
THE GREAT OÏD
(DDD ’24/25 X, XI & XII [RRS])

Figure 1. An artist’s impression of a cosmic Void. One of the largest such spaces
in the Universe is The Boötes Void, poetically described as The Great Nothing.
Unlike the cosmic Nothings large and small, those in our understanding and mod-
elling of symmetries in field (string, M-, etc.) theory can and ought to be filled
with Meaningful Stuff. One such procedure encountered along the Path to Great
Categorification consists in ingeniously dropping the “V”. . .
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We have, by now, an almost complete geometric framework in which to formulate the Gauge
Principle—as intuited by theoretical physicists in the 2nd half of the last century of the previous
millenium, on the wave of The Grand Unification—with the symmetry model given by a group
action λ ∶ GÐ→ Diff(M) on the space of internal degrees of freedom M of a field theory. In order
to spell out that Principle in full, we still need to go to the tangent of the many constructions
discussed and lift to that tangent the local splitting of the total space of the bundle into its base
B and the typical fibre M in a consistent manner, a construction which goes under the name
of connection. Prior to rigorously formulating and—immediately thereafter—attaining that goal,
though, we first generalise the symmetry model itself, with a view to encompassing rather natural
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geometric situations such as the one described in Weinstein’s motivating example of Sec. IV.2. in
Lecture I. Thus, in what follows, we consider—after [SS25]—a symmetry model given by a Lie
groupoid, which—whenever it comes with object manifold M and arrow manifold G —we denote
as G // // M , or—by a mild and common abuse of notation—simply as G . Its group of bisections,
about to play a pivotal rôle in our field-theoretic constructions, shall be denoted as B.

1. The mother principaloid bundle, its shadow that matters, & the duck sitting
in between

Let us recapitulate our assumptions: We want a fibre bundle with base given by our preferred
spacetime B and typical fibre (with the interpretation of the ‘space of internal degrees of freedom’)
given by the object manifold M of a Lie groupoid G //// M . The transition 1-cocycle invariably
takes values in a subgroup of Diff(M), and it precisely there where we encode the novel symmetry
model—we restrict to those diffeomorphisms which are engendered by the Lie groupoid1, i.e., the
group of bisections in the shadow realisation t∗(B) ⊂ Diff(M). At this stage, we might look for a
‘parent’ fibre-bundle structure from which the thus constrained local transition data of the ‘matter
bundle’ (and subsequently also a connection) would be induced, in analogy with the classic setting.
The first thing that springs to one’s mind is a principal bundle for the structure group chosen, but
that is quite problematic as we are dealing with an infinite-dimensional (generically) Lie group,
and so the corresponding principal bundle would have to be infinite dimensional, too. In order
to avoid technical (and conceptual) problems naturally associated with differential geometry in
infinite dimension, we shall, instead, look for a finite dimensional construction that cleverly encodes
the same topological information (over B) as a transition 1-cocycle of a principal B-bundle. In so
doing, we draw intuition from the nontrivial prototype inscribed in the Trident (VII-VIII-IX.9).
There, the associated bundle P ×λM is the prototype of our ‘matter bundle’, and over it, we find
the peculiar object P ×M , which carries the information about the principal bundle, and that
of the associating action (in the typical fibre). Taking into account a convenient model of the
principal bundle:

P = ⊔
i∈I
(Oi ×G)/ ∼g⋅⋅ ,

written in terms of the transition maps gij ∶ Oij Ð→ G associated with local trivialisations over
elements Oi of an open cover of B, we readily derive a groupoidal rendering of the identification
of typical fibres of P ×M over the intersections Oij :

(x, (g,m), j) ∼ (x, (gij(x) ⋅ g,m), i) ≡ (x, (gij(x), λg(m)).(g,m), i) .
Above, the binary operation represented by . is that in the action Lie groupoid. Thinking in terms
of the corresponding bisections, we rewrite the above as

(x, (g,m), j) ∼ (x, (gij(x) ⋅ g,m), i) ≡ (x, (gij(x), ⋅)(t(g,m)).(g,m), i) ≡ (x,L(gij(x),⋅)(g,m), i) ,
where, clearly,

(gij(x), ⋅) ∈ Bisec(G⋉λM) .
We are thus led to
Definition 1. A principaloid bundle P over B is a fibre bundle (P,B,G , πP) with structure
group L(B) ⊂ Diff(G ).
Corollary 1. For every principaloid bundle P with a transition 1-cocycle βij ∈ C∞(Oij ,B), asso-
ciated with an open cover {Oi}i∈I of the base B of P, there exists a canonical bundle isomorphism

P ≅ ⊔
i∈I
(Oi × G )/ ∼Lβ⋅⋅ ,(1)

which puts the bundle on the right-hand side in the rôle of a model of P.

1Our choice of the paradigm in which to formulate the postulates—that of the theory of fibre bundles—plays a
decisive rôle. Had we relinquished the idea of a global model of the ‘space of internal degrees of freedom’, we might
now contemplate more general geometric structures.
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Proof: A simple consequence of The Clutching Theorem (V.3) for fibre bundles. □

Remark 1. It is to be emphasised at this stage that principaloid bundles, while offering us
the practical advantage of finite-dimensionality, actually carry—as anticipated in our general
considerations—the same Čech-cohomological information as the underlying infinite-dimensional
principal B-bundles. Indeed, the latter are represented—in virtue of The Clutching Theorem just
invoked—by (classes of) the corresponding transition 1-cocycles {βij}(i,j)∈I×2O , and these can read-
ily be recovered from their realisations Lβij on the typical fibre G through evaluation on the
identity bisection Id(M) ⊂ G ,

Lβij(x)(Idm) ≡ (βij(x))(t(Idm)).Idm = (βij(x))(m) .
This observation highlights the strength and naturality of Def. 1.

Having found the ‘parent’ bundle, we next recover the ‘matter’ bundle from
Theorem 1. Every principaloid bundle P canonically induces a fibre bundle (F ,B,M,πF ) with
structure group t∗(B) ⊂ Diff(M) and model

F ≅ ⊔
i∈I
(Oi ×M)/ ∼t∗β⋅⋅ ,(2)

written in terms of the transition 1-cocycle {βij}(i,j)∈I×2O of P. It comes with a bundle map

P
D //

πP

��

F

πF

��
Σ

,(3)

locally modelled on t ∶ G →M . The triple (P,F ,D) carries a canonical structure of a principal-
G -bundle object in the category of fibre bundles over Σ,

Σ

idΣ

��

P
πPoo

D

����

µ

��

G

��
Σ FπF

oo M

,(4)

with (B-equivariant) moment map µ ∶ P Ð→M locally modelled on s, and action ϱ ∶ Pµ×tG Ð→
P locally modelled on the right-fibred action of G on itself.

