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Dynamics of Epileptic Phenomena Determined From
Statistics of Ictal Transitions
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Clementina M. van Rijn, Peter van Hese, Paul Boon, Houman Khosravani, Miron Derchansky, Peter Carlen, and

Stiliyan Kalitzin

Abstract—In this paper, we investigate the dynamical scenarios
of transitions between normal and paroxysmal state in epilepsy.
We assume that some epileptic neural network are bistable i.e.,
they feature two operational states, ictal and interictal that co-exist.
The transitions between these two states may occur according to
a Poisson process, a random walk process or as a result of de-
terministic time—dependent mechanisms. We analyze data from
animal models of absence epilepsy, human epilepsies and in vitro
models. The distributions of durations of ictal and interictal epochs
are fitted with a gamma distribution. On the basis of qualitative
features of the fits, we identify the dynamical processes that may
have generated the underlying data. The analysis showed that the
following hold. 1) The dynamics of ictal epochs differ from those
of interictal states. 2) Seizure initiation can be accounted for by a
random walk process while seizure termination is often mediated
by deterministic mechanisms. 3) In certain cases, the transitions
between ictal and interictal states can be modeled by a Poisson
process operating in a bistable network. These results imply that
exact prediction of seizure occurrence is not possible but termina-
tion of an ictal state by appropriate counter stimulation might be
feasible.

Index Terms—Bistability, duration distribution, epilepsy.

I. INTRODUCTION

E PILEPSY is considered a dynamic disease [1]. Such
diseases are characterized by qualitative changes from

normal behavior to abnormal dynamics of some variables [2].
Indeed, epileptic subjects display (long) periods of normal
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electroencephalographic (EEG) activity (i.e., nonepileptiform)
intermingled occasionally with epileptiform paroxysmal ac-
tivity. Based on a computational model [3] we hypothesized
that some types of epileptic transitions represent bifurcations
occurring in a bistable system. Bistable systems feature two
stable operational states that exist simultaneously for the same
set of system’s parameters. These states correspond to the
attractors of the underlying dynamical system. One of these
states is the normal, interictal state and the other state is the
epileptic state of the network. We can assume that transitions
between the states are relatively fast with respect to the times
spent by the system in these states, therefore, the current state
is always well defined. Transitions between the two states
may occur due to an external stimulus (as, e.g., in cases of
reflex epilepsy) or from the influence of random inputs and/or
parameter fluctuations. We associate these noisy perturbations
with a stochastic process although in certain conditions it
may be not possible to distinguish such a process from a fast
chaotic motion ([4]). In the simplest case, only the system’s
“fast” degrees of freedom participate in the transition (we call
such systems rigid systems) and the transition can be modeled
as a statistical Poisson process. Under these conditions the
transitions between two discrete states have fixed probability
of occurrence, much like the probability of a quantum tran-
sition in quantum mechanics. Accordingly, the distributions
of duration of ictal and seizure-free epochs are exponential.
Such system does not “memorize” anything more than the state
(normal or epileptic) that it is currently in. In more complicated
cases, the probability of a transition from one state to another
depends on the time already spent in the current state, hence
the system has a memory. The origin of such a memory can
be assigned to the existence of “slow” dynamical degrees of
freedom, for example plastic synaptic efficiencies. Under these
circumstances, the times between transitions can be modeled by
gamma distributions that are a generalization of the exponential
distribution. The time dependence of the probability of transi-
tion may be different according to the underlying mechanisms.
In one scenario, the system has fixed parameters but it can
accumulate excitatory and inhibitory random inputs to reach
a transition. In such a case, the resulting process consists of
a sequence of discrete steps of fixed length and corresponds
to a random walk. In an alternative scenario, in which plastic
mechanisms are involved, one or more system parameters
may change gradually after a transition, which may facilitate
or counteract a subsequent transition. The aim of this paper
was to identify the dynamical scenarios of transitions between
normal and paroxysmal state in epileptic systems and possibly
to detect the presence of slow, plastic mechanisms modulating
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the transition probabilities. More specifically, we aim to quan-
tify the deviation of certain classes of epileptic phenomena
from the Poisson process and, thus, to deduce the presence of
memory in the underlying system. In this paper, we analyze
experimental time sequences from various animal models of
absence epilepsy, human epileptic subjects and in vitro data.
The analysis is based on the statistical properties of ictal and
interictal epochs. The distributions of durations of normal and
paroxysmal epochs are fitted with a gamma distribution, as a
way of data reduction. On the basis of fitted parameters, we
identify the dynamical processes that may have generated the
underlying data. For a special case of a gamma distribution, the
exponential distribution, as indicated above, we assume that
the corresponding experimental data are generated by a rigid
bistable system where transitions between states are induced
by uncorrelated noise.

