specific value
in the STATEdeclaration block)

For this delayed rectifier mechanismis set to its steady-state value for the membrane
potential that exists in the compartment. This potential itself can be “left over” from a previous
simulation run, or it can be specified by the user, e.g. on a compartment by compartment basis
using statements such @end.v(0.2) = -48 before callindfinitialize() , or uniformly
over the entire cell with a statement likeitialize(-55)

Initialization strategiesTheINITIAL block should be used to initializBTATEs with respect
to the initial values of membrane potential and ionic concentrations. It should be noted that there
are several other ways to prep&®ATES for a simulation run. The most direct is simply to
assign values explicitly using hoc statements suatable.n_kd(0.3) = 0.9 , but this can
create arbitrary initial conditions that would be quite “unnatural.”

A more “physiological” approach, which may be appropriate for models of oscillating or
chaotic systems or whose mechanisms show other complex interactions, would be to perform an
“Initialization run” during which the model converges toward its limit cycle or attractor. A
practical alternative for systems that settle to a stable equilibrium point when left undisturbed is
to assignt a large negative valuend then advance the simulation over several large time steps
(keepingt < 0 prevents the initialization steps from triggering scheduled ewemnts as stimulus
currents or synaptic inputs). This tactic takes advantage of the strong stability properties of
NEURON's implicit integration methods.

With either approach, once the initialization transients have decaye8THEEs can be
saved to &aveState objectthat can then be kept in memory or written to a file for future re-
use. The following example shows how to rest8T@TEs properly, assuming that they are
contained in &aveState object namednystates . WhenSTATES are restored, it is necessary
to make sure that the variable orderiable time step integrator is properly initialized; this is the
purpose otvode.re_init() , which has no effect if one is using a fixed time step method.
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proc init() {
/I setVmtov_init, tto O,
/I and call INITIAL block in all mechanisms

finitialize(v_init)
mystates.restore()

/l make all assigned variables (currents, conductances,
/I equilibrium potentials) consistent with the STATEs
fcurrent()

/I initialize the cvode integrator
cvode.re_init() // no effect if cvode is not active

The DERIVATIVE block

This is used to assign values to the derivatiobhoseSTATES that are described by
differential equations. The statements in this block are of the formexpr, where a series of
apostrophes can be used to signify higher-order derivatives.

For NEURON's fixed time stemtegration method, these equations are integrated using the
numerical method specified by tls®LVEstatement in thBREAKPOINTblock TheSOLVE
statement should explicitly invoke one of the integration methods that is appropriate for systems
in which state variables can vary widely during a time step (stiff systemsxnexg method
used in this example combines second-oamuracy with computational efficiency. It is
appropriate when the right hand sideyof f(v,y)is linear iny, so it is well-suited to models with
HH-style ionic currentsThis method calculates tIBTATEs analytically under the assumption
that all other variables are constant throughout the time step. If the variables change but are
second-order correct at the midpoint of the time step, then the calculat®rAdES is also
second-order correct.

If f(v,y)is not linear iny, then the implicit integration methatkrivimplicit should be
used. This provides first-ordeccuracy and is usable with general ODEs regardless of stiffness
or nonlinearity

With variable time stepnethodsno variable is assumed to be constant. These methods not
only change the time step, but adaptively choose a numerical integration formula with local error
that ranges from first-order up to &f). The present implementation of NMODL creates a
diagonal Jacobiaapproximation for the block & TATEs. If yi' = fi(v,y)is polynomial iny; this is
done analytically, otherwise by numerical differencing. In the rare case where this is inadequate,
the user may supply an explicit Jacobian. Future versions of NMODL may attempt to deal with
Jacobian evaluation in a more sophisticated manner. This illustrates a particularly important
benefit of the NMODL approach: improvements in methods do not affect the high level
descriptionof the membrane mechanism.

The FUNCTIONDblock

The functiongdefined byFUNCTIONblocksare available at the hoc levahd in other
mechanisms by adding the suffix of the mechanism in which they are definedlpaay.kd()
andbeta_kd() . Functions or procedures can be simply called from hoc if they do not reference
RANGEvariables (references ®LOBALvariables are allowed). If a function or procedure does
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reference &ANGHEariable then prior to calling the function from hoc it is necessary to specify
the proper instance of the mechanism (its location on the cell). This is donselyasa
functionthat has the syntax

section_namésetdata_  suffixx) }

wheresection_names the name of the section that contains the mechanism in questifix,is
the mechanism suffix, andis the normalized distance along the section where the particular
instance of the mechanism exists. The functions inkduexample do not useANGEvariables,
S0 a specific instance is not needed.

The differential equation that describes the kinetics ofvolves two voltage-dependent rate
constants whose values are computed by the funcéipha() andbeta() . The original
algebraic form of the equations that define these rates is

0.1(" * 55] _(v+65)
a=—10 ) and  B=0125¢ \ 80

a _( v+55)
1-¢ * 10

The denominator foor goes to 0 whewr = —-55 mV, which could cause numeric overflow. The
code used imlpha() avoids this by switching, whenis very close to 55, to an alternative
expression that is based on the first three terms of the infinite series expansfon of

As noted elsewhere in this paper, NMODL has featuresf#itditate establishing and
maintaining consistency of unit§herefore the rate functiordpha() andbeta() are
introduced with the syntax

FUNCTIONf_namé argl (unitsl), arg2 (units2),..) (returned_units)

to declare that their arguments are in units of millivolts and that their returned values are in units
of inverse milliseconds (“/ms”). This allows automatic units checking on entry to and return from
these functions. For the sake of legibility tHRITSOFF. . . UNITSONdirectives disable units
checking just within the body of these functions. This is acceptable because the terms in the
affected statements are mutually consistent. Otherwise the statements would have to be rewritten
in a way that makes unit consistency explicit at the cost of legibility, e.g.

X = (Vm + 55 (millivolt))/(10 (millivolt))

Certain variables exist solely for the sake of computational coemeri These typically
serve as scale factors, flags, or temporary storage for intermediate results, and are not of primary
importance to the mechanism. Such variables are often declat€xCad variableswithin an
equation block, e. in this mechanismLOCALvariableghat are declared in an equation block
are not “visible” outside the block and they do not retain their values between invocations of the
block.LOCALvariables that are declared outside an equation block have very different properties
and are discussed undéariable declaration blocksin Example 8: calcium diffusion with
buffering.
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Usage

The hoc code and graphical

interface for using this distributed  Variable to graph
mechanism are similar to those for Enter Symbel name:

theleak mechanism (Fig.2). cable.n_kd(0.1)

However, thekd mechanism Show

involves moreRANGHEvariables, and

this is reflected in the choices cable. v{0.1)
available in theRANGEvariable ek(0.1)
menu of NEURON'®lot  what? koar Kd(01)
tool for graph windows. Sincled n_kd(0.1)
uses potassium, the variabkss ‘“I;kf(}(°d11)}
andik (total K" current) appear in ﬂia‘m(o_{)
this list along with the variables tha ;=ng-(10)1 :

are explicitly declared aBBANGE
andSTATEIn kd.mod (see Fig.6).
The total K currentik will differ BCCREE cancs)
fromik_kd only if another
mechanism thatVRITEs ik is
present in this section.

Figure 6

Example 5: a calcium-activated voltage-gated current

This model of a potassium current that depends on both voltage and intracellular calcium
concentratiofiCa’"];. is based on the work of Moczydlowski and Latoft683) It is basically
an elaboration of the HH mechanism in which the forward and backward rates depend jointly on
membrane potential and [E&.. Here we point out the salient implementational differences
between this and the previous model.

: Calcium activated K channel

NEURON {
SUFFIX cagk
USEION ca READ cai
USEION k READ ek WRITE ik
RANGE gkbar
GLOBAL oinf, tau

}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(S) =(siemens)
(molar) = (1/liter )
(mM) = (millimolar)
FARADAY = (faraday) (kilocoulombs)
R = (k-mole) (joule/degC)
}
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PARAMETER {

gkbar =0.01 (S/cm2)
dl =0.84

d2 =1.0

k1 =0.18 (mM)

k2 =0.011 (mM)
bbar =0.28 (/ms)
abar =0.48 (/ms)

}
ASSIGNED {
cai (mM) :typically 0.001
celsius (degC) : typically 20
v (mV)
ek  (mV)
ik  (mA/cm2)
oinf
tau (ms)
}

STATE {0} :fraction of channels that are open

BREAKPOINT {
SOLVE state METHOD cnexp
ik = gkbar*o*(v - ek)

}
DERIVATIVE state {
rate(v, cai)
o' = (oinf - o)/tau
}
INITIAL {
rate(v, cai)
o = oinf
}

: the following are all callable from hoc

FUNCTION alp(v (mV), ca (mM)) (/ms) {
alp = abar/(1 + expl(kl,d1,v)/ca)
}

FUNCTION bet(v (mV), ca (mM)) (/ms) {
bet = bbar/(1 + ca/expl(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) {
: numeric constants in an addition or subtraction
: expression automatically take on the unit values
: of the other term
expl = k*exp(-2*d*FARADAY*V/R/(273.15 + celsius))
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PROCEDURE rate(v (mV), ca (mM)) {
LOCAL a
: LOCAL variable takes on units of right hand side
a = alp(v,ca)
tau = 1/(a + bet(v, ca))
oinf = a*tau

Listing 5.cagk.mod

The NEURONlock

Because the potassium conductance depends Gfj@ao USEIONstatements are required.
TheRANGEstatement declares only the peak conductance degksidy , so this mechanism’s
ionic conductance will not be visible from hoc (in fact, the activated ionic conductance density is
not even calculated in this model). Likewise, there will bekn@agk that reports this
particular current component separately, even though it will be added to the tatairigntik
because OWRITE ik .

The variablesinf andtau , which govern the gating variabte should be accessible in hoc
for the purpose of seeing how they vary with membrane potential arit] Q¥ the same time,
the storage and syntax overhead required RABGE/ariable does not seem warranted because
it appears unlikely to be necessary or useful to plot ettimér ortau as a function of space.
Therefore they have been declared tau®BALrather tharRANGEON first examination, this
might seem to pose a problem. The gating of thisKrrent depends on membrane potential and
[C&®"];, both of which may vary with location, so how can it be correct toGiSeBAIs for oinf
andtau ? And if some reason did arise to examine the values of these variables at a particular
location, how could this be done? We shall see that the answers to these questions lie in the
DERIVATIVE andPROCEDURBIocks.

The UNITS block

The last two statements in this block require some clarification. The first parenthesized item
on the right hand side of the equal sign is the numeric value of a standard entry in the UNIX units
databasewhich may be expressed on a scale appropriate for physics rather than membrane
biophysics. The second parenthesized item acts like a scale tla@t@onverts it to the specific
units chosen for this model. Th¢iaraday) appears in the units database in terms of
coulombs/mole and has a numeric value of 96,485.309, but for this particular mechanism we
prefer to use a constant whose units are kilocoulombs/mole. The statement

FARADAY = (faraday) (kilocoulombs)

results inFARADAYhaving units of kilocoulombs and a numeric value of 96.485309. The item
(k-mole) in the statement

R = (k-mole) (joule/degC)
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is not kilomoles but instead is a specific entry in the units database equal to the product of
Boltzmann's constant and Avogadro's number. The end result of this statemenRibdisainits
of joules/°C and a numeric value of 8.313424. These special definitidrSRADAYandR
pertain to this mechanism only; a different mechanism could assign different units and numeric
values to these labels.

Another possible source of confusion is the interpretation of the symbol “e”. This is always
the electronic charge (~ 1.6 -"{tcoulombs), except outside the UNITS block whesérayle
number in parentheses is treated as a conversion factpthe expressiqe4) is treated as a
conversion factor of 2 - 0Although errors involving “e” in a units expression are easy to make,
they are always caught layodlunit

Variable declaration blocks
The ASSIGNEDblock

Comments in this block can be helpful to the user as reminders of “typical” values or usual
conditions under which a mechanism operates. For exampleagikemechanism is intended for
use in the context of [G4]; on the order of 0.001 mM. Similarlyhe temperatursensitivity of
this mechanism is accommodated by including the global vareaideis . NEURON's default
value forcelsius is 6.3°C, but as the comment in tdfile points out, the parameter values
for this particular mechanism were intended for an “operating temperature” of 20°C. Therefore
the user may need to chang#sius  through hoc or the GUI.

The variablesinf andtau , which were made accessible to NEURON by @€BAL
statement in th&lEUROMIock, are given values by the proceduae and are declared as
ASSIGNED

The STATEblock

Becaus®, the fraction of channels that are open, is described by a differential equation, this
mechanism needsSTATEblock.

Equation definition blocks
The BREAKPOINTblock

This mechanism does not make its ionic conductance available to hoc, BRER&KPOINT
block just calculates the ionic current passing through these channels and doesn’t bother with
separate computation of a conductance.

The DERIVATIVE block

The gating variable o is governed by a first-ordefed#ntial equation. The procedusge
assigns values to the voltage-sensitive parameters of this equation: the steady-staiefvalue
and the time constamdu .