Proof: Formula (2) implies that the induced bundle admits local trivialisations

F τi ∶ π−1F (Oi)
≅ÐÐ→ Oi ×M(5)

such that the corresponding transition mappings are

F τi ○F τ−1j ∶ Oij ×M Ð→ Oij ×M ∶ (x,m) z→ (x, t∗(βij(x))(m)) .
Now, the local mappings

Di ∶ π−1P (Oi) Ð→ π−1F (Oi) ∶ Pτ−1i (x, g) z→F τ−1i (x, t(g))

glue up smoothly at x′ ∈ Oij as

Dj(Pτ−1i (x′, g)) = Dj(Pτ−1j (x′, Lβji(x′)(g))) ≡F τ−1j (x′, t(βji(x′)(t(g)).g))

= F τ−1j (x′, t∗βji(x′)(t(g))) =F τ−1i (x′, t∗βij(x′) ○ t∗βji(x′)(t(g)))
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= F τ−1i (x′, t∗(βij(x′) ⋅ βji(x′))(t(g))) =F τ−1i (x′, t(g)) ≡ Di(Pτ−1i (x′, g)) .
For the structure of a right G -module on P, define smooth maps

µi ∶ π−1P (Oi) Ð→M ∶ Pτ−1i (x, g) z→ s(g) .
On overlaps Oij × G ∋ (x, g) of trivialisation charts, we find

µj(Pτ−1i (x, g)) = µ(Pτ−1j (x,βji(x) ⊳ g)) ≡ s(βji(x) ⊳ g) = s(g) ≡ µi(Pτ−1i (x, g)) .
Hence, the µi are restrictions µi = µ↾π−1

P
(Oi) of a globally smooth map

µ ∶ P Ð→M .

The map is readily seen to intertwine the defining action R of B on P with the shadow action
t∗ ○ Inv on M : For ever y (x, g) ∈ Oi × G and β ∈ B,

(µ ○Rβ)(Pτ−1i (x, g)) ≡ µ(Pτ−1i (x, g ⊲ β)) ≡ s(g ⊲ β) = t∗(β−1)(s(g)) ≡ (t∗(β−1) ○ µ)(Pτ−1i (x, g)) ,

where the third equality follows from identities (i) of Prop. 6. Thus, indeed, µ ○Rβ = t∗(β−1) ○ µ.
Next, consider smooth maps

ϱi ∶ π−1P (Oi)µi×tG Ð→ π−1P (Oi) ∶ (Pτ−1i (x, g), h) z→Pτ−1i (x, g.h) .
Again, the above glue to a globally smooth map

ϱ ∶ Pµ×tG Ð→P

since – for arbitrary (x, g) ∈ Oij × G and h ∈ t−1(s(g)) –

ϱj(Pτ−1i (x, g), h) = ϱj(Pτ−1j (x,βji(x) ⊳ g), h) ≡Pτ−1j (x, (βji(x) ⊳ g).h) =Pτ−1j (x,βji(x) ⊳ (g.h))

= Pτ−1i (x, g.h) ≡ ϱi(Pτ−1i (x, g), h) ,
where in the third equality we used Eq. (28). The triple (P, µ, ϱ) satisfies axioms (GrM1)–(GrM3)
from Def. IV-75. of a right G -module. This follows immediately from the fact that it is locally
modelled on the canonical right-G -module structure of Ex. IV-77.

Finally, we demonstrate the existence, on the fibred square P ×F P ≡P D×D P, of a unique
map

ϕP ∶ P ×F P Ð→ G(6)

with the property (pr1, ϕP) = (pr1, ϱ)−1, which can be expressed more explicitly as

t ○ ϕP(p1, p2) = µ(p1) , p2 = ϱ(p1, ϕP(p1, p2)) ,(7)

with arbitrary (p1, p2) ∈P ×F P. Consider smooth maps

ϕi ∶ π−1P (Oi) ×F π−1Oi
(Oi) Ð→ G ∶ (Pτ−1i (x, g1),Pτ−1i (x, g2)) z→ g−11 .g2 ,

whose well-definedness hinges on the identity s(g−11 ) = t(g1) = t(g2), derived from

F τ−1i (x, t(g1)) ≡ D ○Pτ−1i (x, g1) = D ○Pτ−1i (x, g2) ≡F τ−1i (x, t(g2)) .
These maps satisfy the equality (written for any x ∈ Oij)

ϕj(Pτ−1i (x, g1),Pτ−1i (x, g2)) = ϕj(Pτ−1j (x,βji(x) ⊳ g1),Pτ−1j (x,βji(x) ⊳ g2))

≡ (βji(x) ⊳ g1)
−1
.(βji(x) ⊳ g2) = (g−11 ⊲ βij(x)).(βji(x) ⊳ g2) = g−11 .(βij(x) ⊳ (βji(x) ⊳ g2))

= g−11 .((βij(x) ⋅ βji(x)) ⊳ g2) = g−11 .g2 ≡ ϕi(Pτ−1i (x, g1),Pτ−1i (x, g2)) ,
in whose derivation we have invoked Eqs. (27) and (29). Hence, they glue up to a globally smooth
map

ϕP ∶ P ×F P Ð→ G , ϕP↾π−1
P
(Oi)×Fπ−1

Oi
(Oi) ≡ ϕi ,

The desired properties (7) are readily verified in the local presentation. □
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Definition 2. We call F the shadow (bundle) of P and D ∶ P Ð→ F the sitting-duck
map. We call the map (6) the division map of P.

The shadow bundle is our model of the configuration bundle of a field theory with the global
symmetry G //// M gauged. It is illuminating to draw a picture of its local sections (representing
‘matter’, or ‘Higgs’ fields), and relate it to the intuitions derived in Sec. VII-VIII-IX.2.

B
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Figure 2. The shadow bundle F Ð→ B and its global section φ ∈ Γ(F ) repre-
sented by locally smooth maps φi ∶ Oi Ð→M glued by the transition 1-cocycle
{t∗βij}(i,j)∈I×2O of F associated with a trivialising cover O = {Oi}i∈I of the space-
time base B. The gluing models local-field discontinuities within G -orbits.