For a better interpretation of the experimental results we
introduce a simple bistable mathematical model. It illustrates a
system that can generate gamma statistics of transitions between
two observable states. This model is purely metaphoric and its
role is to help understanding the nature of the dynamics involved
in bistable neurobiological systems on an abstract level and
not to directly derive information about underlying epileptic
process. However, if the model variable can be associated with
a control parameter in a realistic neuronal network that governs
transitions from normal to ictal states, then this could be an
actual explanation of the measured gamma statistics. The model
consists of a particle moving on a one-dimensional landscape
with two minima (stable states). The particle is subject to
fluctuations that can cause transitions between the two states.
For different sets of model parameters the transitions may
correspond to a Poisson process, to a random walk process
or to deterministic transitions. The model allows for a better
explorationof thecorrespondencebetweenparametersofgamma
distributions and underlying processes leading to transitions
in a bistable system.

Understanding the dynamical properties of the system gener-
ating seizures can be relevant in the light of the recent attempts
to predict time of seizure occurrence and develop electrical
stimulation paradigms to prevent or abort an ictal state [5].
In a bistable rigid system, in which seizures are triggered by
random fluctuations, the ictal transitions are unpredictable (per
definition). Nevertheless, a single pulse [2] may terminate an
ictal oscillatory state. In contrast, in a system with plasticity, the
gradual changes leading to a seizure may be detectable some
time before clinical manifestations and repetitive stimulation
counteracting these changes may be effective in preventing
or aborting an ictal state.

II. MATERIALS AND METHODS

A. Patients

These five epileptic patients (mean age: 15 years, age
range: 5–31 years, 2 women) underwent prolonged video-EEG
monitoring investigations in the Epilepsy Monitoring Unit at
Stichting Epilepsie Instellingen Nederland (Dutch Epilepsy
Clinics Foundation), Heemstede, the Netherlands, during rou-
tine diagnostic work-up. Prior to digitization at a sampling rate
of 200 Hz, EEG signals were filtered using a digital hardware
antialiasing low-pass filter at 100 Hz. Using notch-filters, the

50 Hz powerline component was eliminated. The criterion for
inclusion in the study was the presence of numerous ( 50)
focal seizures (patient 1) or frequent bursts ( 3 per hour) of
spike and wave discharges (SWD) with or without clinical
symptoms (patients 2–5). Patients 1 and 2 had focal seizures
consistent with frontal lobe origin as well as with structural
pathology in these regions detected on magnetic resonance
imaging (MRI) scans. Patients 3 through 5 had absence seizures
and no abnormality in the MRI. Patient number 5 also exhibited
a prominent photosensitivity and she was the only patient who
was not taking antiseizure drugs at the time of the recording.
In patient 1, day and night recordings were analyzed jointly in
order to obtain sufficient data to create reliable statistics. In pa-
tients 2–5, day and night recordings were analyzed separately.

B. GAERS Rats

Recordings form Genetic Absence Epilepsy Rats from Stras-
bourg (GAERS) were obtained at the Laboratory for Clinical
and Experimental Neurophysiology, Department of Neurology,
Ghent University Hospital, Ghent, Belgium. The animals, all
male GAERS, were 4–6 months of age and weighted between
300 and 330 g. We analyzed 9 different EEG fragments from 8
different rats (recordings #8 and #9 are from the same animal).
The EEG was recorded by epidural peg electrodes for three to
five consecutive hours during the light period of the day-night
cycle. All animals were drug free at the time of the recording
and were allowed free movement. No sensory stimulation was
delivered to prevent sleeping. SWD were marked by an experi-
enced clinician. Details of data acquisition and seizure detection
can be found in [6].