This provides the answer to the first question that was raised above in the discussion of the
NEUROMIlock. The procedureate will be executed individually for each segment in the model
that has theagk mechanism. Each timate is called, its arguments will equal the membrane
potential and [C&]; of the segment that is being processed, sinaadcai are bothRANGE
variables. Thereforeinf andtau can beGLOBALwithout destroying the spatial variation of the
gating variable.
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The FUNCTIONand PROCEDURBocks

The functionsalp() , bet() ,expl() , andthe procedumate() implement the
mathematical expressions that desculné andtau . To facilitate units checking, their
arguments are tagged with the units that they userdth§ procedure achieves some
efficiency by callingalp() once and using the returned value twice; calculatinfy andtau
separately would have required two callsi()

The procedureate() helps answer the second question that was raised in the discussion of
theNEUROMIlock: how to examine the variation oinf andtau over spaceThis is easily done
in hoc with code such as

forall { // iterate over all sections
for (x) { // iterate over each segment
rate(v(x), cai(x))
/[ here put statements to plot
/I or save oinf and tau

}
} Wariable to graph
Enter Symbol name:
Usage cable.o_cagk{ 0.1}

This mechanism involves both'and C&", Show
so the list ofRANGEvariables displayed by
Plot what? has more entries than it did for cable. v(0.1)
thekd mechanism (compare Figs.7 and 6). ﬁ;(o?f)}
However,cai , cao, andeca will remain cai{0.1)
constant unless the section in which this :2:%31 ;
mechanism has been inserted also includes ica{0.1)
something that can affect calcium concentratic gk::rﬁzﬂ:gm )
(e.g. a pump or buffer). dami0.1)

em{0.1)
i_cap(0.1)
Figure 7

Example 6: extracellular potassium accumulation

Because mechanisms can generate (K9
transmembrane fluxes that are attributed to e

Frankenhaeuser- K,

specific ionic species by tHeSEIONX WRITEIX  Hodgkin space \
syntax, modeling the effects of restricted
diffusionis straightforward. Th&ext

mechanism described here emulates the

accumulation of potassium in the extracellular

space adjacent to squid axon (Fig.8). The

experiments of Frankenhaeuser and Hodgkin

(1956)indicated that satellite cells and other Figure 8

o Diffusion
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extracellular structures act as a diffusion barrier that prevents free communication between this
space and the bath. Therefore, when there is a large effluX i from the axon, e.g. during

the repolarizing phase of an action potential or in response to injected depolarizing cufrent, K
builds up in the “Frankenhaeuser-Hodgkin spa@eH space)This elevation of [K], shifts K

in a depolarized direction, which has two important consequences. First, it reduces the driving
force for K" efflux and causes a decline of the outwagdSecond, when the action potential
terminates or the injected depolarizing current is stopped, the persistent elevatiocanfdes a
slowly decaying depolarization or inward current. This depolarizing shift dissipates gradually as
[K™]o equilibrates with [K]path

: Extracellular potassium ion accumulation

NEURON {
SUFFIX kext
USEION k READ ik WRITE ko
GLOBAL kbath
RANGE fhspace, txfer

}

UNITS {

(mV) = (millivolt)

(mA) = (milliamp)

FARADAY = (faraday) (coulombs)
(molar) = (1/liter)

(mM) = (millimolar)

PARAMETER {
kbath = 10 (mM) : seawater (squid axon!)
fhspace = 300 (angstrom) : effective thickness of F-H space
txfer = 50 (ms) : tau for F-H space <-> bath exchange = 30-100

ASSIGNED {ik (mA/cm2)}
STATE {ko (mM)}

BREAKPOINT { SOLVE state METHOD cnexp }

DERIVATIVE state {
ko' = (1e8)*ik/(fhspace*FARADAY) + (kbath - ko)/txfer

Listing 6.kext.mod

The NEURONlock

A compartment may contain several mechanisms that have direct interactions with ionic
concentrations (e.g. diffusion, buffers, pumps). Therefore NEURON must be able to compute the
total currents and concentrations consistently. TREIONstatement sets up the necessary
“bookkeeping” by automatically creating a separate mechathiahkeeps track of four essential
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variables: the total outward current carried by an ion, the internal and external concentrations of
the ion, and its equilibrium potential. In this case the name of the iok’iarid the
automatically-created mechanism is calledién ” in the hoc interpreter. Thie _ion

mechanism has variablés, ki , ko, andek, which representl [K']i, [K']o, and K,

respectively. These do not have suffixes; furthermore, theRaK&GEvariables so they can have
different values in every segment of each section in which they exist. In other words, the K
current through Hodgkin-Huxley potassium channels near one end of the sedttionwould
becable.ik_hh(0.1) , but the total K current generated by all sources, including other ionic
conductances and pumps, woulddable.ik(0.1)

This mechanism computes [k from the outward potassium current, sREAG ik and
WRITEs ko. When a mechanisWRITEs a particular ionic concentration, this means that it sets
the value for that concentration at all locations in every section into which it has been inserted
This has an important consequence: in any given section, no ionic concentration should be
“written” by more than one mechanism.

The bath is assumed to be a large, well-stirred compartment that envelops the entire
“experimental preparation.” Therefokbath is aGLOBALvariable so that all sections that
contain thekext mechanism will have the same numeric value fol] & Since this would be
one of the controlled variables in an experiment, the valudath is specified by the user and
will remain constant during the simulation. The thickness of the F-H spdbspace , the time
constant for equilibration with the bathtider , and both ar®@ANGEvariables so they can vary
along the length of each section

Variable declaration blocks
The PARAMETERIock

The default value okbath is set to 10 mM, consistent with the composition of seawater
(Frankenhaeuser and Hodgkin 1956incekbath is GLOBAL. a single hoc statement can change
this to a new value that will affect all occurrences of kkgt mechanism, e.&bath_kext =
8 would change it to 8 mM everywhere.

The STATEDblock

lonic concentration is 8TATEof a mechanism only if that mechanism calculates the
concentration. This model computes, the potassium concentration in the F-H space, according
to the dynamics specified by an ordinary differential equation.

Equation definition blocks
The BREAKPOINTblock

This mechanism involves a single differential equation that tells the rate of chakgetbé
K* concentration in the F-H space. The choice of integration method in NMODL is based on the
recognition that the equation is linearka. The total K currentik might also vary during a
time step (see thBERIVATIVE block) if membrane potential, some Konductance, dto itself
is changing rapidly. In a simulation where such rapid changes were likely to occur, proper
modeling practice would lead one either to use NEURON with CVO@HEo use a fixed time
step that would be short compared to the rate of change.of
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TheINITIAL block

The onlySTATEInN this mechanism is the ionic concentratian, so this mechanism does not
have anNITIAL block. This is because the model translator for NEURON ignores default
values for ionic concentrationdny assignment to an ion concentration inldiTIAL  block
will result in an inconsistent initialization on return frdiimitialize() . Furthermore, in this
particular model it is likely to be too limiting to skb = kbath .

Instead, concentrations should be initialized in.Holsoosing the best way to do this depends
on the design and intended use of the model in which the mechanism has been embedded: is the
concentration supposed to start at the same value in all sections where the mechanism has been
inserted, or should it be nonuniform from the outset?

Take the case of a mechanism tWRITEs an ion concentratiorsuch a mechanism has an
associated global variable that can be used to initialize the concentration to the same value in
each section where the mechanism exists. These global variables have defaulovalagk
andca that are “reasonable” but probably incorrect for any specific preparation. The default
concentrations for ion names created by the user are 1 mM; these should be assigned correct
values in hoc. A subsequent callftoitialize() will use this to initialize the ionic
concentration.

The name of the global variabikeformed from the name of the ion that the mechanism uses
and the concentration thatMRITEs. For example, theext mechanism usdsandWRITEs ko,
so the corresponding global variabl&e® k_ion . The sequence of instructions

koO _k ion=10 // seawater, 4 x default value (2.5)
kiO_k_ion =4*54.4 |/ 4 x default value, preserves ek
finitialize(v_init) // v_init is the starting Vm

will setko to 10 mM andki to 217.6 mM in every segment that has keet mechanism.

What if one or more sections of the model are supposed to have different initial
concentrations? For these particular sectionsaestyle() functionwould be used to assert
that the global variable is not to be used to initialize the concentration for this particular ion. The
numeric arguments in the statement

dend ion_style("k_ion",3,2,1,1,0)

would have the following effects on tlkext mechanism in theend section (in sequence):
treatko as aSTATEvariable; treatk as anASSIGNEDvariable; on call tdinitialize() use
the Nernst equation to computk from the concentrations; computk from the concentrations
on every call tdadvance() ; donotusekoO _k ion orki0_k ion to setthe initial values of
ko andki . The proper initialization would now be to det andki explicitly for this section,

e.g.
koO_k ion =10 // all sections start with ko = 10 mM
dend {ko =5 ki=2*54.4} /I ...exceptdend
finitialize(v_init)

A complete discussion abn_style() , Its arguments, and its actions is contained in
NEURON's help system.

Revised 4/6/2000 Page 27



Hines and Carnevale: Expanding NEURON with NMODL

The DERIVATIVE block

At the core of this mechanism is a single differential equation that redfe$,/dt to the
sum of two terms. The first term describes the contributioi ofo [K*],, subject to the
assumption that the thickness F-H space is much smaller than the diameter of the section. The
unit conversion factoof 10° is required becaudaspace is given in Angstroms. The second
term describes the exchange oflletween the bath and the F-H space.

Usage

If this mechanism is psent in a section, the followinQANGEvariables will be accessible
through hoc: [K] inside the cell and within the F-H spade (andko); equilibrium potential and
total current for K €k andik ); thickness of the F-H space and the rate of equilibration between
it and the bathffispace_kext  andixfer_kext ). The bath [K] will also be available as the
global variablekbath_kext

General comments about kinetic schemes

Kinetic schemegrovide a high level framework that is perfectly suited for compact and
intuitively clear specification of models that involve discrete states in which “material” is
conservedThe basic notion in such mechanisms is that flow out of one state equals flow into
another Almost all models of membrane channels, chemical reactions, macroscopic Markov
processesand ionic diffusiorare elegantly expressed through kinetic schemes. It will be helpful
to review some fundamentals before proceeding to specific examples of mechanisms
implemented with kinetic schemes.

The unknowns in a kinetic scheme, which are usually concentrations of individual reactants,
are declared in thBTATEblock The user expresses the kinetic scheme with a notation that is
very similar to a list of simultaneous chemical reactiofise NMODL translator converts the
kinetic scheme into a family of ODEs whose unknowns areSthaTEs. Hence the simple

STATE{mc m}
KINETIC schemel {

~mc <->m (a(v), b(v))
}

is equivalent to

DERIVATIVE schemel {
mc' = -a(v)*mc + b(v)*m
m' = a(v)*mc - b(v)*m

The first character of a reaction statemisrthe tilde =", which is used to immediately
distinguish this kind of statement from other sequences of tokens that could be interpreted as an
expression. The expression to the left of the three character reaction indicatdrspecifies the
reactantsand the expression immediately to the right specifies the pradLivéstwo expressions
in parentheses specify the forward and reverse reaction(hetessthe rate functioregv) and
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b(v) ). After each reaction, the variabledlux andb_flux are assigned the values of the
forward and reverse fluxes respectively. These can be used in assignment statements such as

~ cai + pump <-> capump (k1,k2)
~ capump <-> pump + cao (k3,k4)
ica = (f_flux - b_flux)*2*Faraday/area

In this case, the forward flux is3*capump , the reverse flux i€4*pump*cao , and the positive-
outward current convention is consistent with the sign of the expressiarafofin the second
reaction, forward flux means positive ions move from the inside to the outside).

More complicated reaction sequences such as the wholly imaginary

KINETIC scheme2 {
~2A + B <->C (k1,k2)
~C+D<>A+2 B (k3,k4)
}

begin to show the clarity of expression and suggest the comparative ease of modification of the
kinetic representation over the equivalent but stoichiometrically confusing

DERIVATIVE scheme2 {
A' = -2*K1*AN2*B + 2*k2*C  + k3*C*D - k4*A*B"2
B'= -k1*An2*B + k2*C + 2*k3*C*D - 2*k4*A*B"2
C'= Kk1*A"2*B - k2*C -k3*C*D + k4*A*B"2
D'= -k3*C*D + k4*A*B"2

}

Clearly a statement such as

~ calmodulin + 3Ca <-> active (k1, k2)

would be easier to modify (e.g. so it requires combination with 4 calcium ions) than the relevant
term in the three differential equations for tR€ATES that this reaction affects. The kinetic
representation is easy to debug because it closely resembles familiar notations and is much closer
to the conceptualization of what is happening than the differential equations would be.

Another benefit of kinetic schemes is the simple polynomial nature of the flux terms, which
allows the translataio easily perform a great deal of preprocessing that makes implicit numerical
integration more efficient. Specifically, the nonzero elemégtsdy, (partial derivatives of

dy; /dt with respect toy; ) of the sparse matrix are calculated analytically in NMODL and

collected into a C function that is called by solvers to calculate the Jacdhiathermore, the
form of the reaction statements determines if the scheme is linear, obviating an iterative
computation of the solution. Voltage-sensitive rases allowed, but to guarantee numerical
stability the rate constants should not be functionSTATES. Thus writing the calmodulin
example as

~ calmodulin <-> active (k3*Ca"3, k2)
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will work but is potentially unstable i€ais aSTATEIn other simultaneous reactions in the same
modfile. Variable time stepnethods such as CVODE will compensate by redudingout this
will make the simulation run more slowly.