Remark 2. In the light of The Godement Criterion of Thm. I.21., the shadow bundle F is
diffeomorphic to P//G and the sitting-duck map is the quotient map P →P//G . Note, however,
that in contrast to ordinary Lie-group actions, freeness and properness of a G -action does not, in
general, give a principaloid bundle.

We immediately note the following very natural ‘symmetry’ property of the principaloid bundle:

Corollary 2. Every principaloid bundle P is endowed with a canonical right action of the group
of bisections B of its structure groupoid G , given by the formula

R ∶ P ×BÐ→P ∶ (p, β) z→ p ◂ β−1(µ(x))−1 .

Proof: The statement follows directly from Prop. 7 (itself a counterpart of Prop. IV-78. for right
actions), with R ≡ Bϱ. □

One is tempted to enquire if, perhaps, this is actually a defining property. The answer turns
out to be much subtler than expected. . .

Theorem 2. For every Id-reducibile Lie groupoid G , the commutant, within Diff(G ),

CDiff(G )(R(B)) ≡ R(B)′ ∶= { Ψ ∈ Diff(G ) ∣ ∀β ∈ B ∶ Ψ ○Rβ = Rβ ○Ψ }

of the subgroup R(B), i.e.—in other words—the group of R(B)-equivariant diffeomorphisms of G ,
is L(B), the group of left-multiplications by bisections:

DiffB(G ) ≡ R(B)′ = L(B) .
5
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Proof: To be provided in the next lecture. □

The last result enables us to reformulate the definition of a principaloid bundle for the distin-
guished class of structure Lie groupoids.
Proposition 1. For every Id-reducibile Lie groupoid G , the following statements are equivalent:
(PdB1) (P,B,G , πP) is a principaloid bundle;
(PdB2) (P,B,G , πP) is a right B-space in the category of fibre bundles with typical fibre G , such

that, in a local trivialisation, B acts by right-multiplication on the fibre G .

Proof: The implication (PdB1)Ô⇒ (PdB2) is a consequence of Cor. 2. For the converse implication,
note that—by definition—the group of bisections B acts on the right B-space object P by bundle
automorphisms which cover the identity on B, i.e., there exists a group homomorphism

R ∶ BÐ→ AutBun(B)(P)vert .(8)

The object P admits, furthermore, an open cover {Oi}i∈I of its base B with local trivialisations

Pτi ∶ π−1P (Oi)
≅ÐÐ→ Oi × G , i ∈ I(9)

which are B-equivariant,

Rβ ○Pτ−1i (x, g) =Pτ−1i (x,Rβ(g)) , (x, g) ∈ Oi × G .

For every x′ ∈ Oij and g ∈ G , we obtain

Pτi ○Pτ−1j (x′, g) = (x′, tij(x′, g))
for some smooth map

tij ∶ Oij Ð→ DiffB(G ).
Here, for simplicity, tij(x, g) ≡ (tij(x)) (g). (PdB1) now follows directly from Thm. 2 : The tran-
sition maps tij take the special form:

tij(σ) = Lβij(σ)

expressed in terms of a Čech transition 1-cocycle

βij ∶ Oij Ð→ B , (i, j) ∈ I×2O .

□

Example 1. The relevance of the assumption of Id-reducibilty in Thm. 2, and so also in Prop. 1,
can readily be demonstrated2 on the previously introduced example of a non-Id-reducible pair
groupoid Pair(M12) of the disjoint sum M12 = M1 ⊔M2 of two non-diffeomorphic manifolds M1

andM2 of the same dimension. Assuming theMα connected, we obtain the following decomposition
of the arrow manifold of Pair(M12) into disjoint connected components

M12 ×M12 =M1 ×M1 ⊔M1 ×M2 ⊔M2 ×M1 ⊔M2 ×M2 .

Consider a diffeomorphism of M12 ×M12 with the corresponding decomposition

Φ = idM1×M1 ⊔ idM1×M2 ⊔ (f2 × idM1) ⊔ idM2×M2 ,

written for some f2 ∈ Diff(M2) ∖ {idM2}. As the diffeomorphism has a trivial restriction to the
second argument in its domain, it manifestly commutes with

R(B) = { idM12 × (f1 ⊔ f2) ∣ (f1, f2) ∈ Diff(M1) ×Diff(M2) } ⊂ Diff(M12) .
On the other hand, we have

L(B) = { (f1 ⊔ f2) × idM12 ∣ (f1, f2) ∈ Diff(M1) ×Diff(M2) } ⊂ Diff(M12) ,

2The author thanks Damian Kayzer and Jakub Filipek for suggesting and working out (a special case of) this
example.
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and so, clearly,

Φ ∉ L(B) .

Thus, the observed feature of principaloid bundles is not a defining one in general, and so we shall
keep the original sheaf-theoretic definition for the sake of keeping the class of admissible structure
Lie groupoids as wide as possible.

2. Automorphisms of principaloid bundles

Now that the basic objects of our theory have been introduced, it is time to indicate the class of
bundle automorphisms which are going to model groupoidal ‘symmetry transformations between
the local frames’, along the lines (re)drawn in Lectures VII, VIII and IX. As in the case of transition
maps, we fix the latter in local presentations, choosing from among diffeomorphisms of the typical
fibre G . And once again, we impose a groupoidal nature of the structure maps under considerations
by restricting this choice to L(B) ⊂ Diff(G ) (for the principaloid bundle) resp. t∗(B) ⊂ Diff(M)
(for the shadow bundle). We start with
Definition 3. Let (P,B,G , πP) be a principaloid bundle and let O ≡ {Oi}i∈I be a trivialising
cover of its base B, with the associated transition 1-cocycle {βij}(i,j)∈I×2O . An automorphism of P

is a bundle map (Φ, f) with base component f ∈ Diff(B) covered by a diffeomorphism Φ ∈ Diff(P),
as in the commutative diagram

P
Φ //

πP

��

P

πP

��
B

f
// B

,

which admits local restrictions

Φ↾ ∶ π−1P (O
f
(j,i))

≅ÐÐ→ π−1P (f(O
f
(j,i))) ∶ Pτ−1i (x, g) z→Pτ−1j (f(x), Lγ(j,i)(x)(g)) ,

written for the refined cover Of ∶= {Of
(j,i) ≡ f

−1(Oj) ∩ Oi}(j,i)∈I×2
f,O

of Σ with I×2f,O ∶= { (j, i) ∈
I×2 ∣Of

(j,i) ≠ ∅ } in terms of a family of smooth maps

γ(j,i) ∶ Of
(j,i) Ð→ B , (j, i) ∈ I×2f,O

subject to the gluing relations

γ(l,k)↾Of

(j,i)(l,k)
= (f∗βlj ⋅ γ(j,i) ⋅ βik)↾Of

(j,i)(l,k)
(10)

over the Of
(j,i)(l,k) ≡ O

f
(j,i) ∩ O

f
(l,k). Whenever f = idΣ, we call the automorphism vertical, or a

gauge transformation of P.
The group of automorphisms of P shall be denoted as

Aut(P) ,

and its subgroup composed of vertical automorphisms, also to be referred to as the gauge group
of P, as

Gauge(P) ≡ Autvert(P) .

