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1. Wprowadzenie

Na poprzednich wykładach wprowadziliśmy rachunek różniczkowy Cartana na grupie Liego G,
więc

● pola wektorowe LI XL(G) ,
L⋅ ∶ gÐ→ XL(G) ∶ X z→ Teℓ⋅(X) ,

określające globalną trywializację wiązki stycznej TG ≅ GTeAd⋅⋉g poprzez zadanie global-
nej bazy C∞(G,R)-modułu Γ(G),

{LA ≡ LtA}A∈1,D , D ≡ dimG ,

stowarzyszonej z dowolną bazą {tA]A∈1,D algebry Liego TeG ≡ g, oraz
● dualną 1-formy LI Ω1

L(G) rozpięte (nad R) na bazie dualnej

{θAL }A∈1,D , LA ⌟ θBL = δ BA .

Te ostatnie generują (nad R a wzgl. iloczynu zewnętrznego ∧) podprzestrzenie k-form LI,

ΩkL(G) = { ω ∈ Ωk(G) ∣ ∀g∈G ∶ ℓ∗gω = ω } ,
otrzymujemy zatem

Ω●L(G) ≡ ⟨θAL ∣A ∈ 1,D⟩∧,R ⊂ Ω
●(G) .

Powstaje naturalne pytanie o to, czy także operator de Rhama ddR ≡ d (pochodnej zewnętrznej)
ogranicza się do tak zdefiniowanej algebry form lewoniezmienniczych. Odpowiedzi na nie
dostarcza

Stwierdzenie 1. Operator de Rhama ogranicza się do algebry form lewoniezmienniczych na
grupie Liego G, tj. zachodzi

dΩ●L(G) ⊂ Ω●L(G) .
W szczególności są spełnione równania Maurera–Cartana

dθAL = − 1
2
f A
BC θBL ∧ θCL ,

w których współczynniki f A
BC są stałymi struktury g w bazie {tA]A∈1,D,

[tB , tC]g = f A
BC tA .
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Dowód: Istnienie ograniczenia operatora de Rhama do Ω●L(G) jest natychmiastową konsekwencją
przemienności tego operatora z operatorem cofnięcia,

ℓ∗gω = ω Ô⇒ ℓ∗gdω = dℓ∗gω = dω .

Pozostaje zatem zająć się drugą częścią tezy, wykorzystując dodatkowo to, że 2-forma dθAL jest
w pełni określona przez wartości przyjmowane przez nią na bazie LI modułu Γ(G). Biorąc pod
uwagę fundamentalną tożsamość (Cartana)

dω(V0,V1, . . . ,Vk) =
k

∑
l=0

(−1)l Vl ⌟ d(ω(V0,V1, . . .
l̂
,Vk)) +

k

∑
m<n=1

(−1)m+n ω([Vm,Vn],V0,V1, . . .
m̂,n

,Vk) ,

(1)

słuszną dla dowolnej k-formy ω ∈ Ωk(M) (na rozmaitości M) i dowolnych pól wektorowych
Vl ∈ Γ(TM), l ∈ 0, k (na tejże), obliczamy

dθAL (LB , LC) = LB ⌟ d(LC ⌟ θAL ) −LC ⌟ d(LB ⌟ θAL ) − θAL ([LB , LC])

= LB ⌟ dδ AC −LC ⌟ dδ AB − θAL (f D
BC LD) = −f D

BC LD ⌟ θAL = −f A
BC

≡ − 1
2
f A
DE θDL ∧ θEL (LB , LC) .

□

Formy różniczkowe na rozmaitości M wymiaru dimM = d tworzą wraz z (ograniczeniami)
ddR kompleks (ko)łańcuchowy de Rhama

(Ω●(M),d(●)dR) ∶ Ω0(M)
d
(0)
dR
≡d

ÐÐÐÐ→ Ω1(M)
d
(1)
dR
≡d

ÐÐÐÐ→ ⋯
d
(d−1)
dR

≡d
ÐÐÐÐÐÐ→ Ωd(M)

d
(d)
dR
≡0

ÐÐÐÐÐ→ 0 ,

d
(k+1)
dR ○ d(k)dR = 0 , k ∈ 0, d − 1 .