Kinetic scheme representations provide a great deal of levbeageise a single compact
expression is equivalent to a large amount of C code. One special advantage from the
programmer’s point of view is the fact that these expressions are independent of the solution
method. Different solution methods require different code, but the NMODL translator generates
this code automatically. This saves the user’s time and effort and ensures that all code expresses
the same mechanism. Another advantage is that the NMODL translator handles the task of
interfacing the mechanism to the remainder of the program. This is a tedious exercise that would
require the user to have special knowledge that is not relevant to neurophysiology and which may
change from version to version.

Special issues are raised by mechanisms that involve fluxes between compartments of
different size, or whose reactants have different units. The first of the following examples has
none of these complications, which are addressed later in models of diffusion and active
transport.

Example 7: kinetic scheme for a voltage-gated current

This illustrationof NMODL's facility for handling kinetic schemes implements a simple
three-state model for the conductance state transitions of a voltage-gated potassium current

Kf kf
C, mpi C, I&e o
by kb,

The closed states arg @nd G, the open state is O, and the rates of the forward and backward
state transitions are calculated in terms of the equilibrium constants and time constants of the
isolated reactions through the familiar expressitipe/) = kf, /kby and;(v) =1/(kf, +kh ). The

V) =k (dy -v)]

equilibrium constants; (v) are given by the Boltzmann factokg = dke(da- and

Ky = e (@™ \yhere the energies of stateg C,, and O are Oly(d; — V), andky(d, V)
respectively.

The typical sequence of analysis is to determine the condtauls k., andd; by fitting the
steady-state voltage clamp data, and then to find the voltage-sensitive transition time constants
r1(v) and1,(v) from the temporal properties of the clamp current at each voltage pulse level. In
this example the steady-state information has been incorporated in the NMODL code, and the
time constants are conveyed by tables (arrays) that are created within the interpreter.
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: Three state kinetic scheme for HH-like potassium channel
: Steady-state v-dependent state transitions have been fit
: Needs v-dependent time constants from tables created under hoc

NEURON {
SUFFIX k3st
USEION k READ ek WRITE ik
RANGE g, gbar

}
UNITS { (mV) = (millivolt) }

PARAMETER {
gbar=33 (millimho/cm2)
dl =-38 (mV)
k1 =0.151 (/mV)
d2 =-25 (mV)
k2 =0.044 (/mV)
}

ASSIGNED {
v (mV)
ek (mV)
g (millimho/cm2)
ik (milliamp/cmz2)
kfl (/ms)
kbl (/ms)
kf2 (/ms)
kb2 (/ms)

}
STATE{clc2o0}

BREAKPOINT {
SOLVE kin METHOD sparse
g = gbar*o
ik = g*(v - ek)*(1e-3)

INITIAL { SOLVE kin STEADYSTATE sparse }

KINETIC kin {
rates(v)
~cl<>c2 (kf1, kb1)
~c2<->0 (kf2, kb2)

CONSERVEcl+c2+0=1
}

FUNCTION_TABLE taul(v(mV)) (ms)
FUNCTION_TABLE tau2(v(mV)) (ms)
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PROCEDURE rates(v(millivolt)) {
LOCAL K1, K2
K1 = exp(k2*(d2 - v) - k1*(d1 - v))
kfl = K1/(taul(v)*(1+K1))
kbl = 1/(taul(v)*(1+K1))
K2 = exp(-k2*(d2 - v))
kf2 = K2/(tau2(v)*(1+K2))
kb2 = 1/(tau2(v)*(1+K2))

Listing 7.k3st.mod

The NEUROMIock

With one exception, thBEUROMIlock of this model is essentially the same as for the
delayed rectifier presented aboveExample 4: a voltage-gated currentThe difference is that,
even though this model contributes to the totalddrrentik , its own current is not available
separately (i.e. there will be rilo k3st  at the hoc level) becaude is not declared asRANGE
variable.

Variable declaration blocks
The STATEblock

The STATEs in this mechanism are the fractions of channels that are in closed states 1 or 2 or
in the open state. Since the total number of channels in all states is conserved, the sum of the
STATEs must be unity

cl+c2+0=1

This conservatiolaw means that thk3st mechanism really has only two independent state
variables a fact that underscores the difference betwegsnATEin NMODL and the concept of
a state variabldt also affects how NMODL sets up the equations that are to be solved, as we
will see in the discussion of th&NETIC block below.

Not all reactants or products need to®RATES. If the reactant is aASSIGNEDor
PARAMETERariable then a differential equation is not generated for it, and it is treated as
constant for the purposes of calculating the decl&®B&TES. Statements such as

PARAMETER {kbath (mM)}
STATE {ko (mM)}
KINETIC scheme3 {
~ko<->kba th(rr)
}
are translated to the single ODE equivalent

ko' = r*(kbath - ko)

i.e. ko tends exponentially to the steady state valukbath .
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Equation definition blocks
The BREAKPOINTblock

The recommended idiom for integrating a kinetic scheme is

BREAKPOINT {
SOLVE scheme METHOD sparse

}

which integrates th8 TATES in the scheme ordt step per call tdadvance() in NEURON.
Thesparse method is generally faster than computing the full Jacofatrix, though both use
Newton iterationgo advance th8 TATEs with a fully implicit method (first-order correct)
Additionally, thesparse method separates the Jacobian evaluation from the calculation of the
STATEderivatives, thus allowing variable time ste@thods, such as CVODE, to efficiently
compute only what is needed to advanceSmATEs. Non-implicit methodssuch as Runge-

Kutta or Euler should be avoided since kinetic schemes commonly have very wide ranging rate
constants that make these methods numerically unstable with reasdnabdps. In fact, it is

not unusual to specify equilibrium reactions such as

~ A <-> B (le6*sqrt(K), 1e6/sqrt(K))

which can only be solved by implicit methods.
TheINITIAL block

Initialization of a kinetic schemm its steady state values is accomplished with

INITIAL {
SOLVE scheme STEADYSTATE sparse
}

AppropriateCONSERVEtatementshould be part of the schenf®ee the following discussion of
theKINETIC block) so that the equivalent system of ODEs is linearly independent. It should be
kept in mind that source fluxes (constant for infinite time) have a strong effect on the steady
state. Finally, it is crucial to test the scheme in NEURON under conditions in which the correct
behavior is known.

The KINETIC block

The voltage-dependent rate constants are computed in the separate pratesijire . That
procedure computes the equilibrium constaitandK?2 from the constantsl, d1, k2, andd2,
whose empirically-determined default values are given irPtkRAMETERblock, and membrane
potentialv. The time constantsul andtau2 , however, are found from tables created under
hoc (se€The FUNCTION_TABLE below).

The other item of note in this block is tl@ONSERVEtatement. As mentioned above in
General comments about kinetic schemeshe fundamental idea is to systematically account
for conservation of materialWhen there is neither a source nor a sink readbo STATE, the
differential equations are not linearly independent when calculating steady dtatggpfoaches
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infinity). For example, irschemel above the steady state conditioh= mc' = 0 yields two

identical equations. Steady states can be approximated by integrating for several steps from any
initial condition with largedt , but roundoff error can be a problem if the Jacobian matrix is

nearly singular. To solve the equations while maintaining strict numerical conservation
throughout the simulation (no accumulation of roundoff error), the user is allowed to explicitly
specify conservation equations with tt®@NSERVEtatement. The conservation law for

schemel is expressed as

CONSERVEmMm+mc=1

The CONSERVEtatement does not add to the information content of a kinetic scheme and
should be considered only as a hint to the translator. The NM@dislator uses this algebraic
equation to replace the ODE for the I&StATEoN the left side of the equal sign. If one of the
STATEnames is an arrayhe conservation equation will contain an implicit sum over the array.
If the lastSTATEIs an array, then the ODE for the |&TATEarray element will be replaced by
the algebraic equation. The choice of Wh&PATEODE is replaced by the algebraic equation is
implementation-dependent and does not affect the solution (to within roundoff error). If a
CONSERMESTATEIS relative to a compartment size, then compartment size is implicitly taken
into account for th&8TATEs on the left hand side of tteONSERVEquation (see Example 8 for
discussion of th€ OMPARTMENTatement). The right hand side is merely an expression, in
which any necessary compartment sizes must be included explicitly.

Thus in a calciunpump model

k. k
Camt+Pume[|@1jD* Cae Pumpg[éﬁm* Cagyt + Pump
2 4

the pump is conserved and one could write

CONSERVE pump + pumpca = total_pump * pumparea

The FUNCTION_TABLE

As noted above, the steady-state clamp data define the voltage dependéh@ndK2, but
a complete description of the'KCurrent requires analysis of the temporal properties of the clamp
current to determine the rate factors at each of the command potentials. The result would be a list
or table of membrane potentials with associated time constants. One way of dealing with these
numeric values would be to fit them with a pair of approximating functions, but the tactic used in
this example is to leave them in tabular form for NMODEWYNCTION_TABLREo deal with.

This is done by placing the numeric values in threeVecor s, sayw_vec , taul_vec ,
andtau2_vec , where the first is the list of voltages and the other two, at corresponding indices,
give the time constants. Thegector s would be attached to ti@JNCTION_TABLE of this
model with the hoc commands

table_taul k3st(taul vec, v_vec)
table_tau2_k3st(tau2_vec, v_vec)
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Then whenevetaul(x) is called in the NMODL file, otaul_k3st(x) is called from hoc,
the interpolated value of the array is returned.

A useful feature oFUNCTION_TABLE is that prior to developing théector database, they
can be attached to a scalar value as in

table_taul_k3st(100)

effectively becoming constant functions. ABONCTION_TABLE can be declared with two
arguments and doubly dimensioned hoc arrays attached to them. The latter is useful, for example,
with voltage- and calcium-sensitive rates. In this case the table is linearly interpolated in both
dimensions.

Usage

Inserting this mechanism into a section makesIRATEScl k3st , c2_k3st , ando_k3st
available at the hoc level, as well as the conductapbas k3st andg_k3st .

Example 8: calcium diffusion with buffering

This mechanisnillustrates how to use kinetic schemes to model intracellulaf @igusion
and buffering. It differs from the prior example in several important aspectdisaot
conserved but instead enters as a consequence of the transmemBianer€at; diffusion
involves the exchange of &zbetween compartments of unequal size*‘@Gabuffered.
Only free C&" is assumed to be mobile, whereas bound@ad free buffer are stationary.
The C&" buffer concentration and rate constants are based on the bullfrog sympathetic ganglion
cell model described by Yamada et@989) For a thorough treatment of numeric solution of
the diffusion equations the reader is referred to Oran and BIBE&Y7)

Modeling diffusion with kinetic schemes

Diffusion is modeled as the exchange ofCa Nannuli =4
between adjacent compartments. For radial Ar = r/ (Nannuli - 1)
diffusion, the compartments are a series of =13
concentric shells around a cylindrical core, as
shown in Fig.9 foNannuli = 4. The index of the
outermost shell is 0 and the index of the core is
Nannuli —1. The outermost shell is half as thick
as the others so that [Eawill be second-order
correctwith respect to space at the surface of the
segment. Concentration is also second-order
correct midway through the thickness of the other
shells and at the center of the core. These depths are indicatetlibyFig.9. The radius of the
cylindrical core equals the thickness of the outermost shell, and the internsningli — 2
shells each have thickneAs= diam /2 (Nannuli - 1), wherediam is the diameter of the
segment.

Because segment diameter and the number of shells affedtrirasions of the shells, they
also affect the time course of diffusion. The flux between adjacent sh&l[€&"] Dca A / Ar,

Figure 9
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whereA[Ca’] is the concentration difference between the shell centeygishe diffusion
coefficient for C&", A is the area of the boundary between shells, mnid the distance between
their centers. This suggests that diffusion can be described by the basic kinetic scheme

FROM i = 0 TO Nannuli-2 {
~ cali] <-> ca[i+1] (fli+1], f[i+1])
}

whereNannuli is the number of shellga[i] is the concentration midway through the

thickness of shell (except forca[0] which is the concentration at the outer surface of shell 0),

and the rate constanfisr1]  equal xo Ai+1 / Ar. For each adjacent pair of shells, both;Aand

Ar are directly proportional to segment diameter. Therefore the ratip$ A depend only on

shell index, i.e. once they have been computed for one segment, they can be used for all segments
that have the same number of radial compartments regardless of segment diameter.

As it stands, this kinetic scheme is dimensionally incorrect. Dimensional consiseEnages
that the product o8 TATEs and rates be in units 8ITATEper time. In the present example the
STATEsca[] are intensive variablggoncentration, or mass/volume), so the produdfof and
ca[] must be in units of concentration per time. However, the rates have units of volume per
time, so this product is in units of mass per time, i.e. a flux that signifies the rate at wHitisCa
entering or leaving a compartment. This flux is the time derivative of an extensive variable

This disparity is corrected by specifyisJATEvolumes with theCOMPARTMENTatement,
asin

COMPARTMEN#Wolume { statel state2 -

where theSTATES named in the braces have the same compartment volume givenvajutine
expression after theOMPARTMENEYword. The volume merely multiplies tdSTATHdt left
hand side of the equivalent differential equations, converting it to an extensive quantity and
making it consistent with flux terms in units of absolute quantity per time.