Remark 3. The gluing relations (10) are determined uniquely by the requirement that the local
presentations glue to a globally smooth bundle map.
We have the obvious
Proposition 2. Automorphisms of a principaloid bundle P are equivariant with respect to the
right action of its structure Lie groupoid G of Thm. 1, and so also with respect to the induced
right B-action of Cor. 2. For G Id-reducible, the converse is also true: Every B-equivariant bundle
(self-)map Φ ∈ DiffB(P) is an automorphism of the principaloid bundle P.
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Proof: The claim is a straightforward consequence of the associativity of the groupoid multipli-
cation (which ensures the commutativity of the left and right multiplications), and—in its second
part—of Thm. 2. □

As desired, automorphisms of the ‘mother’ bundle P give rise to distinguished automorphisms
of its shadow—the ‘matter’ bundle F .
Proposition 3. There exists a canonical group homomorphism

F∗ ∶ Aut(P) Ð→ Aut(F ) ,
satisfying, for all Φ ∈ Aut(P) and Φv ∈ Gauge(P), the equivariance identity

D ○Φ =F∗(Φ) ○D .(11)

Proof: In the light of Thm. 1 and Def. 3, we find, for (x, g) ∈ Of
(j,i) × G ,

(D ○Φ)(x, g) = (f(x), t(Lγ(j,i)(x)(g))) = (f(x), t∗(γ(j,i)(x))(t(g))) ,

where the last equality uses Prop. 6 (ii). This provides us with the smooth candidate

F∗(Φ)(j,i) ∶ π−1F (O
f
(j,i)) Ð→ π−1F (f(O

f
(j,i))) ∶ F τ−1i (x,m) z→F τ−1j (f(x), t∗(γ(j,i)(x))(m))

for a local presentation of F∗(Φ). We readily check the globality of the thus presented bundle
automorphism through a direct calculation (carried out for x′ ∈ Of

(j,i)(l,k)):

F∗(Φ)(l,k)(F τ−1i (x′,m)) =F∗(Φ)(l,k)(F τ−1k (x′, βki(x′)⊳m))

= F τ−1l (f(x′), γ(l,k)(x′) ⋅ βki(x′)⊳m) =F τ−1j (x′, f∗βjl(x′) ⋅ γ(l,k)(x′) ⋅ βki(x′)⊳m)

= F τ−1j (x′, γ(j,i)(x′)⊳m)))) ≡F∗(Φ)(j,i)(F τ−1i (x′,m)) ,
in which the homomorphic nature of t∗ has been taken into account, see Def. II-III.40. The latter
also ensures homomorphicity of F∗. □

Definition 4. Let F be the shadow of a principaloid bundle P, and let φ ∈ gauge transform of
φ ∈ Γ(F ) be a global section of F . Its pushforward by an automorphism F∗(Φ) of F induced
from a gauge transformation Φ ∈ Gauge(P),

φΦ ≡F∗(Φ) ○ φ ,
shall be called a gauge transform of φ.

3. The Gauge Trident: Ehresmann, momentum, the sitting duck and. . .Action!

In Lectures VII, VIII and IX, we encoded the action of the automorphism group of the principal
bundle on the associated bundle P×λM in the structure of a left module with respect to the Atiyah–
Ehresmann groupoid At(P) on the latter bundle, descended from an analogous structure on P×M
(inherited from P). Below, we want to replicate that successful approach for a generic structure
groupoid. The ‘only’ impediment that we encounter on our way is the absence of a principal B-
bundle and the inadequacy of the various actions—that of G and that of B, engendered by it—on
its ‘tame’ structural substitute P as candidates for a quotienting procedure. Therefore, we take as
the basis of our present generalisation a judiciously chosen presentation of the Atiyah–Ehresmann
groupoid from the proof of Prop.VII-VIII-IX.11., to wit,

At(P) = ⊔
j∈I
(P ×Oj)/ ∼rInv○g⋅⋅≅ ⊔

i,j∈I
(O(1)i ×G ×O(2)j )/ ∼ℓ

g
(1)⋅⋅
○℘

Inv○g(2)⋅⋅
.

With this in mind, we give
8
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Definition 5. We shall call the fibre bundle πAt(P) ∶ At(P) Ð→ Σ with typical fibre P and
model

πAt(P) ∶ At(P) ≡ ⊔
i∈I
(P × πAt(P) ∶ Oi)/ ∼Rβ−1⋅⋅

∶ [(p, x)] z→ x ,

the Atiyah bundle of P. We shall also denote, in the above model,

π1 ∶ ⊔
i∈I
(P ×Oi)/ ∼Rβ−1⋅⋅

Ð→ Σ ∶ [(p, x)] z→ πP(p) .

Remark 4. At(P) is canonically induced by the principaloid bundle P through its transition
1-cocycle {βij}i,j∈I×2O realised by the defining action (8).

Theorem 3. The pair (At(P),F ) carries a canonical structure of a Lie groupoid, fitting into
the following short exact sequence:

Ad(P) �
� jAd(P) //

T∣

��

S∣

��

At(P) π // //

T

��

S

��

Σ ×Σ

pr1

��

pr2

��
F F πF

// Σ

.(12)

Here, π = (π1, πAt(P)) and jAd(P) is the embedding of Ad(P) = π−1(Id(Σ)), where Id(Σ) ⊂ Σ×Σ
is the identity bisection.

The proof of Theorem 3 bases upon a pair of propositions and a lemma stated below.
Proposition 4. The pair (At(P),F ) composes, in a canonical way, a Lie groupoid, with the
following structure maps, modelled on those of the Lie groupoid G in local trivialisations,

At(P) ×F At(P) M // At(P) J // At(P) S //
T

// F

I

~~ .(13)

Proof: We begin by noting that At(P) admits further (model) resolution given by

At(P) ≅ ⊔
i,j∈I
(O(1)i × G ×O(2)j )/ ∼L(1)

β⋅⋅ ○R
(2)
β−1⋅⋅

,(14)

with local charts glued by the identifications

(x1, g, x2, k, l) ∼ (x1, βik(x1) ⊳ g ⊲ βlj(x2), x2, i, j) .