C. WAG/Rij Rats

Recordings from Wistar albino Glaxo from Rijswijk
(WAG/Rij) rats were obtained at the NICI/Department of
Biological Psychology, University of Nijmegen, Nijmegen, the
Netherlands. We analyzed recordings from drug free (saline)
rats and from rats six hours after injection of vigabatrin (500
mg/kg). In total, nine rats were analyzed under saline condi-
tions and five rats under vigabatrin. The seizures were scored
during six hours for the saline condition and for 30 min for
the vigabatrin condition, both during the dark period of the
day-night cycle. From vigabatrin treated rats we selected for
further analysis three rats that yielded more than 30 seizures in
the observation period. Details of data acquisition and seizure
detection are given in [7].

D. In Vitro Low Magnesium Models

1) Whole Hippocampal Recordings: Male C57/BL mice
(P8-27) were anaesthetized with halothane and decapitated
in accordance with the Canadian Animal Care Guidelines.
The brain was extracted and placed in ice-cold, oxygenated
ACSF and the hippocampus was dissected out. Hippocampi
were transferred to oxygenated room-temperature ACSF for a
minimum of 1.5 hours before being placed in a dual perfusion
input recording chamber. This solution contained (in mM):
125 NaCl, 26 , 2.5 KCl, 1.8 , 0.9 , 1.25

, and 15 glucose. Epileptiform activity was obtained
by perfusing the tissue with low- ACSF (0.25 mM).
Extracellular field recordings were obtained from the CA1 cell
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layer of the mid-hippocampal region and filtered (lowpass, 1
kHz), amplified and recorded (2 kHz). For a more detailed
dissection methodology, see [8].

2) Hippocampal Slice Recordings: Wistar rats (P18-25)
were anesthetized with halothane and decapitated in accordance
with the guidelines of the Canadian Animal Care Committee.
The brain was quickly removed and placed in ice-cold, continu-
ously oxygenated artificial cerebrospinal
fluid (ACSF). This solution contained (in mM): 125 NaCl, 26

, 2.5 KCl, 1.8 , 0.9 , 1.25 ,
and 10 glucose. Entorhinal cortex/hippocampal slices (500
thick) were incubated for at least 1 h before being transferred
to an interface-type chamber for extracellular field recording
in the CA1 hippocampal region, and recurrent spontaneous
seizures were produced by perfusing the slices with low
ACSF (0.5 mM). For a more detailed description of data acqui-
sition see [9].

E. Automated Seizure Detection

We developed a simple automated method of seizure detec-
tion in human patients. First, the EEG signal was detrended by
subtracting the local mean form the signal. The local mean was
calculated by convoluting the original signal with a Gaussian
kernel of small aperture (width at half maximum: 10–200
points). Subsequently, the detrended signal was squared and
convolved again with a Gaussian kernel of larger aperture
(25–500 points). Apertures were selected individually for
each patient. The resulting signal represented an ‘envelope’
of the original signal where seizures were reflected by large
amplitudes of that signal. The detection threshold was set
individually for each patient such that it gave best results in
comparison to visual inspection of the original signals. The
method was applied to a single channel, which had the smallest
number of artifacts (electrodes Pz or Fz). In patient 1, seizures
were detected visually and marked by a qualified clinical
neurophysiologist (D.V.).

F. Distribution Parameter Estimation

Both ictal and interictal durations distributions were fitted
with a gamma distribution

where and are distribution’s parameters and is a normal-
ization constant. Gamma distributions are flexible in terms of
their overall shape. The shape is determined by the shape pa-
rameter, . For , the distribution has the maximum at the
origin and is monotonically decreasing, for the distribu-
tion has an exponential shape and for , the distribution has
zero at the origin and maximum at nonzero value. The fit was
performed by procedure gamfit in Statistics Toolbox in Matlab,
The Math Works Inc., Natick, MA, USA. This procedure yields
the maximum likelihood estimation and 95% confidence inter-
vals for the and parameters.

G. Mathematical Model

In order to better understand the basic process investigated
here we constructed a formal model with bistability properties.
This can be schematized by considering a ball with zero mass

moving in a media with viscosity and subject to a force gener-
ated by symmetric double-well potential:

. The particle dynamics is also subjected to fluctuations in-
duced by a zero-mean Gaussian noise . The time evolution
of the particle’s coordinate is given by a Langevin equation

Due to the fluctuations the ball may pass from one well to an-
other. We consider that a passage from one state to another has
taken place when the ball moved one-quarter of the way down
to the other state. In order to simulate plastic effects playing a
role in transitions between the two states we introduced a time
dependence of parameter

For , the evolution of parameter , raises the well in which
the ball is currently present and lowers the other one. For ,
the evolution of parameter , lowers the current well and raises
the other one. Changes of are limited by parameter .