The volume of each cylindrical shell depends on its index and the total number of shells, and
is proportional to the square of segment diameter. Consequently the volumes can be computed
once for a segment with unit diameter and then scaletidmy*2 for use in each segment that
has the samBannuli

The equations that describe the radial movement 6f & independent of segment length.
Therefore it is convenient to express shell volumes and surface areas in unit$ of pm
(volumel/length) and pum (area/length), respectively.

: Calcium ion accumulation with radial and longitudinal diffusion

NEURON {
SUFFIX cadifus
USEION ca READ cai, ica WRITE cai
GLOBAL vrat, TotalBuffer : vra t must be GLOBAL--see INITIAL block
: however TotalBuffer may be RANGE

}
DEFINE Nannuli 4
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UNITS {

(molar) = (1/liter)

(mM) = (millimolar)

(um) = (micron)

(mA) = (milliamp)

FARADAY = (faraday) (10000 coulomb)
} Pl =(pi) (1)

PARAMETER {
DCa =0.6 (um2/ms)
k1buf =100 (/mM-ms) : Yamada et al. 1989
k2buf = 0.1 (/ms)
TotalBuffer = 0.003 (mM)

}

ASSIGNED {
diam  (um)
ica (mA/cm2)
cai  (mM)
vrat[Nannuli] : numeric value of vrat[i] equals the volume
: of annulus i of a 1um diameter cylinder
: multiply by diam”2 to get volume per um length
Kd (/mM)
BO (mM)
}

STATE {
: ca[0] is equivalent to cai
: ca[] are very small, so specify absolute tolerance
ca[Nannuli] (mM) <1le-10>
CaBuffer[Nannuli] (mM)
Buffer[Nannuli] (mM)

}
BREAKPOINT { SOLVE state METHOD sparse }

LOCAL factors_done

INITIAL {
if (factors_done == 0) { : flag becomes 1 in the first segment
factors_done =1 : all subsequent segments will have
factors() . vrat = 0 unless vrat is GLOBAL
}

Kd = k1buf/k2buf
BO = TotalBuffer/(1 + Kd*cai)

FROM i=0 TO Nannuli-1 {
cafi] = cai
Buffer[i] = BO
CaBuffer[i] = TotalBuffer - BO
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LOCAL frat[Nannuli] : scales the rate constants for model geometry

PROCEDURE factors() {
LOCAL T, dr2
r=1/2 : starts at edge (half diam)
dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus,
‘ha If thickness of all other annuli
vrat[0] =0
frat[0] = 2*r
FROM i=0 TO Nannuli-2 {
vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2 : interior half
r=r-dr2
frat[i+1] = 2*PI*r/(2*dr2) : outer radius of annulus
: div by distance between centers
r=r-dr2
vrat[i+1] = PI*(r+dr2/2)*2*dr2 : outer half of annulus
}
}

LOCAL dsq, dsqvol : can't define local variable in KINETIC block
. oruse in COMPARTMENT statement

KINETIC state {
COMPARTMENT i, di am*diam*vrat[i] {ca CaBuffer Buffer}
LONGITUDINAL_DIFFUSION i, DCa*diam*diam*vrat[i] {ca}
~ ca[0] << (-ica*PI*diam/(2*FARADAY)) :icais Ca efflux
FROM i=0 TO Nannuli-2 {
~ cali] <->ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])

dsq = diam*diam
FROM i=0 TO Nannuli-1 {
dsqvol = dsg*vrat][i]
~ ca[i] + Buffer[i] <-> CaBuffer[i] (kl1buf*dsgvol, k2buf*dsqvol)

cai = ca[0]

Listing 8. cadif.mod

The NEUROMIock

This modelREAB cai to initialize the buffer (se@heINITIAL block), and itWRITES cai
because it computes [€&in the outermost shell during a simulation run. It alRBABica |
which is the C&" influx into the outermost shell.

There arewo GLOBAIs. One is the total buffer concentratidntalBuffer  , which is
assumed to be uniform throughout the cell. The otheras , an array whose elements will be
the numeric values of the (volume/length) of the shells for a segment with unit diameter. These
values are computed BBROCEDURE factors() near the end of Listing 8. As noted above, a
segment with diameteliam has shells with volume/length equald@am”~2 * vrat[i]
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Because each instance of this mechanism has the same number of shells, thetfiiime can

be used to find the shell volumes at each location in the model cell where the mechanism exists.
The DEFINE statement sets the number of shells to 4. Many of the variables in this model are

arrays, and NMODL arrayare not dynamic. Instead, their lengths must be specified when the

NMODL code is translated to C.

The UNITS block

Faraday’s constant is scaled here in order to avoid hawvingtude this scale fact@s a
separate term in the statement in KIRETIC block where transmembrane currésat is
reckoned as the efflux of Gafrom the outermost shell. Since each statementUNE'S block
must include an explicit assertion of the units that are involved, the statement that assigns the
value 3.141 . . . t®! includes g1) which signifies that this is a dimensionless constant

Variable declaration blocks
The ASSIGNEDblock

The variablevrat is declared to be an array witannuli  elements. As with C, array
indices run from O ttNannuli — 1. The variable&d andBO are the dissociation constant for the
buffer and the initial value of free buffer, which are computed inltH&IAL block (see below).
Both the total buffer and the initial concentration of€are assumed to be uniform throughout
all shells, so a scalar is used #80.

The STATEblock

In addition to diffusion, this mechanism involves“huffering that follows the reaction

buf

Ca+ Buffer J [T Cae Buffer
ngf

This takes place in each of the shellscagBuffer andCaBuffer are all arrays.

The declaration ofa]] uses the syntagtate(units) <absolute_toleranceto specify the
absolute tolerance that will be employed by CVODE. The solver attempts to use a step size for
which the local errog; for eachstate satisfies at least one of these two inequalities:

& <relative_tolerance [statg]
or
& < absolute_tolerance

The default values for these tolerances are 0 and féspectively, so only 8TATEthat is

extremely small (such as intracellular fC needs to have its absolute tolerance specified. As

an alternative to specifying a smaller absolute tolerascafg, could have been defined in terms

of units such as micromolar or nanomolar, which would have increased the numeric value of
these variables. This would necessitate a change of scale factors in many of the statements that
involve ca[] . For example, the assignment t@i (which is required to be in mM) would be

cai = (1e-6)*cal0]
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LOCALvariables declared outside of equation definition blocks

A LOCALvariablethat is declared outside of an equation definition block is equivalent to a
static variable in C. That is, it is visible throughout the mechanism (but not at the hoc level), it
retains its value, and it is shared between all instances of a given mechanism. The initial value of
such a variablés 0.

This particular mechanism employs four variables of this tfgusors_done | frat]]
dsq, anddsqvol . The meaning of each of these is discussed below.

Equation definition blocks
The INITIAL block

Initialization of this mechanism is a two step process. The first step is tBROEEDURE
factors() (see below) to set up the geometry of the model by computing the scale factor arrays
vrat[] andfrat[] that are applied to the shell volumes and rate constants. This only has to be
done once because the same scale factors are used for all segments that have the same number of
shells, as noted above Modeling diffusion with kinetic schemes The variable
factors_done is aflag that indicates whetherat]] andfrat]]  have been computed. The
NMODL keyword LOCAL means that the valuefattors_done  will be the same in all
instances of this mechanism, but that it will not be visible at the hoc.l@Vyereforefactors()
will be executed only once, regardless of how many segments contaiadihes mechanism.

The second step is to initialize the mechanisBIIAATEs. This mechanism assumes that the
total buffer concentratioand the initial free calcium concentration are uniform in all shells, and
that buffering has reached its steady-state. Therefore the initial concentration of free buffer is
computed from the initial [C&] and the buffer’s dissociation constant. It should be noted that
the value ottai will be set tocai0_ca_ion  just prior to executing the code in tiheITIAL
block (see als@he INITIAL blockin Example 6: extracellular potassium accumulatior).

It may be instructive to compare this initialization strategy with the approach that was used
for the voltage-gated current of Listing k36t.mod ). That previous example initialized the
STATEs through numeric solution of a kinetic scheme, s&INETIC block required a
CONSERVEtatement to ensure that the equivalent system of ODEs would be linearly
independent. Here, however, tAREATES are initialized by explicit algebraic assignment, so no
CONSERVEtatement is necessary

PROCEDURE factors()

The arraysrat]] andfrat]] , which are used to scale the shell volumes and rate constants
to ensure consistency of units, are computed here. The elememnig{jof are the volumes of a
set of concentric cylindrical shells, whose total volume equals the volume of a cylinder with
diameter and length of 1 um. These values are computed in two stagesHyQMz=0 TO
Nannuli-2 { } loop. The first stage finds the volume of the outer half and the second finds the
volume of the inner half of the shell.

Thefrat array is declared to HEOCALbecause it applies to all segments that have the
cadifus  mechanism, but it is unlikely to be of interest to the user and therefore does not need to
be visible at the hoc level. This contrasts witht , which is declared aSLOBALwithin the
NEUROMIlock so that the user can see its values. The vdtagis-1] equal A1/ Ar, where

Revised 4/6/2000 Page 40



Hines and Carnevale: Expanding NEURON with NMODL

Ai+1is the surface area between shelBndi+1 for 0<i < Nannuli , andAr is the distance
between shell centers (radiusNafnuli  —1)).

The KINETIC block

The first staterant in this block specifies the shell volumes for BIRATES ca, CaBuffer
andBuffer . As noted above iModeling diffusion with kinetic schemes these volumes equal
the elements ofrat]] multiplied by the square of the segment diameter. Because this
mechanism involves many compartments whose relative volumes are specified by the elements
of an array, this example takes care of all compartmeittsa single statement of the form

COMPARTMENINdex voluméindeq{ statel state2..}.

where theSTATES that are diffusing are listed inside the braces.

Next in this block is & ONGITUDINAL_DIFFUSIONsstatement, which specifies that this
mechanism includes nonlocal diffusion, i.e. longitudinal diffusion along a section and into
connecting sections. The syntax for SCEHAATES is

LONGITUDINAL_DIFFUSION flux_expr{ statel state2..}.

whereflux_expris the product of the diffusion constant and the cross-sectional area between
adjacent compartments. Units of thex_exprmust be (microfims), i.e. the diffusion constant

has units of (microfims) and the cross-sectional area has units of (migréor cylindrical shell
compartments, the cross-sectional area is just the volume per unit length. If the states are arrays
then all elements are assumed to diffuse between corresponding volumes in adjacent segments
and the iteration variable must be specified as in

LONGITUDINAL_DIFFUSION index flux_expfindeX { statel state2 . ..

A COMPARTMENTatement is also required for the diffusi®gATEs and the units must be
(microrf), i.e. (microri/micron).

The compactness €fONGITUDINAL_DIFFUSION specification contrasts nicely with the
great deal of trouble imposed on the computational methods used to solve the equations. The
standard fixed time step implicit method, historically the default method used by NEURON, can
no longer find steady states with extremely large (e.gni€) steps since not every Jacobian
element for both flux and current with respect to voltage and concentration is presently
accurately computed. The CVOD&ethod works well for these problems since it does not allow
dt to grow beyond the point of numerical instability. In the presence of these occasional
limitations on numerical efficiency, it is satisfying that, as methods evolve to handle these
problems more robustly, the specification of the models does not change.

The third statement in this block is equivalent to a differential equation that describes the
contribution of transmembrane calcium current t6'Gathe outermost shell. The< signifies
an explicit flux. Because of theOMPARTMENMNTatement, the left hand side of the differential
equation is not[Ca?*]¢/dt butd(total C&* in the outermost shelbjt. This is consistent with the
right hand side of the equation, which is in units of mass per time.
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Next is the kinetic scheme for radial diffusiohhe rate constants in this scheme equal the
product ofDCaand the factofrat]]  for reasons that were explained abové/dadeling
diffusion with kinetic schemes

It may not be immediatelylear why the rate constants in the kinetic scheme féf Ca
buffering are scaled by the compartment voluiegvol ; however, the reason will become
obvious when one recalls that tt® MPARTMENTatement at the beginning of tRENETIC
block has converted the units of tiH8TATHdt on the left hand side of the equivalent differential
equations from concentration per time to mass per time. If the reaction rate constants were left
unchanged, the right hand side of the differential equations for buffering would have units of
concentration per time, which is inconsistent. Multiplying the rate constants by compartment
volume removes this inconsistency by changing the units of the right hand side to mass per time

The last statement in tHANETIC block updates the value o&i fromca[0] . Thisis
necessary because intracellulari# known elsewhere in NEURON asi , e.g. to other
mechanisms and to NEURON's internal routine that compuggs E

When developing a new@echanism or making substantive changes to an existing
mechanism, it is generally advisable to check for consistency of unitsntilunit . Given the
dimensional complexity of this model, such testing is absolutely indispensable.

Usage

If this mechanism is inserted in a section, the concentrations Bfa@a the free and bound
buffer in all compartments will be available through hocascadifus[]

Buffer_cadifus|] , andCaBuffer_cadifus|] . TheseSTATEs will also be available for
plotting and analysis through the GUI.

The PARAMETERDCa klbuf , k2buf , andTotalBuffer  will also be available for
inspection and modification through both the graphical interface and hoc statements (with the
_cadifus  suffix). Al PARAMETERareGLOBAIs by defaulti.e. they will have the same values
in each location where theadifus mechanism has been inserted. Therefore in a sense it is
gratuitous to declare in tieEUROMIock thatTotalBuffer ~ is GLOBAL However, this
declaration does serve the purpose of underscoring the nature of this important variable which is
likely to be changed by the user.