Accordingly, we define the structure maps as follows

S ∶ At(P) Ð→F , [(x1, g, x2, i, j)] z→ [(x2, s(g), j)] ,

T ∶ At(P) Ð→F , [(x1, g, x2, i, j)] z→ [(x1, t(g), i)] ,
(15)

I ∶ F Ð→ At(P), [(x,m, i)] z→ [(x, Idm, x, i, i)] ,

J ∶ At(P) Ð→ At(P), [(x1, g, x2, i, j)] z→ [(x2, g−1, x1, j, i)]

and

M ∶ At(P)S×TAt(P) Ð→ At(P), ([(x1, g, x2, i, j)], [(x2, h, x3, k, l)]) z→ [(x1, g.(βjk(x2) ⊳ h), x3, i, l)] .

The well-definedness of the above maps is ensured by the identifications
● for the source map, at x1 ∈ Oik and x2 ∈ Ojl,

S([(x1, βki(x1) ⊳ g ⊲ βjl(x2), x2, k, l)]) = [(x2, βlj(x2)⊳ s(g), l)] ≡ [(x2, s(g), j)] ,

see Eq. (24) in Appendix A;
9
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● for the target map, at x1 ∈ Oik and x2 ∈ Ojl,

T([(x1, βki(x1) ⊳ g ⊲ βjl(x2), x2, k, l)]) = [(x1, βki(x1)⊳ t(g), k)] ≡ [(x1, t(g), i)] ,

see Eq. (25);
● for the identity map, at x ∈ Oij ,

I([(x,βji(x)⊳m,j)]) = [(x,Cβji(x)(Idm), x, j, j)] ≡ [(x, Idm, x, i, i)] ,

see Eq. (26);
● for the inverse map, at x1 ∈ Oik and x2 ∈ Ojl,

J[(x1, βki(x1) ⊳ g ⊲ βjl(x2), x2, k, l)] = [(x2, βlj(x2) ⊳ g−1 ⊲ βik(x2), x1, l, k)] ≡ [(x2, g−1, x1, j, i)] ,

see Eq. (27);
● for the multiplication map, at x1 ∈ Oim, x2 ∈ Ojkno and x3 ∈ Olp,

M([(x1, βmi(x1) ⊳ g ⊲ βjn(x2), x2,m,n)], [(x2, βok(x2) ⊳ h ⊲ βlp(x3), x3, o, p)])

= [(x1, (βmi(x1) ⊳ g ⊲ βnj(x2)−1).(βno(x2) ⊳ (βok(x2) ⊳ h) ⊲ βlp(x3)), x3,m, p)]

= [(x1, (βmi(x1) ⊳ g).((βjn(x2) ⊳ (βno(x2) ⋅ βok(x2)) ⊳ h) ⊲ βlp(x3)), x3,m, p)]

= [(x1, (βmi(x1) ⊳ g).((βjn(x2) ⋅ βnk(x2)) ⊳ h ⊲ βlp(x3)), x3,m, p)]

= [(x1, βmi(x1) ⊳ (g.(βjk(x2) ⊳ h)) ⊲ βlp(x3), x3,m, p)] ≡ [(x1, g.(βjk(x2) ⊳ h), x3, i, l)] ,

see Eq. (29).
The constitutive relations between the structure maps are implied by the same relations for their
local models. The only seemingly non-obvious ones are those involving the multiplication map
M, but in the light of the above consistency check and the simple relation At(P) S×TAt(P) ⊂
At(P) ×Σ At(P), we may rewrite the definition of M as

M ∶ At(P)S×TAt(P) Ð→ At(P), ([(x1, g1, x2, i, j)], [(x2, g2, x3, j, l)]) z→ [(x1, g1.g2, x3, i, l)] .
(16)

□

Definition 6. We shall call At(P) // // F the Atiyah–Ehresmann groupoid of P. The short
exact sequence (12) of Lie groupoids shall be referred to as the Atiyah sequence for P.
Lemma 1. The pair (π,πF ) is an epimorphism from the Lie groupoid At(P) to the Lie groupoid
Pair(Σ).

Proof: The statement of the Lemma follows straightforwardly from the fact that the structure
maps (15) and (16) cover the corresponding structure maps of Pair(Σ). □

Proof of Theorem 3. The existence of the structure of a Lie groupoid on (At(P),F ) is stated in
Prop. 4. Exactness of sequence (12) at its node Pair(Σ) then follows from Lem. 1. As a set, Ad(P)
fits into the short exact sequence by definition, and the only thing that remains to be proven is
the embedding of the pair (Ad(P),F ) in the Atiyah–Ehresmann groupoid At(P) //// F as a
Lie subgroupoid. Since (π,πF ) is an epimorphism of Lie groupoids in that category, its arrow
component π is automatically transverse to Id(Σ) ⊂ Σ ×Σ (as a submersion), and so we conclude
the present proof by invoking Prop. VII-VIII-IX.9. □

Definition 7. We shall call Ad(P) the adjoint bundle of P, and Ad(P) // // F the adjoint
groupoid of P. The latter shall be denoted as C(P).

10
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Proposition 5. The adjoint fibre bundle Ad(P) has the model

Ad(P) ≅ ⊔
i∈I
(Oi × G )/ ∼Cβ⋅⋅ ,(17)

written in terms of the transition 1-cocycle {βij}(i,j)∈I×2O of P which we realise by conjugation of
G by B.

Proof: By definition, we have—in the notation of Eq. (14)—

Ad(P) ≡ π−1(Id(Σ)) = ⊔
i,j∈I
(O(1)i ×Σ (G ×O(2)j ))/ ∼L(1)

β⋅⋅ ○R
(2)
β−1⋅⋅

.