We used fixed , , and varied ,
and noise variance. For each parameter set we simulated 2000
transitions and fitted gamma distributions to the distributions of
times spent in one of the states (due to symmetry of the potential,
distributions for both states were almost identical).

III. RESULTS

A. Distributions of Durations of Ictal and Interictall Epochs

The parameter of the gamma distributions fitted to the his-
tograms of durations of ictal epochs are given in Table I, third
column. Graphical presentation of the values of the parameter
for ictal epochs is shown in Fig. 1. The horizontal line on Fig. 1
denotes a value of . In some cases (patient 2, 3, GAERS
2, 5, 9, all WAG/Rij vigabatrin rats), the 95% confidence inter-
vals include . In those cases, the data can be described by
an exponential distribution and the null hypothesis of a Poisson
process cannot be rejected at the significance level 5%. In other
cases (patient 1, 4, 5, GAERS 1, 3, 4, 6, 7, 8, all WAG/Rij rats
saline, all hippocampal recordings), the parameter is signif-
icantly larger than one. In the latter cases, ictal epochs have
predominantly fixed duration and their distributions exhibit a
pronounced maximum corresponding to a deterministic com-
ponent; thus, the hypothesis of a Poisson process operating in a
bistable system can be rejected.

The parameter of the gamma distributions fitted to the his-
tograms of durations of interictal epochs are given in Table I,
fifth column. Graphical presentation of the values of the pa-
rameter for interictal epoch is shown in Fig. 2. The horizontal
line denotes a value of . In a minority of cases (patient 1,
2, 5 day, GAERS 5, all WAG/Rij rats saline, WAG/Rij vigabatrin
rat 3, hippocampal slice (S) recording), the 95% confidence in-
tervals of the parameter include the unity value of . In these
cases, the data are well described by an exponential distribution
and the null hypothesis of a Poisson process cannot be
rejected at the significance level 5%. In other cases (patient 3, 4,
5 night, all GAERS except 5, all WAG/Rij rats saline, WAG/Rij
rats vigabatrin 1, 2), the parameter is significantly smaller than
one and the hypothesis of a Poisson process can be rejected. In
the low magnesium in vitro model, whole hippocampal record-
ings (W) the parameter is much larger than one. Such a value
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TABLE I
SUMMARY OF THE DATA USED AND CORRESPONDING � PARAMETER VALUES FOR DIFFERENT

EXPERIMENTAL CONDITIONS. COLUMNS THREE AND FIVE GIVE GAMMA DISTRIBUTION PARAMETER � WITH

95% CONFIDENCE INTERVALS (CI) OF THE DURATIONS OF ICTAL AND INTERICTAL EPOCHS, RESPECTIVELY.
MEDIAN DURATION WITH 25TH AND 75TH PERCENTILE (P25–P75) OF THE CORRESPONDING ICTAL AND

INTERICTAL EPOCHS ARE GIVEN IN COLUMNS FOUR AND SIX, RESPECTIVELY. LAST TWO

COLUMNS GIVE THE NUMBER (N) OF ANALYSED EPOCHS AND THE TOTAL DURATION T

(IN HOURS) OF THE EEG RECORDINGS USED

GAERS—Genetic Absence Epilepsy Rats from Strasbourg, WAG/Rij—Wistar Albino Glaxo from Rijswijk,
Mg—Low magnesium hippocampal model, “W”—Whole hippocampal recording, “S”—Hippocampal slice
recording.
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Fig. 1. Graphical presentation of the values of shape parameter, �, with
95% confidence intervals of gamma distribution of ictal epochs for different
experimental conditions. The horizontal line denotes value of � = 1. In cases
when 95% confidence intervals include � = 1, the termination of ictal epochs
is consistent with a Poisson process. Numbers on the graph denote number of
patients. Abbreviations: “d”—daytime recording, “n”—nighttime recording,
GAERS—Genetic Absence Epilepsy Rats from Strasbourg, WAG/Rij—Wistar
albino Glaxo from Rijswijk, GVG—vigabtarin, Mg—low magnesium
hippocampal model, “W”—whole hippocampal recording, “S”—hippocampal
slice recording.