In some cases it might be useful for one or more offABAMETERt0 beRANGE/ariables.

For exampleTotalBuffer ~ and everDCaor the buffer rate constants might not be uniform
throughout the cell. To maKeotalBuffer =~ andDCaRANGE/ariables only requires replacing
the line

GLOBAL vrat, TotalBuffer
in the NEUROMIock with

GLOBAL vrat
RANGE TotalBuffer, DCa

TheGLOBALvolume factorarat[]  are available through hoc for inspection, but it is

inadvisable to change their values because they would likely be inconsistent witit[the
values and thereby cause errors in the simulation.
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All occurrences of this mechanism will have the same number of shells, regardless of the
physical diameter of the segments in which the mechanism has been inserted. With
Nannuli =4, the thickness of the outermost shell willd& pm in segments witbdiam <
6 um. If this spatial resolution is inadequate,if the model has segments with larger diameters,
thenNannuli may have to be increased. NMODL does not have dynamic as@ays order to
change the number of shells one must recompile the mechanism after assigning a new value to
Nannuli by editing the NMODL source code.

Example 9: a calcium pump

This mechanisnmvolves a calcium pump that is based on the reaction scheme outlined in the
description of th&KINETIC block of Example 7: kinetic scheme for a voltage-gated current
It is a direct extension of the model of calcium diffusion with bufferingedample 8: calcium
diffusion with buffering , the principal difference being that a calcium pump is present in the
cell membrane. The following discussion focuses on the requisite changes in Listing 8, and the
operation and use of the resulting new mechanism. For all other details the reader should refer to
Example8.

The NEUROMIock

Changes in thelEURONIock are marked ibold. The first nontrivial difference from the
prior example is that this mechaniSREABR the value otao, which is used in the pump reaction
scheme.

NEURON {
SUFFIX cdp
USEION ca READ cao, cai,ica WRITE cai, ica
RANGE ica_pmp
GLOBAL vrat, TotalBuffer, TotalPump
}

The mechanisRITEs a pump currerthat is attributed tica so that its transmembrane
C&” flux will be factored into NEURON's calculations of [€3;. This current, which is a
RANGEvariable known ag&a_pmp_cdp to the hoc interpreter, constitutes a net movement of
positive charge across the cell membrane, and it follows the usual sign convention (outward
current is “positive”). The pump current has a direct effect on membrane potential, which,
because of the rapid activation of the pump, is manifest by a distinct delay of the spike peak and
a slight increase of the postspike hyperpolarization. This mechanism could be made electrically
“silent” by having itWRITEan equal but oppositsONSPECIFICcurrent or perhaps a current
that involves some other ionic species, e.g",Md, or CI".

The variableTotalPump is the total density of pump sites on the cell membrane, whether
free or occupied by G4 Making it GLOBALmeans that it is user adjustable, and that the pump is
assumed to have uniform density wherever the mechanism has been inserted. If local variation is
required, this should beRANGEvariable.
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The UNITS block

This mechanism includes the statem@mal) = (1) because the density of pump sites will
be specified in units ofmol/cm2) . The termmole cannot be used here because it is already
defined in the units databaas 6.022169- 8

Variable declaration blocks
The PARAMETERIock

Five new statements have been added because this mechanism uses the rate ebthants
pump reactions and the density of pump sites on the cell membrane.

ki=1 (/mM-ms)

k2 =0.005 (/ms)

k3=1 (/ms)

k4 =0.005 (/mM-ms)

: to eliminate pump, set TotalPump to 0 in hoc
TotalPump = 1e-14 (mol/cm2)

These particular rate constant values were chosen to satisfy two criteria: the pump influx and
efflux should be equal at [¢§ = 50 nM, and the rate of transport should be slow enough to

allow a slight delay in accelerated transport following an action potential that included a voltage-
gated C4' current. The densityotalPump is sufficient for the pump to have a marked damping
effect on [C&"]; transients; lower values will reduce the ability of the pump to regulatéTCa

The ASSIGNEDblock

These three additions have been made.

cao (mM)
ica_pmp (MmA/cm2)
parea (um)

This mechanism makes use of f(Ja as a constant. The pump current and the surface area over
which the pump is distributed are also clearly necessary.

The CONSTANT block

Consistency of units requirexplicit mention of an extracellular volume in the kinetic
scheme for the pump.

CONSTANT { volo = 1e10 (um2)}

The value used here is equivalent to 1 liter of extracellular space per micron length of the cell,
but the actual value is irrelevant to this mechanism beceasevill be treated as a constant.

Since the value ofolo is not important for this mechanism, there is no need for it to be
accessible through hoc commands or the GUI so it is FRERAMETERON the other hand, there

is a sense in which it is an integral part of the pump mechanism, which implies that it would not
be appropriate to makelo be aLOCALvariablesinceLOCALsare intended for temporary
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storage of “throwaway” values. Finally, the valuevofo would never be changed in the course
of a simulation. Thereforeolo is declared in £ ONSTANDlock

The STATEDblock

The densities of pump sites that are free or have bouAt @spectively, are represented by
the two NewSTATES

pump (mol/cm2)
pumpca (mol/cm2)

Equation definition blocks
The BREAKPOINTblock

This block has one additional statement

BREAKPOINT {
SOLVE state METHOD sparse
ica=ica_pmp

}

The assignmerita=ica_pmp is needed to ensure that the pump current is reckoned in
NEURON'’s calculation of [C&];.

TheINITIAL block
The statement

parea = Pl*diam

must be included to specify the area per unit length over which the pump is distributed.
If it is correct to assume that [E3; has been equal t@i0_ca_jon  (default = 50 nM) for a
long time, the initial level®f pump andpumpca can be set by using the steady-state formula

pump = TotalPump/(1 + (cai*k1/k2))
pumpca = TotalPump - pump

An alternative to this style of initialization would be to place

ica=0
SOLVE state STEADYSTATE sparse

at the end of théNITIAL block, where théca=0 statement is needed because the kinetic
scheme interprets transmembrané’@arrents as a source of €dlux. This idiom can be

particularly convenient for mechanisms whose steady state solutions are difficult or impossible to
express in analytical form. As noted in the discussion offH€IAL block of the previous

example Example 8: calcium diffusion with buffering), this would require adding a
CONSERVEtatement to th&INETIC block to insure that the equations that describe the free and
bound buffer are independent.
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Both of these initializations make the explicit assumption that the n€tcarent generated
by other sources equals 0, so the net pump current following initialization will also be 0. If this
assumption is incorrect, as is almost certainly the case if one or more voltage-g&tedr@mts
are included in the model, then [€% will start to change immediately when a simulation is
started. Most often this will not be what is desired. The proper initialization of a model that
contains mechanisms with complex interactions may involve performing an “initialization run”
and usingSaveState objects as described in the discussion of tNeTIAL  block of Example
4: a voltage-gated current

The STATEblock

Changes in this block are markeddold. The newCOMPARTMENTatements and the scale
factor(1el0) are required for dimensional consistency in the pump scheme.

KINETIC state {
COMPARTMENT i, diam*diam*vrat[i] {ca CaBuffer Buffer}
COMPARTMENT (1e10)*parea {pump pumpca}
COMPARTMENT volo {cao}
LONGITUDINAL_DIFFUSION DCa {ca}

pump
~ca[0] + pump <-> pumpca (k1l*parea*(1el0), k2*parea*(1e10))
~pumpca <->pump + cao (k3*parea*(1el0), k4*parea*(1el0))
CONSERVE pump + pumpca = TotalPump * parea * (1e10)
ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea

: all currents except pump
~ ca[0] << (-(ica -ica_pmp )*Pl*diam/(2*FARADAY))
FROM i=0 TO Nannuli-2 {

~ cali] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])

dsq = diam*diam
FROM i=0 TO Nannuli-1 {
dsqvol = dsg*vrat][i]
~ ca[i] + Buffer[i] <-> CaBuffer[i] (k1lbuf*dsqgvol, k2buf*dsqvol)

cai = ca[0]

The pump reaction statements implement the scheme outlined in the description of the
KINETIC block of Example 7: kinetic scheme for a voltage-gated currentAlso as described
in that section, th€ ONSERVEtatemenensures strict numerical conservation, which is helpful
for convergence and accuracy.

In the steady state, the net forward flux in the first and second reactions must be equal. Even
during physiologically-relevant transients, these fluxes track each other effectively
instantaneously. Therefore the transmembrarfé fix generated by the pump is taken to be the
net forward flux in the second reaction. This mechanisRITEsica in order to affect [C&];.

The total transmembrane €dlux is the sum of the pump flux and the flux from all other
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sources. Thus to make sure tiwt_pmp is not counted twice, it is subtracted from totafCa
currentica in the expression that relatesCaurrent to C4' flux.

Usage

The STATEs andPARAMETERthat are available through hoc and the GUI are directly
analogous to those of tladifus mechanism, but they will have the suffiedp rather than
_cadifus . The additional pump variablggamp_cdp, pumpca_cdp , ica_pmp_cdp , and
TotalPump_cdp will also be available and are subject to similar concerns and constraints as
their counterparts in the diffusion reactions (&sagein Example 7: kinetic scheme for a
voltage-gated curren).

Models with discontinuities
Discontinuities in PARAMETER

In the past, abrupt changesPARAMETERandASSIGNEDvariables such as the sudden
change in current injection during a current pulse, have been implicitly assumed to take place on
a time step boundaryhis is inadequate with variable time steyethods because it is unlikely
that a time step boundary will correspond to the onset and offset of the pulse. Worse, the time
step may be longer than the pulse itself, which may thus be entirely ignored.

For these reasons, a model description must explicitly notify NEURON, viat tkime()
function, of the times at which any discontinuities occur. The statemetirhe( event_timg
guarantees that, during simulation with a variable time step methodadgances past
event_timethe integrator will reduce the step size so that it completessagvent_time-¢,
whereg ~ 10° ms. The next step resets the integrator to first order, thereby discarding any
previous solution history, and immediately returns after computing atlyjyelt att =

event_timer €. This is how the built-in current clamp modélamp notifies NEURON of the
time of onset of the pulse and its offset (seeBREAKPOINTblock of Example 3: an
intracellular stimulating electrode). Note thatat_time()  returns a value of 1 (“true”) only
during the “infinitesimal” step that ends at= event_timer €; otherwise it returns 0.

During a variable time stegimulation, a missingt_time()  call may cause one of two
symptoms. If PARAMETERhanges but returns to its original value within the same interval, the
pulse may be entirely missed. More often a single discontinuity will take place within a time step
interval, in which case what seems like a binary search will start for the location of the
discontinuity in order to satisfy the error tolerance on the step; this, of course, is very inefficient.

Time dependerPARAMETERhanges at the hoc interpreter level are highly discouraged
because they cannot currently be properly computed in the context of variable time steps. For
instance, with fixed time stepswas convenient to changlARAMETERprior tofadvance()
calls, asin

proc advance() {

IClamp[0].amp = imax*sin(w*t)
fadvance()
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With variable time stepnethods, all time-dependent changes must be described explicitly in a
model, in this case with

BREAKPOINT {i = imax*sin(w*t) }

A future version of NEURON may provide a facility to specify time dependent and
discontinuou®®ARAMETERhanges safely at the hoc level in the context of variable time step
methods.

Discontinuities in STATE

Some kinds of synaptic modgisocess an evemss a discontinuity in one or more of their
STATEvariables For example, a synapse whose conductance follows the time course of an alpha
function (for more detail about the alpha function itself see R&V7)and Jack et a[1983)
can be implemented as a kinetic scheme in the two state model

KINETIC state {
~a<->g(k,0)
} ~g->(Kk)

where a discrete synaptic event is handled as an abrupt increg®aTH#a. This formulation
has the attractive property that it can handle multiple streams of events with different weights, so
thatg will be the sum of the individual alpha functions with their appropriate onsets.
However, because of the special nature of states in variable tim®BtEsolvers, it is
necessary not only to notify NEURON about the time of the discontinuity with the
at_time(onset) call, but also to notify NEURON about any discontinuitie SiPATES. If
onset is the time of the synaptic event agohax is the desired maximum conductance change,
this would be accomplished by includingtate _discontinuity() call in theBREAKPOINT
block as follows:

BREAKPOINT {
if (at_time(onset)) {
: scale factor exp(1) = 2.718... ensures
: that peak conductance will be gmax
state_discontinuity(a, a + gmax*exp(1))

}
SOLVE state METHOD sparse
i=g*(v-e)

The first argument tetate_discontinuity() will be assigned the value of its second
argument jusbncefor any time step. This is important, since for several integration methods
BREAKPOINTassignment statements are often executed twice to calculadédiagerms of the
Jacobiarmmatrix.

Although this synaptic model works well with deterministic stimulus trains, it is difficult for
the user to supply the administrative hoc code for managingrtéet andgmax variables to
take advantage of the promise of “multiple streams of events with different weights.” The most
important problem is how to save events that have significant delay between their generation and
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their handling at timenset . As is, an event can be passed to this model by assigning values to
onset andgmax only after the previous onset event has been handled.