Jak wiemy z kursu Geometrii różniczkowej, grupy homologii tego kompleksu,

H0(M,R) ≡ Kerd
(0)
dR , Hk+1

dR (M,R) ≡ Zk+1dR (M,R)/Bk+1dR (M,R) , k ∈ 0, d − 1 ,
zwane grupami kohomologii de Rhama rozmaitości M , w których zapisie

Zk+1dR (M,R) ≡ Kerd
(k+1)
dR

to grupa (k + 1)-kocykli de Rhama (czyli grupa (k + 1)-form zamkniętych), a

Bk+1dR (M,R) ≡ Imd
(k)
dR

to grupa (k+1)-kobrzegów de Rhama na M (czyli grupa (k+1)-form dokładnych), kodują is-
totną informację o topologii M (należy pamiętać o homotopijnej niezmienniczości kohomologii de
Rhama, która implikuje stałość tejże kohomologii na klasach homotopii rozmaitości). Szczegółowa
dyskusja natury tej informacji wykracza istotnie poza zakres niniejszego wykładu, pozostaje nam
przeto zilustrować ją na poglądowym przykładzie. Oto więc z jednej strony mamy Lemat Poinca-
régo, który stwierdza trywialność rzeczonej informacji w przypadku obszarów ściągalnych, zatem
pozbawionych „defektów” topologicznych, tj., mówiąc obrazowo, rozmaitych „dziur”, których obec-
ność każdorazowo skutkuje pojawieniem się nieściągalnych cykli (homologicznych), czyli podroz-
maitości bez brzegu niebędących brzegami. O słuszności tej identyfikacji informacji topologicznej
zapisanej w kohomologii de Rhama rozmaitości przekonujemy się bez trudu zestawiając parę roz-
maitości różniących się obecnością „defektu” właśnie: ściągalną płaszczyznę R×2 oraz nieściągalną
„płaszczyznę z dziurą” (tj. pierścień) R×2 ∖ {0}. Jak stwierdziliśmy wcześniej, w tym pierwszym
przypadku mamy

Hk
dR(R×2) = δk,0R
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(zerowa grupa kohomologii „zlicza” lokalne stałe, czyli spójne składowe rozmaitości – ich liczba
określa potęgę ciała bazowego po prawej stronie powyższej formuły). Tymczasem w przypadku
drugim pojawia się nietrywialny 1-kocykl de Rhama odpowiadający nieściągalnej pętli obiegającej
wyjęty punkt 0, a mianowicie

η(x, y) = xdy−y dx
x2+y2

,

który we współrzędnych biegunowych (dobrze określonych na R×2∖{0} właśnie) przybiera postać

η(r cosϕ, r sinϕ) = dϕ ,

w jawny sposób dokumentującą jego naturalny związek z wyróżnioną pętlą, a zarazem – zamknię-
tość,

dη = 0 .

Nietrywialność 1-kocyklu η wynika wprost z nieistnienia globalnie gładkiej 0-formy (czyli funkcji)
pierwotnej ϕ (współrzędna ta ma nieciągłość na półprostej R>0×{0}). 1-kocykl η reprezentuje za-
tem klasę kohomologii w H1

dR(R×2∖{0}). Podkreślmy: definicja η ma sens jedynie na płaszczyźnie
z wyjętym punktem 0, w którym 1-forma ta (gdy potraktować ją jako 1-formę na R×2) ma osobli-
wość, co wyjaśnia jej nieobecność wśród 1-form na ściągalnej płaszczyźnie. W istocie nietrudno
pokazać, że

Hk
dR(R×2 ∖ {0}) = (δk,0 + δk,1)R ,

co odpowiada wiernie sytuacji topologicznej (grupa H1
dR(R×2 ∖ {0}) jest generowana przez klasę

[η]). Opisana tu odpowiedniość uogólnia się w postaci dwoistości pomiędzy kohomologią de Rhama
i homologią (singularną), patrz: Ref. [Lee02] (np.).

Powyższe rozważania prowadzą nas do zadania naturalnego pytania o informację kodowaną
przez homologię podkompleksu form lewoniezmienniczych

(Ω●L(G),d
(●)

CaE ≡ d
(●)

dR↾Ω●L(G)) ∶ Ω
0
L(G)

d
(0)
CaE
≡d

ÐÐÐÐÐ→ Ω1
L(G)

d
(1)
CaE
≡d

ÐÐÐÐÐ→ ⋯
d
(D−1)
CaE

≡d
ÐÐÐÐÐÐÐ→ ΩDL (G)

d
(d)
CaE
≡0

ÐÐÐÐÐÐ→ 0 ,

zwaną kohomologią Cartana–Eilenberga grupy Liego G,

CaE●(G) ≡H●dR,L(G,R) .