Fig. 2. Graphical presentation of the values of shape parameter, �, with 95%
confidence intervals of gamma distribution of interictal epoch for different
experimental conditions. The horizontal line denotes value of � = 1. In cases
when 95% confidence intervals include � = 1, the initiation of ictal epochs is
consistent with a Poisson process. Finding � < 1 at 95% confidence intervals
suggest that seizure initiation occurs according to a random walk process.
Numbers on the graph denote number of patients. Abbreviations: “d”—daytime
recording, “n”—nighttime recording, GAERS—Genetic Absence Epilepsy
Rats from Strasbourg, WAG/Rij—Wistar albino Glaxo from Rijswijk,
GVG—vigabtarin, Mg—low magnesium hippocampal model, “W”—whole
hippocampal recording, “S”—hippocampal slice recording.

suggests the presence of a deterministic mechanism pacing the
occurrence of epileptiform discharges under those conditions.

Examples of experimental distributions with , ,
are presented in Fig. 3(a)–(c), respectively. Despite the

horizontal scale of Fig. 3(a) is different from that of Fig. 3(b),

Fig. 3. Examples of experimental distributions with different values of shape
parameter. (a) � < 1. (b) � = 1. (c) � > 1. In each panel, experimental
distribution and fitted gamma function are shown. (a). Distribution of interictal
epochs during a night in patient 3 (� = 0:46). (b). Distribution of ictal epochs
during a night in patient 3 (� = 1:14). (c). Distribution of ictal epochs during
a night in patient 4 (� = 2:45).

(c), the qualitative differences between the graphs are clear. Dis-
tribution with [Fig. 3(a)] has very long tail, which is not
present for [Fig. 3(b)] and [Fig. 3(c)]. Distribution
with [Fig. 3(c)] has maximum at nonzero value, while
distributions with [Fig. 3(a)] and [Fig. 3(b)] have
maximum at the origin. To establish whether values are related
to the durations of the analyzed epochs we calculated linear cor-
relation coefficient between the values of shape parameter and
median epochs duration. For both ictal and interictal groups, the
correlations were not significant .

B. Mathematical Model

The results of simulations of the mathematical model are
shown in Fig. 4. Fig. 4(a) shows the dependence of parameter

on the viscosity parameter . The plasticity was not included
and the noise standard deviation was high (15). For

the low values of viscosity and large fluctuations, the system
exhibits discrete jumps between the two states. In such a case,
the transition represents a Poisson process and the distribution
of inter-transition intervals is exponential as indicated by values
of close to one. As viscosity increases, the random inputs ac-
cumulate in the course of time and the transition represents a
random walk process. This is reflected in values of .

Fig. 4(b) shows values of the parameter when plastic mech-
anisms (parameter ) were included. In all simulations
shown here, viscosity was low to rule out random
walk effects and noise standard deviation was small (7.5) to slow
down the transition rate and allow plastic changes to take effect.
For negative values of the plasticity parameter , the system
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Fig. 4. Result of the mathematical model. (a) Dependence of the parameter �
on the viscosity parameter q. For low viscosity, single fluctuation can move the
ball from one minimum to another and the transitions are of a Poisson process
type with � close to one. For increasing viscosity the ball accumulates inputs to
reach a transition and the system is of a random walk type with � smaller than
one. (b) Dependence of parameter � on plasticity parameter �. For negative �,
plasticity tends to maintain the current state, which results in a random walk type
of process with� < 1. For positive values of plasticity, the deterministic process
tends to terminate the current state which results in � > 1. (c) Dependence of
the parameter � on standard deviation (std) of the noise. For different noise
levels � is close to one. It shows that � parameter is not sensitive to size of the
fluctuations.

lowers the minimum where the ball currently is present, which
serves as a deterministic mechanism that progressively counter-
acts a transition to the other state. Accordingly, the chance of
a transition decreases as a function of the duration contrary to
the case of Poisson process, where the chance of the transition is
constant. This fact is quantitatively reflected by values of .