Discussion of the details of how NEURON now treats streams of synaptic events with
arbitrary delays and weights is beyond the scope of this paper. Let it suffice that from the local
view of the postsynaptic model, the state discontinuity should no longer be handled in the
BREAKPOINTblock, and the above synaptic model is more properly written in the form

BREAKPOINT {
SOLVE state METHOD sparse
i=g*(v-e)

}

NET_RECEIVE(weight (microsiemens)) {
state_discontinuity(a, a + weight*exp(1))
}

in which event distribution is handled internafhpm a specification of network connectivity (see
next section).

General comments about synaptic models

The examples so far have been of mechanisms that are “local” in the sense that an instance of
a mechanism at a particular location on the cell depends oryfames andPARAMETERof the
modelat that location Of course they normally depend on voltage and ionic variables as well,
but these also ara that locationand automatically available to the model. Synaptic modals
an essential distinguishing characteristic that sets them apart: in order to properly compute their
contribution to membrane current at the postsynaptic site, they require information from another
place, e.g. presynaptic voltage. Models that cort@NGITUDINAL_DIFFUSIONare perhaps
also an exception, but their dependence on adjacent compartment ion concentration is handled
automatically by the translator

In the past, model descriptions could only BSNTERvariableso obtain their presynaptic
information. APOINTERiIn NMODL holds a reference to another variable; the specific reference
is defined by a hoc statemeguch as

setpointer postcell.synapse.vpre, precell.axon.v(1)

in whichvpre is aPOINTER declared in the indicateelOINT_PROCESSynapse instance,

which references the value of a specific membrane voltage, in this case at the distal end of the
presynaptic axon. Gap junctions ephapticsynapses can be handled by a pair of
POINT_PROCESSs on the two sides of the junction that point to each other’s voltage, as in

sectionl gapl = new Gap(x1)
section2 gap2 = new Gap(x2)
setpointer gapl.vpre, section2.v(x2)
setpointer gap2.vpre, sectionl.v(x1)
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This kind of detailed piecing together of individual components is acceptable for models with
only a few synapses, but larger network modhelge required considerable administrative effort
from users to 1) create mechanisms that handle synaptic delay, 2) exploit very great simulation
efficiencies available with simplified models of synapses, and 3) maintain information about the
connectivity of the network.

The experience of NEURON users — especially Alain Destexhe and William Lytton — in
creating special models and procedures for managing network simulations has been incorporated
in a new built-in network connectioMétCon ) class whose instances manage the delivery of
presynaptic threshold events to postsynap@NT_PROCESSs. It is very important to note that
theNetCon class works for all NEURON integrators, including a local variable time steghod
in which each cell is integrated with a time step appropriate to the state changes occurring in that
cell. With this event delivery systermodel descriptions of synapses never need to queue events,
and they do not have to make heroic efforts to work properly with variable time step methods.
These features offer enormous convenience to the user.

NetCon connects a presynaptic variable such as voltage to a synapse with arbitrary
(individually specified on a peMetCon instance) delay and weight the presynaptic variable
passes threshold at tinea speciaNET_RECEIVEproceduran the postsynaptic
POINT_PROCESSs called at tima + delay . The only constraint odelay is that it be
nonnegative. Events always arrive at the postsynaptic object at the intelasal after the time
they were generated, and there is no loss of events under any circumstances.

This new class also reduces the computational burden of network simulations, because the
event delivery system fodetCon objects supports unlimited fan-in and fan-out (convergence
and divergence). That is, maNgtCon objects can be connected to the same postsynaptic
POINT_PROCES$%fan-in). This yields large efficiency improvements because a single set of
equations for synaptic conductance change can be shared by many streams of inputs (one input
stream per connectingetCon instance). Likewise, manyetCon objects can be connected to
the same presynaptic variable (fan-out), thus providing additional efficiency improvement since
the presynaptic variable is checked only once per time step and, when it crosses threshold in the
positive direction, events are generated for each connagét@pn object. The next example
shows how aNetCon object might be used to establish the connection between two model
neurons.

Example 10: synapse with exponential decay

The simplest useful synapse consists of an abrupt change in conductance, triggered by arrival
of an event, which then decays with a single time constetimagine not only that the
conductance summates when events arrive from different places, but that a single stream of
events will also summate. The following model handles both these situations by defining a single
conductance state g which is governed by a differential equation with the solution

gt) = g(to)e(t_t‘))/r whereg(tp) is the conductance at the time of the most recent event.
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: expsyn.mod
NEURON {
POINT_PROCESS ExpSyn
RANGE tau, e, i
NONSPECIFIC_CURRENT i
}
PARAMETER {
tau=0.1 (ms)
e =0 (millivolt)
}
ASSIGNED {
v (millivolt)
i (nanoamp)
}

STATE { g (microsiemens) }
INITIAL{g=0}

BREAKPOINT {
SOLVE state METHOD cnexp

i=g*(v-e)

DERIVATIVE state { g' = -g/tau }

NET_RECEIVE(weight (microsiemens)) {
state_discontinuity(g, g + weight)
}

Listing 9.expsyn.mod

The NET_RECEIVEblock

The new feature in this model is thET_RECEIVEblock, which is called by thé&letCon
event delivery systenvhen an event arrives at this postsynaptic point process. In this case the
value of the weight is specified by the particukatCon object delivering the event, and this
value increments the conductance state.

As noted above iDiscontinuities in STATES, state_discontinuity() must be called if
discontinuousSTATEchanges are to work properly with the variable time stephods. The first
argument obtate_discontinuity/() is interpreted as a reference to 81IPATE and the
second argument is an expression for its new value. If the variable to be changed $rAd0Ea
variable, then it is safe to specify its new value with an ordinary assignment stai@eent
Example 12: Use-dependent synaptic plasticitipelow). Just before entry tET_RECEIVE
with an event to be delivered at timeall STATEs, v, and values assigned in tBREAKPOINT
block are consistent at time
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Usage

Suppose we wanted to set upExpSyn co11(20] axon -~ dend[3]
synaptic connection between the two cells O >@ cell[5]
portrayed in Fig.10. This could be done with the

following hoc code, which also illustrates the use _
of aList of NetCon objectsas a means for Figure 10
keeping track of the synaptic connections in a network

I/l the network will be represented
/I by a list of NetCon objects
objref ncl

ncl = new List()

/I make an ExpSyn point process called syn
/I thatis located on cell[5]

/I just to one side of the midpoint of dend[3]
objref syn

cell[5].dend[3] syn = new ExpSyn(0.3)

/I cell[20].axon.v(1) is voltage at the presynaptic site
/I connect the presynaptic cell to the ExpSyn instance syn
// via a new NetCon object
/l and add the NetCon object to the list ncl
cell[20].axon ncl.append(new NetCon(&v(1), \
syn, threshold, delay, weight)

Figure 11 shows graphs saved from a simulatioecelio] L L L
of two input streams converging onto postsynaptic,ecei1 ! 1 m
cell. The top graph indicates the presynaptic firing

times (traces labelggtecell[0] and 0 20 40 60 80 100
precell[l] ). The conductance of tiexpSyn
mechanism and the membrane potential of the 00004 ExpSyn[0].g

0.0003

postsynaptic cell are shown in the middle and 0.0002

bottom graphs. For this example, the decay time
constant for the synaptic conductance has been 0
arbitrarily set to 3 ms. Temporal summation is 0 20 40 60 80 100
evident in the synaptic conductance and postsynaptic_ss

. : e T postcell.v( 0.5)
membrane potential for inputs within an individual 60|
stream and between inputs on multiple streams. 65—

-70

s | | | | |

0 20 40 60 80 100
S
Figure 11
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Example 11: alpha function synapse

It is a simple matter to exteriekpSyn to implement an alpha function synapgsereplacing
the differential equation with the two state kinetic scheme.

STATE { a (microsiemens) g (microsiemens) }
KINETIC state {

~a<->g (1/tau, 0)

~ g -> (1/tau)

and changing the discontinuity statemmnt
state_discontinuity(a, a + weight*exp(1))

The factorexp(1) = eisincluded so that an isolated event produces a peak conductance of
magnitudeweight , which occurs at timéau after the event. Since this mechanism involves a
KINETIC blockinstead of @DERIVATIVE block, the integration method specified by 8@LVE
statement must be changed fronexp to sparse .

The extra computational complexity of using a kinetic scheme is offset by the fact that, no
matter how manyetCon streamsconnect to this model, the computation time required to
integrateSTATEg remains constant. The only extra time is the potentially greater number of calls
to theNET_RECEIVEblock, which is called only when events are to be delivefdds illustrates
a very useful tactic which will reappear in subsequent models: always move as much
computational complexity as possible from temporal integration bld2kRI(VATIVE or
KINETIC blocks) to theNET_RECEIVEblock The potential benefits are very large, since
BREAKPOINTandSOLVEblocks are executed — sometimes repeatedly — at each time step,
whereas statements in tNE€T_RECEIVEblock are executed only once per delivered event.
Indeed, with NEURON's variable time steyethods it is possible to carry out what are
essentially discrete event simulatipmswhichdt is always the interval between events. Since
most steps reduce to an interpolation step followed by a single ODE function evaluation, this
reduces the time step integration overhead to a fraction of a normal single integration step per
event.

Some increase of efficiency can be gained by recasting the kinetic scheme as two linear
differential equations

DERIVATIVE state {
a' = -aftaul
b' = -b/tau
g=b-a

}

which are solved efficiently by thenexp method Astaul approachetau from below,g
approaches an alpha function (although the factor by whéght must be multiplied
approaches infinity). Also, there are now two state discontinuitiéise NET_RECEIVEblock

state_discontinuity(a, a + weight*factor)
state_discontinuity(b, b + weight*factor)
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Example 12: Use-dependent synaptic plasticity

Here the alpha function synapse is extended to implement a form of use-dependent synaptic
plasticity. Each presynaptic event initiates two distinct processes: direct activation of ligand-
gated channels, which causes a transient conductance change, and activation of a mechanism that
in turn can have a modulatory effect on the conductance change produced by successive synaptic
activations. Here we presume that synaptic strength is modulated by the postsynaptic increase of
a second messengerhich we will call “G protein” for illustrative purposes. We must point out
that this example is entirely hypothetical, and that it is quite different from models described by
others(Destexhe and Sejnowski 1998)which the G protein itself gates the ionic channels.

In this mechanism it is essential to distinguish each stream into the generalized synapse, since
each stream has to maintain its own [G] (concentration of activated G protein). That is, streams
are independent of each other in terms of the effect on [G], but their effects on synaptic
conductance show linear superposition

: gsyn.mod

NEURON {
POINT_PROCESS GSyn
RANGE taul, tau2, e, i
RANGE Gtaul, Gtau2, Ginc
NONSPECIFIC_CURRENT i
RANGE g

}

UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)

PARAMETER {
taul =1 (ms)
tau2 =1.05 (ms)
Gtaul =20 (ms)
Gtau2 =21 (m s)
Ginc =1
e =0 (mV)

}

ASSIGNED {
v (mV)
i (nA)
g (umho)
factor
Gfactor
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STATE {
A (umho)
B (umho)
}

INITIAL {
LOCAL tp
A=0
B=0
tp = (taul*tau2)/(tau2 - taul) * log(tau2/taul)
factor = -exp(-tp/taul) + exp(-tp/tau2)
factor = 1/factor
tp = (Gtaul*Gtau2)/(Gtau2 - Gtaul) * log(Gtau2/Gtaul)
Gfactor = -exp(-tp/Gtaul) + exp(-tp/Gtau2)
Gfactor = 1/Gfactor

}

BREAKPOINT {
SOLVE state METHOD cnexp
g=B-A
i=g*v-e)

DERIVATIVE state {
A' = -Altaul
B' = -B/tau2

}

NET_RECEIVE(weight (umho), w, G1, G2, t0 (ms)) {
G1 = Gl*exp(-(t-t0)/Gtaul)
G2 = G2*exp(-(t-t0)/Gtau?)
G1 = G1 + Ginc*Gfactor
G2 = G2 + Ginc*Gfactor
0=t

w = weight*(1 + G2 - G1)
state_discontinuity(A, A + w*factor)
state_discontinuity(B, B + w*factor)

Listing 10.gsyn.mod

The conductance of the ligand-gated ion channel uses theathffelrequation approximation
for an alpha function synapse. The peak synaptic conductance depends on the value of [G] at the
moment of synaptic activation. A similar, albeit much slower, alpha function approximation
describes the time course of [G]. These processes peak approximatelandGtaul after
delivery of an event, respectively.

The peak synaptic conductance of an adiie&Con is specified in theNET_RECEIVEDblock,
wherew = weight*(1 + G2 - G1) describes how the effective weight of the synapse is
modified by [G]. Even though conductance is integrated, [G] is needed only at discrete event
times so it can be computed analytically from the elapsed time since the prior synaptic activation.
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ThelINITIAL block performs the tedious task of setting up the factors which are needed to make
the peak changes equal to the valuew ahdGinc .

Note thatG1andG2do not need atate_discontinuity() to change them because they
are notSTATES in this mechanisnThey are not even variablesthis mechanism, but instead are
“‘owned” by the particulaNetCon instance that delivered the event.