Kohomologia ta odgrywa istotną rolę w konstrukcji teorii pola z nieliniowo zrealizowaną symetrią
wprowadzonej przed laty przez Weinberga i Schwingera w kontekście efektywnej teorii pola (np.
w układach ze spontanicznie naruszoną symetrią), a rozwiniętej przez Salama, Strathdee’ego,
Colemana, Callana, Wessa, Ishama i wielu innych.

2. Kohomologia Cartana–Eilenberga a rozszerzenia algebr Liego

Ażeby odpowiedzieć sobie na zadane pytanie, przeformułujemy to ostatnie w terminach czysto
algebraicznych, przeszedłszy do stycznej TeG. Zanim to jednak uczynimy, poddamy nasze do-
tychczasowe rozważania kohomologiczne, odniesione bezpośrednio do geometrii rozmaitości, więc
intuicyjne, prostej abstrakcji, która dopuszcza naturalne uogólnienia. Zastanowimy się przeto,
obecność jakich typów algebraicznych w definicji rachunku form różniczkowych na rozmaitości
współwarunkuje istnienie kompleksu de Rhama (więc relację d

(k+1)
dR ○d(k)dR = 0). Oto więc mamy do

czynienia z
● przestrzenią wektorową (nad K = R): C∞(M ;R) ≡ V ;
● algebrą Liego (także nad K): (Γ(TM), [⋅, ⋅]Γ(TM)) ≡ g;
● przestrzenią form na g o wartościach w V : Ω●(M) ⊂ ⋀● g∗⊗KV (relacja zawierania (miast

równości) wynika z nieskończonego wymiaru V );
● realizacją g na sobie w postaci różniczkowań, tj. homomorfizmem (K-)algebr Liego

ad⋅ ∶ gÐ→ (EndK(g), [⋅, ⋅]) ≡ glK(g) ∶ V z→ [V, ⋅]Γ(TM) ≡ adV
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filtrującym się przez podalgebrę różniczkowań g,

g
−L ⋅ //

!!

glK(g)

Der(g)
, �

::

(jest to zagwarantowane przez tożsamość Jacobiego dla komutatora pól wektorowych
[⋅, ⋅]Γ(TM));
● realizacją g na V , czyli homomorfizmu (K-)algebr Liego

D⋅ ∶ gÐ→ (EndK (V ), [⋅, ⋅]) ≡ glK(V ) ∶ V z→ V ⌟ d = −L V ≡DV
(także w postaci różniczkowań, ale ten fakt, uwzględniający dodatkową strukturę pierś-
cienia na V , jest bez znaczenia z punktu widzenia konstrukcji kompleksu de Rhama).

Używając powyższej struktury, bez trudu dekodujemy cartanowską definicję (1) operatora de
Rhama jako

d
(k)
dRω ≡

k

∑
l=0

(−1)l σ∗l+1→1(pr∗1D⋅ ○ pr∗2,3,...,k+1ω +
k

∑
m=l+1

(−1)m ω ○ (ad⋅ ○ pr1,2,pr3,4,...,k+1) ○ σm+1→2) ,

w którym to zapisie σi→j jest permutacją przestawiającą (i + 1)-wszy argument (k + 1)-formy na
miejsce j-te, a prj,j+1,...,k+1 jest rzutem kanonicznym na k + 2 − j ostatnich argumentów. Przy
tym jest absolutnie oczywiste, że o jego homologiczności przesądzają konstytutywne własności
struktur użytych w tej definicji (patrz: lista powyżej). Takie nieco bardziej abstrakcyjne spojrzenie
na dobrze już zrozumiane struktury algebraiczno-różniczkowe pozwala nam uczynić pierwszy krok
w kierunku interpretacji kohomologii niezmienniczej (Cartana–Eilenberga) w dwóch poniższych
definicjach.

Definicja 1. Niechaj (g, [⋅, ⋅]g) będzie K-algebrą Liego wymiaru dimK g ≡ D. g-moduł to para
(V, ρ⋅) złożona z przestrzeni K-liniowej V oraz homomorfizmu algebr Liego

ρ⋅ ∶ gÐ→ glK(V ) ∶ X z→ ρX ,

tj. odwzorowania spełniającego warunek

∀X,Y ∈g ∶ [ρX , ρY ] ≡ ρX ○ ρY − ρY ○ ρX = ρ[X,Y ] ,
które zadaje realizację algebry Liego g na przestrzeni wektorowej V (zwyczajowo ozna-
czaną tym samym symbolem)

ρ⋅ ∶ g × V Ð→ V ∶ (X,v) z→ ρX(v) ≡X ⊳ v .