Thus, a point in Ad(P) is an equivalence class [(x, g, x, i, j)] ≡ [(x, g ⊲ βji(x), x, i, i)] ≡ [(x,βji(x) ⊳
g, x, j, j)]. We define (smooth) maps

ȷAd(P) ∶ ⊔
i∈I
(Oi × G )/ ∼Cβ⋅⋅Ð→ Ad(P) ∶ [(x, g, i)] z→ [(x, g, x, i, i)]

and

ιAd(P) ∶ Ad(P) Ð→ ⊔
i∈I
(Oi × G )/ ∼Cβ⋅⋅ ∶ [(x, g, x, i, j)] z→ [(x, g ⊲ βji(x), i)] ,

which are readily checked to be each other’s inverses. Their well-definedness is a consequence of
the identities, written for x ∈ Oij and x′ ∈ Oijkl,

ȷAd(P)([(x,Cβji(x)(g), j)]) ≡ [(x,Cβji(x)(g), x, j, j)] = [(x,βji(x) ⊳ g ⊲ βji(x)
−1, x, j, j)] = [(x, g, x, i, i)] ,

and

ιAd(P)([(x′, βki(x′) ⊳ g ⊲ βlj(x′)−1, x′, k, l)]) ≡ [(x′, (βki(x′) ⊳ g ⊲ βlj(x′)−1) ⊲ βlk(x′), k)]

= [(x′, βki(x′) ⊳ g ⊲ βjl(x′) ⋅ βlk(x′), k)] = [(x′, βki(x′) ⊳ g ⊲ βjk(x′), k)]

= [(x′, βki(x′) ⊳ (g ⊲ βjk(x′) ⋅ βki(x′)) ⊲ βki(x′)−1, k)] = [(x′, g ⊲ βjk(x′) ⋅ βki(x′), i)]

= [(x′, g ⊲ βji(x′), i)] ,

where in the second, third and fourth lines, we have used commutativity of the left and right
actions of B on G , alongside the 1-cocycle condition satisfied by the βij(x′). □

Remark 5. The π-fibres of At(P) are isomorphic to the Lie groupoid G . We can thus read
the exact sequence (12) also as saying that (At(P),Pair(B),G , π) is a fibre-bundle object in the
category of Lie groupoids:

G �
� // At(P)

π

��
Pair(B)

.

This is a general feature noted already in the classic setting, on the special examples captured by
Diags. VI.9. and VII-VIII-IX.11.

Our considerations are crowned by
Theorem 4. The Atiyah–Ehresmann groupoid acts on the principaloid bundle and its shadow in
the following way:

● On every principaloid bundle P, there exists a canonical structure of a left At(P)-module,
with momentum µP = D ∶ P Ð→F and action

λP ∶ At(P)S×DP Ð→P ∶ ([(x1, g, x2, i, j)], [(x2, h, k)]) z→ [(x1, g.(βjk(x2) ⊳ h), i)] ,
(18)

11
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written in the local models: (14) for At(P) and (1) for P, for x1 ∈ Oi and x2 ∈ Ojk.
● This structure covers the canonical structure of a left Pair(B)-module on B, with momen-

tum µB ≡ idB and action

λB ∶ (B ×B) pr2×idB
B Ð→ B, ((x1, x2), x2) z→ x1 .

● On the corresponding shadow bundle F , there exists a canonical structure of a left At(P)-
module, with momentum µF = idF and action

λF ∶ At(P)S×idF
F Ð→F , ([(x1, g, x2, i, j)], [(x2,m, k)]) z→ [(x1, t(g), i)] .(19)

● The action λP is intertwined with λF by the sitting-duck map D , as reflected in the
identities

µP = µF ○D , λF ○ (idAt(P) ×D) = D ○ λP .(20)

Proof: Let us first analyse the triple (P, µP , λP). Composability of the two arrows: g and
βjk(x2) ⊳ h in Eq. (18) is ensured by the identity

[(x2, s(g), j)] ≡ S([(x1, g, x2, i, j)]) = D([(x2, h, k)]) ≡ [(x2, t(h), k)] = [(x2, t∗(βjk(x2))(t(h)), j)] .

Using the 1-cocycle condition for the βij alongside identities (29), we readily establish, for any
x1 ∈ Oil and x2 ∈ Ojkmn, the identity

λP([(x1, βli(x1) ⊳ g ⊲ βjm(x2), x2, l,m)], [(x2, βnk(x2) ⊳ h,n)])

≡ [(x1, (βli(x1) ⊳ g ⊲ βjm(x2)).(βmn(x2) ⊳ (βnk(x2) ⊳ h)), l)]

≡ [(x1, (βli(x1) ⊳ g ⊲ βjm(x2)).(βmk(x2) ⊳ h), l)]

= [(x1, (βli(x1) ⊳ g).(βjm(x2) ⊳ (βmk(x2) ⊳ h)), l)] = [(x1, (βli(x1) ⊳ g).(βjk(x2) ⊳ h), l)]

= [(x1, βli(x1) ⊳ (g.(βjk(x2) ⊳ h)), l)] = [(x1, g.(βjk(x2) ⊳ h), i)] ,

which demonstrates that λP is a well-defined globally smooth action map sought after. Its con-
stitutive properties are readily verified in the following calculations: Axiom (GlM1) of Def. IV.75.
is checked in

(µP ○ λP)([(x1, g, x2, i, j)], [(x2, h, k)]) ≡ D([(x1, g.(βjk(x2) ⊳ h), i)])

= [(x1, t(g.(βjk(x2) ⊳ h)), i)] = [(x1, t(g), i)] ≡ T([(x1, g, x2, i, j)]) .

Axiom (GlM2) is seen to hold true in virtue of

λP(I ○ µP([(x, g, i)]), [(x, g, i)]) ≡ λP([(x, Idt(g), x, i, i)], [(x, g, i)]) ≡ [(x, Idt(g).(βii(x) ⊳ g), i)]

= [(x, g, i)] .

Axiom (GlM3) is established, with the help of the first of identities (28), in

λP([(x1, g1, x2, i, j)], λP([(x2, g2, x3, k, l)], [(x3, h,m)]))

= λP([(x1, g1, x2, i, j)], [(x2, g2.(βlm(x3) ⊳ h), k)]) = [(x1, g1.(βjk(x2) ⊳ (g2.(βlm(x3) ⊳ h))), i)]

= [(x1, (g1.(βjk(x2) ⊳ g2)).(βlm(x3) ⊳ h))), i)] ≡ λP([(x1, g1.(βjk(x2) ⊳ g2), x3, i, l)], [(x3, h,m)])

≡ λP(M([(x1, g1, x2, i, j)], [(x2, g2, x3, k, l)]), [(x3, h,m)]) .

Projectability of the above structure of a left At(P)-module on P onto the canonical structure
of a left Pair(B)-module on B (along (π,πF )) is self-evident.