A NetCon objectinstance keeps an array of size equal to the number of arguments to
NET_RECEIVE and the arguments tET_RECEIVEare really references to the elements of this
array. The fact that the arguments are “call by reference,” instead of the normal “call by value,” is
what allows this model to work: it allows assignment statemengsyn.mod to change the
values of variables that belong to tNetCon object. Since there is a separate array for each
NetCon object that connects to this model, [G] can be different for different connections.
However the individuaNetCon objects all contribute linearly to the synaptic conductance.

Example 13: saturating synapses

Several authors (e.g. Destexhe e{#894a) Lytton (1996) have found it useful to
approximate a wide range of synaptic behavior by explicitly parameterizing the conductance
change as a single time constant onset with specific duration (Cdur, interpreted as the duration of
a transmitter pulse) followed by a separate time constant offset. The conductance changes elicited
by separate streams summate, whereas repetitive impulses on one stream produce a saturating
conductance change (steady state for a long onset tilfeejesolve the ambiguity of what to do
when multiple spikes arrive on a single stream during the Cdur onset of an earlier spike (i.e.
ignore, concatenate Cdur to make the transmitter pulse longer without increasing its
concentration, or summate the transmitter) by choosing concaterfationmation of transmitter
is outside the scope of the Destexhe/Lytton model since that formulation demands identical onset
time constants for all conductance changes and the onset time constant is proportional to
transmitter concentration.

Although the idea of saturation can be captured with a rhafdde form used in the previous
example, the separate onset/offset formulation requires keeping track of how much “material” in
each stream is in the offset or onset state. The wrinkle here is that when an event arrives at time t
to start an onset, another event must be generated to occur at time t+Cdur to start turning it off.
To complicate matters further, other spikes on the same input line ($ar@en ) may arrive
before t+Cdur, which means that the offset event at t+Cdur should be ignored. The only time an
offset event takes effect is if no other spikes occurred in the previous Cdur interval.

The NMODL implementation for this mechanism is given in Listing 11.

: ampa.mod

NEURON {
POINT_PROCESS AMPA_S
RANGE R, g
NONSPECIFIC_CURRENT i
GLOBAL Cdur, Alpha, Beta, Erev, Rinf, Rtau

}
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UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
(mM) = (milli/liter)

PARAMETER {
Cdur =0.3 (ms) : transmitter duration (rising phase)
Alpha =0.94 (/ms) : forward (binding) rate
Beta =0.18 (/ms) : backward (dissociation) rate
Erev =0 (mV) : equilibrium potential

}
ASSIGNED {
v (mV) :postsynaptic voltage
i (nA) :current=g*(v - Erev)
g (umho) : conductance
Rinf : steady state channels open
Rtau (ms) :time constant of channel binding
synon
}

STATE { Ron Roff} :initialized to 0 by default

INITIAL {
Rinf = Alpha / (Alpha + Beta)
Rtau =1/ (Alpha + Beta)
synon =0

}

BREAKPOINT {
SOLVE release METHOD cnexp
g = (Ron + Roff)*1(umho)
i =g*(v - Erev)

DERIVATIVE release {
Ron' = (synon*Rinf - Ron)/Rtau
Roff' = -Beta*Roff
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> on initialization, all arguments after the first one
: aresettoO
NET_RECEIVE(weight, on, nspike, r0, t0 (ms)) {
: flag is an implicit argument of NET_RECEIVE, normally O
if (flag == 0) {
: a spike, so turn on if not already in a Cdur pulse
nspike = nspike + 1
if (lon) {
ro = rO*exp(-Beta*(t - t0))
t0=t
on=1
synon = synon + weight
state_discontinuity(Ron, Ron + r0)
state_disc  ontinuity(Roff, Roff - r0)

}

: come again in Cdur with flag = current value of nspike
net_send(Cdur, nspike)

}
if (flag == nspike) {
: if this associated with last spike then turn off
ro = weight*Rinf + (r0 - weight*Rinf)*exp(-(t - t0)/Rtau)
t0=t
synon = synon - weight
state_discontinuity(Ron, Ron - r0)
state_discontinuity(Roff, Roff + r0)
on=0

Listing 11.ampa.mod

Details of saturating mechanismer seare covered by Destexhe et @994a; 1994band
Lytton (1996) Here we focus on how theET_RECEIVEblock is used to manage multiple input
streamsAn onset evengenerated by the system when the conned#tgon ’'s source passed
threshold - delay ago, always has an implicit argument callied which is setto 0 and is
call by valueas opposed to the explicit arguments, which are “call by reference.figdiee
variable counts the spikes that have taken place on the individu@bn lines. A spike onset
event flag = 0)results in amet_send() call, which will generate an event with delay given by
the first argument and flag value given by the second argument. All the explicit arguments will
have the value of this particul&etCon , and therefordlag will only matchnspike when
there is no intervening spike event (on tNistCon line).

DISCUSSION

The model description framework has proven to be a useful, efficient, and flexible way to
implement computational models of biophysical mechanisms. The levéraigdMODL
provides to the user is amplified by its platform-independence, since it runs in the MacOS,
MSWindows, and UNIX/Linux environments. Another important factor is consistency of high-
level syntax, which allows it to incorporate advances in numerical methods in a way that is
transparent to the user.
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NMODL continues to undergo revision and improvement in response to the evolving needs
of computational neuroscience, particularly in the domain of empirically-based modeling. One
recent example of the extension of NMODL to encompass new kinds of mechanisms is
longitudinal diffusion. Another is kinetic schemes in a form that can be interpreted as Markov
processefColquhoun and Hawkes 1981). linear schemes, which are now translated into
single channel models. By removing arbitrary limits related to programming complexity, such
advances give NEURON the ability to accommodate insights derived from new experimental
findings, and enable modeling to keep pace with the broad arena of “wet-lab” neuroscience.
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| NDEX

' (apostrophe) SeeDERIVATIVE block: ' (apostrophe)
: (inline comment) 5

<< (explicit flux) SeeKINETIC block: <<

<-> (reaction indicator) SeeKINETIC block: <->

-> (sink reaction indicator)SeeKINETIC block: ->

~ (tilde) SeeKINETIC block: ~

abrupt changesSeediscontinuities
absolute toleranceSeevariable time step: tolerance

accuracy
first-order 18, 33
second-order 18, 35
variable order 17SeeCVODE, variable time step

adaptive time stepSeevariable time step

alpha function synapseseeExample 11: alpha function synapse

ampa.mod SeeExample 13: saturating synapses
array

of arguments for NetCon (network connection) class 56

arrays
in NMODL are not dynamic 39, 43
index startsat0 39
STATE variable 34

ASSIGNED block 7
ASSIGNED variable 7

abrupt change or discontinuityseediscontinuities: in ASSIGNED or PARAMETER

variables
GLOBAL
local value 23, 24
spatial variation 23, 24
GLOBAL vs. RANGE 8, 22, 23, 24
visibility at the hoc level 8, 12
when to use for equilibrium potential 15

at_time() Seevariable time step: at_time()

automatically-created ionic mechanis®@eeNEURON block: USEION: automatically-created

ionic mechanism
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b_flux SeeKINETIC block: b_flux
backward flux SeeKINETIC block: b_flux

balance
charge 6
mass 3,6

kinetic schemes 28

block
ASSIGNED SeeASSIGNED block
BREAKPOINT SeeBREAKPOINT block
COMMENT 5
CONSTANT 45
DERIVATIVE SeeDERIVATIVE block
equation definition 4SeeBREAKPOINT, DERIVATIVE, FUNCTION, INITIAL,
KINETIC, PROCEDURE
LOCAL variable 19
FUNCTION SeeFUNCTION block
INITIAL Se€elNITIAL block
KINETIC SeeKINETIC block
named 4,5
NEURON SeeNEURON block
PARAMETER SeePARAMETER block
PROCEDURE SeePROCEDURE block
variable declaration 4, BeeASSIGNED, PARAMETER, STATE
VERBATIM 5

BREAKPOINT block 16
abrupt change or discontinuity
of a STATE variable 48, 51, 53
of an ASSIGNED or PARAMETER variableSeevariable time step: at_time()
and computations that must be performed only once per time step 16, 48
and counts, flags, and random variables 16
and PROCEDUREs 16
and rate functions 16
at_time() Seevariable time step: at_time()
currents 16
main computation block 8
METHOD SeeSTATE variable, BREAKPOINT block: SOLVE
SOLVE 16, 18SeeSTATE variable
cnexp 18,53
derivimplicit 18
is not a function call 16
sparse 33,53
state_discontinuity() 48, 51, 53
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C code
embedding SeeVERBATIM block

cadif.mod SeeExample 8: calcium diffusion with buffering

cagk.mod SeeExample 5: a calcium-activated voltage-gated current

calcium pump SeeExample 9: a calcium pump

calcium-activated currentSeeExample 5: a calcium-activated voltage-gated current
celsius 23

charge balance 6

cnexp SeeDERIVATIVE block, BREAKPOINT block: SOLVE: cnexp

comment
block 5
inline 5
COMMENT block 5
ENDCOMMENT 5
conceptual leverage 3, 58
conservation 28, 32, 33

constant Seeunits
vs. PARAMETER or LOCAL variable 44

CONSTANT block 45

conversion factor Seeunits: conversion factor

current clamp SeeExample 3: an intracellular stimulating electrode
cvode 26, 41Seevariable time stepSeeCVODE, variable time step

DEFINE 39
density mechanisms 4, 13
DERIVATIVE block 18

' (apostrophe) 18
derivimplicit SeeDERIVATIVE block, BREAKPOINT block: SOLVE: derivimplicit
diffusion with buffering SeeExample 8: calcium diffusion with buffering
Dimensional consistencySeeunits: consistency

discontinuities Seevariable time step: discontinuities
in ASSIGNED or PARAMETER variables 47
in NET_RECEIVE block via assignment statement 51, 56

discrete event simulations 53
Distributed Mechanism Manager, Viewer, and Inserg@eegraphical user interface
distributed mechanismsSeedensity mechanisms

dt
analytic expressions involving 6
use in NMODL 6, 8
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e
electronic charge vs. scale factor 23

electrode
intracellular stimulating SeeExample 3: an intracellular stimulating electrode
shunting effect of sharp microelectrod8eeExample 2: a localized shunt

ephapse 49
equilibrium potential

ASSIGNED vs. PARAMETER variable 15
Euler method 33

events 12,17
and time step boundaries 12, &k€fixed time step, variable time step
event delivery system 50, 51, 53, SeeNetCon (network connection) class, synaptic
models
STATE variable discontinuities 48

Example
1: a passive “leak” current 4
10: synapse with exponential decay 50
11: alpha function synapse 53
12: use-dependent synaptic plasticity 54
13: saturating synapses 56
- a localized shunt 9
- an intracellular stimulating electrode 11
: a voltage-gated current 13
: a calcium-activated voltage-gated current 20
: extracellular potassium accumulation 24
: kinetic scheme for a voltage-gated current 30
- calcium diffusion with buffering 35
> a calcium pump 43

explicit integration methods 33

expsyn.mod SeeExample 10: synapse with exponential decay

extensive variable 36

extracellular mechanism 12

extracellular potassium accumulatioBeeExample 6: extracellular potassium accumulation

OCO~NOOURA,WN

f flux SeeKINETIC block: f_flux

fadvance() 27, 33, 47

fcurrent() 17

F-H space SeeExample 6: extracellular potassium accumulation
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finitialize() 13, 17.SeeNITIAL block
and ionic concentrations 27

first-order accuracySeeaccuracy

fixed time step 12, 18, 4Beevariable time step

flux SeeKINETIC block: b_flux, f_flux

forall 24

forward flux SeeKINETIC block: f_flux

Frankenhaeuser-Hodgkin spa&@eeExample 6: extracellular potassium accumulation
FROM...TO... (loop statement) 40

function SeeFUNCTION block
name 18
name conflict 18
name suffix 18SeeNEURON block: SUFFIX
referencing a RANGE variable 19

FUNCTION block 18
setdata_ 19
units 19
visibility at the hoc level 18

FUNCTION_TABLE 33, 34SeeKINETIC block

gap junction 49
GENESIS 3,6

GLOBAL SeeNEURON block: GLOBAL, and related topics under ASSIGNED and
PARAMETER variables

GMODL 6

graphical user interface (GUI) 7,9, 10, 11, 13
Plotwhat? 20, 24

gsyn.mod SeeExample 12: use-dependent synaptic plasticity

HH-style ionic currents 18

high-level specification 3, 18, 58
kinetic scheme 30

Hodgkin-Huxley delayed rectifielSeeExample 4: a voltage-gated current

IClamp SeeExample 3: an intracellular stimulating electrode
iclampl.mod SeeExample 3: an intracellular stimulating electrode
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INITIAL block 13,17, 56
and CONSERVE statements in KINETIC block 33
SOLVE
STEADYSTATE sparse 33

initialization SeeNITIAL block, finitialize()
fromt<0 17
ion_style() and 27
ionic concentration 27
default values 27
of a kinetic scheme 33
of v on a compartment-by-compartment basis 17
SaveState / RestoreState 17, 46
strategies 17
explicit algebraic assignment vs. numeric solution of a kinetic scheme 40, 45
immobile buffer 40
initialization run 17, 46
ionic concentration 27
nonuniform initial ionic concentration 27

integration methodsSeeBREAKPOINT block: SOLVE

intensive variable 36

intracellular stimulating electrodeseeExample 3: an intracellular stimulating electrode
ion_style() Seenitialization: strategies: nonuniform initial ionic concentration

ionic concentration
as a STATE variable 26
ionic diffusion
modeling as kinetic scheme 28

ionic mechanism
automatically-createdSeeNEURON block: USEION: automatically-created ionic
mechanism