Powyższe pozwala stowarzyszyć z parą (V, ρ⋅) naturalny kompleks (ko)łańcuchów i (ko)homologię1,
o których mówi

Definicja 2. Przyjmijmy dotychczasowe oznaczenia i niechaj (V, ρ⋅) będzie g-modułem w sensie
Def. 1. p-kołańcuch na g o wartościach w V to odwzorowanie K-liniowe φ

p

∈ HomK(g⊗Kp, V ),
które jest całkowicie skośne

∀X1,X2,...,Xp∈g, σ∈Sp ∶ φ
p

(Xσ(1),Xσ(2), . . . ,Xσ(p)) = sign(σ)φ
p

(X1,X2, . . . ,Xp) .

Zbiór

Cp(g;V ) ≡ ⋀p g∗ ⊗K V

takich odwzorowań jest grupą przemienną (z operacją binarną zdefiniowaną punktowo), zwaną
grupą p-kołańcuchów na g o wartościach w V , przy czym przyjmujemy konwencję, w

1Bardziej gruntowne – szersze, głębsze i bardziej strukturalne – wprowadzenie to algebry homologicznej i jej
fizykalnych zastosowań oferuje całoroczny kurs pt. „Metody Algebry Wyższej w Fizyce – od form kwadratowych do
wiązek spinorowych” – patrz: notatki wykładowe z II semestru.
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której C0(g;V ) ≡ V . Indeksowana przez 0,D ∋ p rodzina grup kołańcuchów tworzy kompleks
(ko)łańcuchowy

(C●(g;V ), δ(●)g ) ∶ C0(g;V )
δ(0)gÐÐÐ→ C1(g;V )

δ(1)gÐÐÐ→ ⋯
δ(D−1)gÐÐÐÐÐ→ CD(g;V )

δ(D)g ≡0
ÐÐÐÐÐÐ→ 0

o operatorach kobrzegu

δ
(p)
g ∶ Cp(g;V ) Ð→ Cp+1(g;V ) , δ

(p+1)
g ○ δ(p)g = 0 , p ∈ 0,D − 1

danych wzorami (zapisanymi dla dowolnych Xi ∈ g, i ∈ 0, p i φ
k

∈ Ck(g;V ), k ∈ {0, p > 0})

δ
(0)
g φ

0

(X0) = X0 ⊳ φ
0

,

δ
(p)
g φ

p

(X0,X1, . . . ,Xp) =
p

∑
l=0

(−1)lXl ⊳ φ
p

(X0,X1, . . .
l̂
,Xp)

+
p

∑
m<n=1

(−1)m+n φ
p

([Xm,Xn]g,X0,X1, . . .
m̂,n

,Xp) .

Grupa homologii powyższego kompleksu

H0(g;V ) = Z0(g;V ) , Hp+1(g;V ) ≡ Zp+1(g;V )/Bp+1(g;V ) , p ∈ 0,dimKg − 1 ,
w której zapisie

Zp+1(g;V ) ≡ Ker δ
(p+1)
g

to grupa (p + 1)-kocykli na algebrze g o wartościach w g-module V , a

Bp+1(g;V ) ≡ Im δ
(p)
g

to grupa (p + 1)-kobrzegów na algebrze g o wartościach w g-module V , nosi miano
(p+1)-tej grupy kohomologii algebry Liego g o wartościach w g-module V . Suma prosta

H●(g;V ) =
dimKg

⊕
p=0

Hp(g;V )

tych grup określa kohomologię algebry Liego g o wartościach w g-module V .
W szczególnym przypadku K = R, V = R i trywialnego działania ρ⋅ ≡ 0 mówimy o (grupach)

kohomologii Chevalleya–Eilenberga algebry Liego g,

CE●(g) ≡H●(ρ⋅=0)(g;R) .

Uwzględniwszy wszystkie nasze dotychczasowe ustalenia, bez trudu stwierdzamy

Stwierdzenie 2. Istnieje kanoniczny izomorfizm

CaE●(G) ≅ CE●(g) .