12
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Passing to the triple (F , µF , λF ), we note well-definedness of λF and manifest projectability
of the entire structure onto (B, idB , λB). The first of identities (20) is trivially satisfied, and so we
are left with the second one to prove. First of all, note the obvious identity

(idAt(P) ×D)(At(P)S×DP) ≡ At(P)S×idF
F ,

which ensures meaningfulness of that At(P)-equivariance condition. The latter is checked in a
direct computation:

(λF ○ (idAt(P) ×D))([(x1, g, x2, i, j)], [(x2, h, k)]) ≡ λF([(x1, g, x2, i, j)], [(x2, t(h), k)])

≡ [(x1, t(g), i)] = [(x1, t(g.(βjk(x2) ⊳ h)), i)] ≡ D([(x1, g.(βjk(x2) ⊳ h), i)])

≡ (D ○ λP)([(x1, g, x2, i, j)], [(x2, h, k)]) .

□

Remark 6. Note that the independence of λP of the choice of local charts permits us to simplify
Eq. (18) as

λP ∶ At(P)S×DP Ð→P, ([(x1, g, x2, i, j)], [(x2, h, j)]) z→ [(x1, g.h, i)] .(21)

Our findings are most concisely expressed in
Theorem 5. For every principaloid bundle P, the quintuple (At(P),P,G ;B,G ) is a trident
(in the sense of Def. VII-VIII-IX.3.), captured by the following diagram

G � _

��

�%

G � _

��

t

��
M� _

��

At(P)

�%
π

��

P
D

��

µ

��
πP

��

G

}�
F

πF

��

M

B ×B

�%

B

idB��
B

.(22)

Proof: The structure of a right principal G -module on (P,F ,D) was established in Thm. 1. In
particular, the corresponding right G -action was shown to preserve πP-fibres. Furthermore, the
identification of At(P) as a fibre-bundle object in the category of Lie groupoids, with base Pair(Σ)
and typical fibre G , was made in Rem. 5. Therefore, it remains to investigate the left action of
At(P) on P, as identified in Thm. 4.

We begin by noting that λP ∶ At(P)S×D P Ð→ P preserves µ-fibres. Indeed, the action
restricts to fibres of P as the left-multiplication, and so leaves the moment map µ, locally modelled
on s, invariant.

The action gives rise to a smooth map

(λP ,pr2) ∶ At(P)S×DP Ð→Pµ×µP ,
13
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whose well-definedness is ensured by the following equality (see Eq. (21)):

µ([(x1, g.h, i)]) ≡ s(g.h) = s(h) ≡ µ([(x2, h, j)]) .
Consider the division map

ψP ∶ Pµ×µP Ð→ At(P), ([(x1, g, i)], [(x2, h, j)]) z→ [(x1, g.h−1, x2, i, j)] .

It is well-defined since s(g) ≡ µ([(x1, g, i)]) = µ([(x2, h, j)]) ≡ s(h) = t(h−1). It now remains to
verify the identity

(ψP ,pr2) = (λP ,pr2)−1 .(23)

We have

S([(x1, g.h−1, x2, i, j)]) ≡ [x2, s(g.h−1), j] = [x2, t(h), j] ≡ D([(x2, h, j)]) ,

so that (ψP ,pr2) maps Pµ×µP to At(P)S×DP. Identity (23) can now be checked in a direct
calculation. This establishes λP as a principal action.

That λP covers the canonical left action of Pair(B) on B is part of Thm. 4. □

Remark 7. In the approach to the theory of principal G-bundles due to Ehresmann, we encounter
triples (P,G,At(P)) consisting of a principal G-bundle P, its structure group G, and its structure
groupoid At(P), which we introduced in Thm. VI.2. Already in this classic setting, one can gen-
eralise the structure as we did in Thm. VII-VIII-IX.3. In the above ultimate generalisation, the
right wing of the W -diagram is a general groupoid. This aligns with an idea of Pradines3 [Pra77]
(see also [Pra07]), whose goal was to symmetrise the structure as in Def. VI.6, except that here
M1 cannot remain to be Σ, but it is to be replaced, in an essential way, by the bundle F , whose
fibre is M2 =M . Thus, in distinction to Pradines, there emerges the fully fledged Trident Diagram
(22).

4. The three-floor groupoidal Atiyah sequence

Appendix A. Useful properties of Lie groupoids, bisections, and Lie algebroids

Proposition 6. The left- and right-multiplications of G by B from Def. II-III.41. and the shadow
action of B on M from Def. II-III.40. have the following properties relative to the structure maps
of G (written for arbitrary (β, g) ∈ B × G ):

(i) s○Lβ = s , s○Rβ = t∗(β−1)○s (s intertwines L with the trivial action and R with t∗○Inv);
(ii) t ○Lβ = t∗β ○ t , t ○Rβ = t (t intertwines L with t∗ and R with the trivial action);
(iii) Lβ ○ Id = β , Rβ ○ Id = β ○ t∗(β−1);
(iv) Inv ○Lβ = Rβ−1 ○ Inv , Inv ○Rβ = Lβ−1 ○ Inv (Inv intertwines L with R ○ Inv);
(v) Lβ ○ rg = rg ○Lβ , Rβ ○ lg = lg ○Rβ ;
(vi) rg ○Rβ = rLβ(g) , lg ○Lβ = lRβ(g).

Proof:
Ad (i) The first identity is trivial. For the second one, we compute explicitly, for any h ∈ G ,

s ○Rβ(h) ≡ s(h.(β−1(s(h)))−1) = t(β−1(s(h))) ≡ t((β ○ (t∗β)−1(s(h)))
−1) = s ○ β ○ (t∗β)−1(s(h))

= (t∗β)−1 ○ s(h) = t∗(β−1) ○ s(h) .
where the last equality follows from the homomorphicity of t∗.

Ad (ii) The second identity is trivial. For the first one, we compute explicitly, for any h ∈ G ,

t ○Lβ(h) ≡ t(β(t(h)).h) = t ○ β(t(h)) ≡ t∗β ○ t(h) .

3The idea has resurfaced in various incarnations in the study of foliations and generalised (Morita) morphisms
of groupoids, in particular in the works of Hilsum and Skandalis [HS83, HS87] (leading to the related notion of
Hilsum–Skandalis maps), and Haefliger [Hae84].

14
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Ad (iii) We find, for an arbitrary m ∈M ,

Lβ ○ Id(m) ≡ β(t(Idm)).Idm = β(m)
and

Rβ ○ Id(m) ≡ Idm.(β−1(s(Idm)))
−1 = (β−1(m))−1 ≡ β ○ (t∗β)−1(m) = β ○ t∗(β−1)(m) .