Jacobian 18, 29, 33, 48

k3st.mod SeeExample 7: kinetic scheme for a voltage-gated current
kd.mod SeeExample 4: a voltage-gated current
kext.mod SeeExample 6: extracellular potassium accumulation

keywords 5
“e” as electronic charge vs. scale factor 23
area 6
ASSIGNED SeeASSIGNED block, ASSIGNED variable
at_time() Seevariable time step: at_time()
b flux SeeKINETIC block: b_flux
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BREAKPOINT SeeBREAKPOINT block

celsius 6

cnexp SeeDERIVATIVE block, BREAKPOINT block: SOLVE: cnexp

COMMENT 5

COMPARTMENT SeeKINETIC block: COMPARTMENT

CONSERVE SeeKINETIC block: CONSERVE

CONSTANT SeeCONSTANT block

cvode SeeCVODE, variable time step

DEFINE 39

DERIVATIVE SeeDERIVATIVE block

derivimplicit SeeDERIVATIVE block, BREAKPOINT block: SOLVE: derivimplicit

diam 6

dt Seedt

ELECTRODE_CURRENT SeeNEURON block: ELECTRODE_CURRENT

ENDCOMMENT 5

ENDVERBATIM 5

extracellular 12

f flux SeeKINETIC block: f_flux

fadvance() Seefadvance()

fcurrent() Seefcurrent()

forall Seeforall

FROM...TO... 40

FUNCTION SeeFUNCTION block

FUNCTION_TABLE SeeFUNCTION_TABLE, KINETIC block

GLOBAL SeeNEURON block: GLOBAL, and related topics under ASSIGNED and
PARAMETER variables

INITIAL Se€elNITIAL block

ion_style() Seenitialization: ion_style() and

KINETIC SeeKINETIC block

LINEAR SeelINEAR block

LOCAL SeelOCAL variable

LONGITUDINAL_DIFFUSION SeeKINETIC block:LONGITUDINAL DIFFUSION

METHOD SeeBREAKPOINT block: SOLVE

net_send() SeeNetCon (network connection) class:net_send()

NetCon SeeNetCon (network connection) class

NEURON SeeNEURON block

NONLINEAR SeeNONLINEAR block

NONSPECIFIC_CURRENTSeeNEURON block: NONSPECIFIC_CURRENT

PARAMETER SeePARAMETER block, PARAMETER variable

POINT_PROCESSSeeNEURON block: POINT_PROCESS

POINTER SeePOINTER variable

PROCEDURE SeePROCEDURE block

RANGE SeeNEURON block: RANGE

re_init() Seevariable time step: cvode.re_init()

READ SeeNEURON block: USEION: READ
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RestoreStateSeenitialization: SaveState / RestoreState

SaveState Sednitialization: SaveState / RestoreState

setdata_ SeeFUNCTION block: setdata

setpointer SeePOINTER variable: setpointer

SOLVE SeeBREAKPOINT block: SOLVE, INITIAL block: SOLVE: STEADYSTATE
sparse

STATE SeeSTATE block, STATE variable

STEADYSTATE SeeNITIAL block: SOLVE: STEADYSTATE sparse, initialization

SUFFIX SeeNEURON block: SUFFIX

t Sed

table SeeFUNCTION_TABLE, KINETIC block

UNITS SeeUNITS block

USEION SeeNEURON block: USEION

v 6

v_init Seev_init

VERBATIM 5

vext 12

WRITE SeeNEURON block: USEION: WRITE

KINETIC block 53

<< (explicit flux) 41
<-> (reaction indicator) 28
-> (sink reaction indicator) 48, 53
~ (tilde) 28
and FUNCTION_TABLE 33SeeFUNCTION_TABLE
b flux 29
COMPARTMENT 34, 36, 41
CONSERVE 33, 46

required for initialization 33
f flux 29
LONGITUDINAL_DIFFUSION 41
products 28
radial diffusion 42
rates 28

voltage-sensitive 29
reactants 28
reaction statement 28

kinetic schemes 28

leak.mod SeeExample 1: a passive “leak” current
LINEAR block 16
linear ODE 18
List
of NetCon objects 52
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Listing
1. leak.mod SeeExample 1: a passive “leak” current
10. gsyn.mod SeeExample 12: use-dependent synaptic plasticity
11. ampa.mod SeeExample 13: saturating synapses
. shunt.mod SeeExample 2: a localized shunt
.iclampl.mod SeeExample 3: an intracellular stimulating electrode
. kd.mod SeeExample 4: a voltage-gated current
. cagk.mod SeeExample 5: a calcium-activated voltage-gated current
. kext.mod SeeExample 6: extracellular potassium accumulation
. k3st.mod SeeExample 7: kinetic scheme for a voltage-gated current
. cadif. mod SeeExample 8: calcium diffusion with buffering
. expsyn.mod SeeExample 10: synapse with exponential decay

local error
with variable time step 18, 39

LOCAL variable 19

declared inside an equation block
scope 19

declared outside an equation block
initial value 40
scope 40

declared outside an equation definition block
scope 40

declared outside equation block
vs. GLOBAL 40

vs. CONSTANT 44

LONGITUDINAL_DIFFUSION SeeKINETIC block:LONGITUDINAL_DIFFUSION
loop statement (FROM ... TO...) 40

O©CoO~NOOUGPA,WN

Markov processes 28

mass balance &eebalance: mass
kinetic schemes 28

microelectrode
intracellular stimulating SeeExample 3: an intracellular stimulating electrode
shunting effect SeeExample 2: a localized shunt

mod file 3
changing PARAMETER variables in 7

MOdel Description LanguageSeeMODL

MODL 4
vs. NMODL 4, 6

modlunit Seeunits: checking

mole
vs. mol 44

Revised 4/6/2000 Page 70



Hines and Carnevale: Expanding NEURON with NMODL

National Biomedical Simulation Resource project 4

NET_RECEIVE block 49, 53, 55
abrupt change or discontinuity via assignment statement 51, 56
arguments 56
implicit argument called flag 58
input streams 58
state_discontinuity() 51, 53

net_send() SeeNetCon (network connection) class:net_send()

NetCon (network connection) class 50
argument array 56
event delivery system 51, 58
input streams 53, 54, 56
List of NetCon objects 52
NET_RECEIVE 50
NET_RECEIVE block 51
net_send() 58
synaptic delay and weight 50

network models 50SeeNetCon (network connection) class
fan-in and fan-out 50
increasing computational efficiency 53
using a List of NetCon objects to keep track of synaptic connections 52

NEURON block 6

ELECTRODE_CURRENT 12

GLOBAL 6, 38
vs. LOCAL variable declared outside an equation block 40

GLOBAL vs. RANGE 10

NONSPECIFIC_CURRENT 6

POINT_PROCESS 10

RANGE 6, 12

SUFFIX 6

USEION 7,15, 22
automatically-created ionic mechanism 25
default initial ionic concentration 27
nonuniform initial ionic concentration 27
READ ex (reading an equilibrium potential) 15
READ ix (reading an ionic current) 26, 38
READ x (reading an ionic concentration) 38, 43
WRITE ix (writing an ionic current) 15, 43, 46
WRITE x (writing an ionic concentration) 26, 27, 38

Newton iteration 33
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NMODL SeeNMODL: translator
translator 3, 6, 29, 34, 49
vs. MODL 4,6

nocmodl SeeNMODL.: translator
nocmodl.exe SeeNMODL.: translator
NONLINEAR block 16

nonlinear ODE 18

PARAMETER block 7

default values 7

specifying max and min values of PARAMETER variables 10
PARAMETER variable 7

abrupt change or discontinuityseediscontinuities: in ASSIGNED or PARAMETER

variables

change in mid-run 7

global scope vs. RANGE 7

GLOBAL vs. RANGE 26, 42

RANGE 12

specifying max and min values 10

visibility at the hoc level 7

when to use for equilibrium potential 15

parenthesesSeeunits: conversion factor

passive “leak” currentSeeExample 1: a passive “leak” current
point process 9, 11

Point Process Manager and View&eegraphical user interface

POINTER variable 49
setpointer 49

PROCEDURE block 16, 24

products 28
ASSIGNED or PARAMETER variables as 32

radial diffusion 35, 42

RANGE variable 6SeeRANGE under NEURON block, ASSIGNED variable, PARAMETER
variable
ASSIGNED variable 8
PARAMETER variable 7
rate functions
call from the block specified by the SOLVE statement 17
reactants 28
ASSIGNED or PARAMETER variables as 32
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reaction
indicator “<->" 28
products 28
ASSIGNED or PARAMETER variables as 32
rates 28
voltage-sensitive 29
reactants 28
ASSIGNED or PARAMETER variables as 32
sink indicator “->" 48
source or sink 33
statement 28

relative tolerance Seevariable time step: tolerance
restore() Seenitialization: SaveState / RestoreState
RestoreStateSeeinitialization: SaveState / RestoreState
Runge-Kutta method 33

saturating synapseSeeExample 13: saturating synapses
SaveState Seeinitialization: SaveState / RestoreState
scale factor Seeunits: conversion factor
SCoP 4, 8SeeMODL
second messengeBeeExample 12: use-dependent synaptic plasticity
second-order accuracypeeaccuracy
setdata_ SeeFUNCTION block: setdata
shunt.mod SeeExample 2: a localized shunt
Simulation Control Program 4
simultaneous chemical reactionSeekinetic schemes
sink reaction
indicator “->" 53
sink reaction indicator “->” 48
SOLVE SeeBREAKPOINT block: SOLVE, INITIAL block: SOLVE: STEADYSTATE sparse
sparse SeeKINETIC block, BREAKPOINT block:SOLVE: sparse
STATE block 16

STATE variable 16
abrupt change or discontinuity 48
and COMPARTMENT statement in KINETIC block 41
array 34
ASSIGNED variable as 8
automatically a RANGE variable 15, 16
default initialization 17
dependent vs. independent 32
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initialization 17
initialization strategies 17
ionic concentration as 26
Jacobian 18
not all reactants or products need to be 32
not always needed 8, 10
of a mechanism vs. state variable of a model 8
SaveState / RestoreState 17
state_discontinuity() 48, 51, 53
unknowns in kinetic schemes 28
vector SeeSTATE variable: array
vs. state variable 16, 32
STEADYSTATE SedNITIAL block: SOLVE: STEADYSTATE sparse, initialization
stiffness 18
sudden changesSeediscontinuities
SUFFIX SeeNEURON block: SUFFIX
synapse with exponential decageeExample 10: synapse with exponential decay
synaptic models 49
ephapse 49
essential distinction 49
gap junction 49
NET_RECEIVE 50
NET_RECEIVE block 51
networks SeeNetCon (network connection) class
saturation SeeExample 13: saturating synapses
second messengeBeeExample 12: use-dependent synaptic plasticity
STATE variable discontinuities 48
use-dependent plasticityseeExample 12: use-dependent synaptic plasticity

independent variable in NEURON 8
use in NMODL 8

table_ SeeFUNCTION_TABLE, KINETIC block
temparature Seecelsius

tilde SeeKINETIC block: ~

tolerance Seevariable time step: tolerance
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units
checking 6, 7, 10, 15
consistency 7, 36
in kinetic schemes 36, 42
conversion factor 10, 22, 28, 39
“e” in expressions 23
disabling checking 19
mole
as Avogadro’s number 44
vs. mol 44
specification 7,15, 19
UNITSOFF. .UNITSON 19
UNITS block 15
(1) 39
conversion factor 22, 39
dimensionless constant 39
dimensionless variable 7

UNIX units database 7, 15, 22

use-dependent synaptic plasticityeeExample 12: use-dependent synaptic plasticity

USEION SeeNEURON block: USEION

v_init 17, 27

variable Seeunits
arrays Seearrays
ASSIGNED SeeASSIGNED block, ASSIGNED variable
define before use 6,7
dependent in differential equations 8
dependent in kinetic schemes 8, 28
dimensionless 7
extensive 36
independent variable in NEURON 8
intensive 36
ionic 7
LOCAL See OCAL variable
name 5
name conflict SeeNEURON block: SUFFIX
name suffix SeeNEURON block: SUFFIX
PARAMETER SeePARAMETER block, PARAMETER variable
POINTER 49
STATE SeeSTATE variable
that belongs to a NetCon object 56
unknown in simultaneous equations 8, 88@eSTATE variable
vector Seearrays
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variable time step 6, 12, 16, 18, 30, 33, 41, 47, 48, 50, 51568CVODE
abrupt change or discontinuity
of a STATE variable 48, 51, 53
at time() 12,47,48
cvode.re_init() 17
discontinuities 11, 12
local error 18, 39
local variable time step 50
state_discontinuity() 48, 51, 53
tolerance 39

variables that are available to all mechanisms 6, 7, 8
vector Seearrays

VERBATIM block 5

vext 12

voltage-gated currentSeeExample 4: a voltage-gated current
calcium-activated SeeExample 5: a calcium-activated voltage-gated current
kinetic scheme SeeExample 7: kinetic scheme for a voltage-gated current
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