For positive values of the plasticity parameter , the system
raises that minimum of the potential function where the ball
currently is present. Therefore, apart from random fluctuations,
there is also a deterministic mechanism that progressively fa-
cilitates a transition to the other state. Accordingly, the times
spent in each of the states exhibit random variation around a
fixed component. This is reflected in the duration distribution
having a single peak at nonzero value as indicated by values of

. With increasing values of the contribution of the fixed
component increases and the transitions progressively attain pe-
riodicity as reflected by increasing values of the parameter .

Fig. 4(c) shows values of parameter for low viscosity
, no plasticity and different values of standard

deviation (std) of the noise. With increasing noise, remains
close to one. This shows that is not sensitive for the level of
noise. The size of the fluctuations influences mainly the scale
parameter, (not shown here).

IV. DISCUSSION

Theaimofthispaperis to inferdynamicalfeaturesofaneuronal
system from the distribution of event and inter-event durations
generated in that system. We analyzed experimental data from
human epilepsies (both localization related and generalized),

animal models and an in vitro model. We followed a parametric
approach, in which distributions of ictal and interictal epochs
were fitted with two-parameter gamma distributions. According
to the value of the fitted shape parameter, transitions in the
underlying system were classified as being consistent with a
Poisson process, a random walk process or a deterministic
process involving plasticity.

Despite the fact that epileptic data analyzed here were very
diverse a clear and consistent pattern emerged from the results.
This is an interesting finding by its own because it shows
that various epileptic models can be classified into only few
different dynamical classes and that several distinct epilepsies
may share the same underlying dynamics of ictal transitions.
The first general outcome of the analysis is that in a number of
ictal and interictal data the null hypothesis of a bistable system
with purely random leaps cannot be rejected. Those cases are
identified by parameter close to one, which implies that the
duration distribution is exponential. As derived analytically [10]
exponential distribution of intervals between events follows
from a Poisson process, in which events occur along time with
constant probability rate of occurrence. Table I and Figs. 1 and 2
show that the distribution’s shape parameter, , can be close to
one in both ictal and interictal recordings. The second result is
that the dynamical processes obtaining during ictal epochs are, in
general, different that those obtaining during the interictal state.
A majority of ictal epochs have an parameter larger than one.
It suggests that deterministic time—dependent mechanisms are
involved in seizure termination and the probability of terminating
an ictal state increases with time spent already in that state. On the
contrary, interictal epochs are described predominantly with
parameter smaller than one. It suggests that the longer the system
remains in a seizure free state the higher the chance it shall remain
seizure free in the immediate future. This kind of dynamics
results in a grouping of seizures, i.e., in the appearance of clusters
of ictal episodes separated by long interictal periods. Seizure
clustering was also reported in other studies. In [11], data from
epileptic patients with different seizure types were analyzed. In
half of the patients, seizure occurrence was indistinguishable
from a Poisson process while other patients showed seizure
clustering. In [12], dependencies between seizure occurrences
were found in patients with complex partial seizures, ruling
out the hypothesis of a homogenous Poisson process. The
former study used seizure diaries maintained for a number of
days while the latter study used seizure times recorded over
1–3 years. Despite obvious differences with these studies our
findings seem to corroborate at least some of the earlier results.
One should note that our study refers to a different time scale
of observation since we analyzed human seizure patterns in
continuous 24 hour recordings.

A clear exception from the rules that apply to interictal epochs
in humans and rats is the in vitro low model. The
parameter describing the distribution of interictal intervals in
whole hippocampal recordings is larger than one (Fig. 2). It
shows that occurrence of ictal epochs have some periodicity,
which is consistent with experimental observations [8]. This is,
however, in contrast to all other interictal recordings analyzed
here. One might also consider that larger alpha values are
related to shorter durations of the epochs analyzed. However,
our linear correlation analysis gave no indication for such a
relationship.
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The current analysis offers some clues regarding the physio-
logical mechanisms responsible for seizure termination. For in-
stance in all patients with absence seizures (3, 4, 5) recordings
during daytime yield higher values of than those during night-
time. Such a variation suggests that at least in these patients and
perhaps in idiopathic generalized epilepsy (IGE) expressing it-
self with absence seizures, deterministic mechanisms of seizure
termination are predominantly operating during wakefulness. A
close relationship to the sleep-waking cycle is present in patients
with IGE [13] that might possibly be hormonally regulated [14].
The extent to which seizure stopping mechanism operates may
also vary between the subjects, even of the same epilepsy type.
This could explain the quantitative differences between values of