Ad (iv) For the first identity, we compute explicitly, for any h ∈ G ,

Inv ○Lβ(h) ≡ (β(t(h)).h)
−1 = h−1.β(t(h))−1 ≡ h−1.(β−1)−1(s(h−1))−1 ≡ Rβ−1 ○ Inv(h) .

The second identity now follows by replacing β with β−1 in the one just proved, and
subsequently sandwiching both sides of it between two copies of Inv.

Ad (v) Take an arbitrary arrow h ∈ s−1({t(g)}) and calculate directly:

Lβ ○ rg(h) ≡ β(t(h.g)).(h.g) = β(t(h)).h.g ≡ rg(β(t(h)).h) ≡ rg ○Lβ(h) .
The proof of the second identity is fully analogous.

Ad (vi) For the first identity, take an arbitrary arrow h ∈ s−1(t∗β(t(g))) and calculate directly

rg ○Rβ(h) ≡ (h.(β−1(s(h)))
−1).g = h.(β−1(t∗β(t(g))))

−1
.g ≡ h.β(t(g)).g ≡ h.(Lβ(g)) ≡ rLβ(g)(h) .

The second identity follows by replacing β with β−1 and g with g−1 in the one just proved,
and subsequently using (iv).

□

Remark 8. Upon evaluation on the respective arguments h ∈ G , m ∈ M, u ∈ s−1({t(g)}), v ∈
t−1({s(g)}), w ∈ s−1(t∗β(t(g))), y ∈ t−1((t∗β)−1(s(g))) and in the shorthand notation Lβ(h) ≡
β ⊳ h, Rβ(h) ≡ h ⊲ β and t∗β(m) ≡ β ⊳m, the functional identities of Prop. 6 take the following
form:

s(β ⊳ h) = s(h) , s(h ⊲ β) = β−1 ⊳(s(h)) ,(24)

t(β ⊳ h) = β ⊳ t(h) , t(h ⊲ β) = t(h) ,(25)

β ⊳ Idm = β(m) , Idm ⊲ β = β(β−1 ⊳m) ,(26)

(β ⊳ h)−1 = h−1 ⊲ β−1 , (h ⊲ β)−1 = β−1 ⊳ h−1 ,(27)

β ⊳ (u.g) = (β ⊳ u).g , (g.v) ⊲ β = g.(v ⊲ β) ,(28)

(w ⊲ β).g = w.(β ⊳ g) , g.(β ⊳ y) = (g ⊲ β).y .(29)

Corollary 3. The conjugation of G by B from Def. II-III.41. has the following properties relative
to the structure maps of G (written for arbitrary (β, g) ∈ B × G ):

(i) s ○Cβ = t∗β ○ s (s intertwines C with t∗);
(ii) t ○Cβ = t∗β ○ t (t intertwines C with t∗);
(iii) Cβ ○ Id = Id ○ t∗β (Id intertwines C with t∗);
(iv) Inv ○Cβ = Cβ ○ Inv (Inv intertwines C with itself);
(v) Cβ ○m =m ○ (Cβ ×Cβ) (C distributes over m).

Proof of Corollary:
Ad (i) Point (i) of Prop. 6 implies s ○Cβ = s ○Rβ−1 = t∗β ○ s.
Ad (ii) Point (ii) of Prop. 6 implies t ○Cβ = t ○Lβ = t∗β ○ t.
Ad (iii) Point (iii) of Prop. 6 implies Cβ ○ Id ≡ Rβ−1 ○ (Lβ ○ Id) = Rβ−1 ○ β = Rβ−1 ○ (Rβ ○ Id ○ t∗β) =

Rβ⋅β−1 ○ Id ○ t∗β = RId ○ Id ○ t∗β = Id ○ t∗β.
15
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Ad (iv) Point (iv) of Prop. 6 implies Inv ○ Cβ ≡ (Inv ○ Lβ) ○ Rβ−1 = Rβ−1 ○ (Inv ○ Rβ−1) = (Rβ−1 ○
Lβ) ○ Inv ≡ Cβ ○ Inv.

Ad (v) We calculate directly, in the notation of Rem. 8 and using identities (28) and (29) along
the way,

Cβ ○m(g2, g1) ≡ (β ⊳ (g2.g1)) ⊲ β−1 = ((β ⊳ g2).g1) ⊲ β−1 = (((β ⊳ g2) ⊲ β−1).(β ⊳ g1)) ⊲ β−1

≡ (((β ⊳ g2) ⊲ β−1).(((β ⊳ g1) ⊲ β−1) ≡ Cβ(g2).Cβ(g1) ≡m ○ (Cβ ×Cβ)(g2, g1) .
∎

Proposition 7. Let (X,µ, ϱ) be a right-G -module. The action ϱ canonically induces a (right)
action Bϱ ∶ X ×BÐ→X of B on X, as determined by the following commutative diagram:

Xµ×idM
M ×B idX×Inv○ev // Xµ×tG

ϱ

��
X ×B

(idX ,µ)×Inv

OO

Bϱ
// X

,

where ev ∶ M ×BÐ→ G , (m,β) z→ β(m) is the canonical evaluation map.
An analogous statement holds true for left-G -modules.

Proof: The diagram yields the map

Bϱ ∶ X ×BÐ→X ∶ (x,β) z→ x ◂ β−1(µ(x))−1 ,
whose well-definedness follows from the identity

t(β−1(µ(x))−1) ≡ t(β((t∗β)−1(µ(x)))) = µ(x) .
It now suffices to check the axioms of a group action, invoking those of the groupoid module along
the way. We have—for x ∈X—

Bϱ(x, Id) ≡ x ◂ (Id−1µ(x))
−1 = x ◂ Idµ(x) = x

(by (GrM2)), and—for β1, β2 ∈ B—

Bϱ(Bϱ(x,β1), β2) ≡ (x ◂ β−11 (µ(x))
−1) ◂ β−12 (µ(x ◂ β−11 (µ(x))

−1))−1

= (x ◂ β−11 (µ(x))
−1) ◂ β−12 (s(β−11 (µ(x))

−1))−1 = (x ◂ β−11 (µ(x))
−1) ◂ β−12 ((t∗β−11 )(µ(x))))

−1

= x ◂ (β−12 ((t∗β−11 )(µ(x))).β−11 (µ(x)))
−1 ≡ x ◂ (β−12 ⋅ β−11 )(µ(x))

−1 = x ◂ (β1 ⋅ β2)−1(µ(x))
−1

≡ Bϱ(x,β1 ⋅ β2) .
□
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