for patients 3–5. A marked difference in alpha value of distri-
butions of ictal epochs in patients 1 and 2, both suffering from
the frontal lobe epilepsy, together with differences in durations
of ictal and interictal epochs (see Table I) may reflect the clinical
observations that nocturnal frontal lobe epilepsy syndrome en-
compasses heterogeneous group of patients with various seizure
types (see [15]). However, in the latter study the authors reported
also a remarkable stereotypy in all types of attacks in all patients.
While seizures in patient 1 have stereotyped durations, reflected
by value of alpha much larger than one, seizures in patient 2 seem
to lack homogeneity in their durations (alpha around one). One
cannot exclude that patient 2 displayed more than one type of
epileptic attack, which is common in this type of epilepsy [15].

In WAG/Rij rats, a model with certain similarities with human
absence epilepsy, the parameter is larger than one in all saline
rats, while is equal to one in all vigabatrin treated animals. Such
change of the value of suggests that time-dependent mecha-
nisms of seizure termination, present under normal conditions,
are turned off after vigabatrin administration. A more extensive
interpretation of these results in physiological terms is beyond
the scope of this study and shall be discussed elsewhere.

Results of the simulations of the simple mathematical model
are relevant in two respects. First, they show that the value of the
shape parameter of a gamma distribution can help to distinguish
transitions occurring according to a Poisson process from those
in which transition probability varies with time. Only the former
conditions yield values of close to one while in all other cases,

exhibited deviation from unity (Fig. 4). Second, the model
indicates that when deviates from one, the interpretation of
experimental results may be not straightforward. Values of
smaller than one may arise either due to continuous random walk
process [Fig. 4(a)] or due to deterministic changes counteracting
the transitions [Fig. 4(b)]. These two mechanisms, that probably
correspond to quite different physiological substrates, result in
fact in the same type of process if one considers the combined
dynamics of and . The only distinction between “plastic”
parameters and “ordinary” dynamic degrees of freedom is their
different scale of time-evolution. Values of suggest the
presence of plastic mechanisms that act to abort the current
state [Fig. 4(b). Alternatively, a gamma distribution with of

can also arise from the sum of exponentially distributed
random variables having equal means [16]. The interpretation
of experimental results with is therefore, in strict terms,
not unique.

Identification of dynamical scenarios leading to the appear-
ance of paroxysmal episodes may help to establish whether the
occurrence of this type of phenomena can be predicted. Our

results suggest that seizure onset is associated with either a
Poisson or a random walk type of process and that such may
differ depending on whether one is dealing with localization-re-
lated epilepsy with a focal seizure disorder or with an IGE with
an absence seizure disorder. It implies that prediction of the
exact timing of seizure occurrence is not possible. However,
quantifying the probability for seizure transition by monitoring
changes of the system’s excitability may be feasible [17].

Understanding the dynamical mechanisms underlying the oc-
currence of epileptic seizures in selected cases may afford the
possibility to abort an ictal state by appropriate counter stimula-
tion when applicable. In bistable systems where a stable steady-
state coexists with a stable limit cycle, for instance, the abnormal
rhythm may be terminated by a single well-timed pulse [2]. We
demonstrated an effective single pulse counter-stimulation in
our computational model, which exhibited bistability proper-
ties [3].in an earlier study [3]. However, seizures belonging to
different dynamical classes my require different stimulation ap-
proaches. Therefore, application of the general method of estab-
lishing dynamical properties of the epileptic system presented in
this study may be an important step to design appropriate seizure
control paradigm.

In summary, our analysis of the temporal distributions of both
interictal epochs and epileptic seizures may provide additional
insight into the dynamical nature of the underlying pathophysi-
ological system. In general, although seizure initiation appears
to be governed by a stochastic (Poisson or random walk) process
seizure termination often involves deterministic mechanisms.
Reconstruction of fundamental dynamical laws governing the
behavior of an epileptic system in time is a powerful tool both
for inferring knowledge on the system’s future behavior and for
developing appropriate and rational therapeutic strategies.
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