Dowód: Wystarczy zauważyć, że każda forma LI na grupie Liego G jest w pełni określona przez
swą wartość w e, w którym to punkcie staje się elementem ⋀pT∗eG ≡ ⋀p g∗ ⊗R R właśnie. □

W powyższym stwierdzeniu dokonuje się transkrypcja struktury różniczkowo-geometrycznej, jaką
jest niezmiennicza wersja kohomologii de Rhama, na język czysto algebraiczny, w którym wyraża
się kohomologia algebry Liego. Transkrypcja ta prowadzi do strukturalnej (algebraicznej) in-
terpretacji kohomologii Cartana–Eilenberga w terminach struktur rozszerzających – w sposób,
który zilustrujemy poniżej na przykładzie CaE2(G) – wyjściowy obiekt algebraiczny g. Po jej
wyprowadzeniu pojawia się naturalne pytanie o „wersję odcałkowaną” do poziomu stosownego
„rozszerzenia grupy” G. Okazuje się, że taka transkrypcja odwrotna jest co do zasady możliwa na
gruncie Trzeciego Twierdzenia Liego oraz konstrukcji wiązki głownej o grupie strukturalnej U(1)
(wzgl. ich strukturalnych uogólnień). Nie bę jej rozpatrywać w ogólności, w dalszej zaś części
wykładu skupimy się na nader często w rozważaniach fizykalnych napotykanej grupie CE2(g).
W jej przypadku odcałkowanie – ilekroć jest możliwe – prowadzi do tzw. rozszerzeń centralnych
grupy G, z którymi Czytelnik mógł się spotkać w kontekście podnoszenia symetrii sztywnych teorii

5
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klasycznej do jej przestrzeni Hilberta, a które są opisywane przez krótkie ciągi dokładne grup
Liego

1Ð→ A
IAÐÐ→ G̃

ΠGÐÐÐ→ GÐ→ 1

zapisywane w terminach wyjściowej grupy G, będącej jej rozszerzeniem grupy G̃ (odwzorowywanej
na tę pierwszą przez epimorfizm ΠG) oraz grupy przemiennej A (odwzorowywanej w centrum
grupy Z (G̃) = { g ∈ G ∣ ∀h∈G ∶ g ⋅ h ⋅ g−1 ⋅ h−1 = e } przez monomorfizm IA) występującej
w roli włókna rozszerzenia (KerΠG = Im IA). Zrozumienie informacji algebraicznej zakodowanej
w tej grupie wymaga zastąpienia struktur grupowych ich infinitezymalnymi (stycznościowymi)
odpowiednikami, przy czym (Lie-)grupowa operacja binarna przechodzi w (Lie-)algebraiczną ope-
rację binarną, czyli nawias Liego. Precyzyjnej formalizacji tego schematu dostarcza

Definicja 3. Niechaj (g, [⋅, ⋅]g) będzie algebrą Liego (nad R) i niech (a, [⋅, ⋅]a ≡ 0) będzie komu-
tatywną algebrą Liego (nad R). Rozszerzenie centralne algebry Liego g przez a to trójka
(g̃, ȷa, πg) złożona z

● algebry Liego (g̃, [⋅, ⋅]g̃);
● homomorfizmów algebr Liego: ȷa ∶ aÐ→ g̃ oraz πg ∶ g̃Ð→ g

tworzących krótki ciąg dokładny algebr Liego

0Ð→ a
ȷaÐÐ→ g̃

πgÐÐ→ gÐ→ 0(2)

i takich, że ȷa(a) ⊂ z(g̃), gdzie

z(g̃) = { X ∈ g̃ ∣ ∀Y ∈g̃ ∶ [X,Y ]g̃ = 0 }
jest centrum algebry Liego2 g̃. Rozszerzenie nazywamy rozszczepionym, ilekroć epimorfizm
πg ma cięcie w LieAlgR, tj. istnieje homomorfizm algebr Liego

σ ∶ gÐ→ g̃

o własności

πg ○ σ = idg .(3)

Mówimy wówczas także, że krótki ciąg dokładny stowarzyszony z rozszerzeniem rozszczepia się.
Równoważność między rozszerzeniami (g̃A, ȷAa , πAg ), A ∈ {1,2} algebry Liego g przez

a to izomorfizm algebr Liego

ι ∶ g̃1
≅ÐÐ→ g̃2

domykający diagram przemienny

0 // a
ȷ1a // g̃1

≅ι

��

π1
g // g // 0

0 // a
ȷ2a

// g̃2
π2
g

// g // 0

.

który będziemy zapisywać w postaci

g̃1

≅ι

��

π1
g

$$
0 // â

ȷ1a
::

ȷ2a $$

ĝ // 0

g̃2
π2
g

::

dla zaoszczędzenia e-inkaustu.

2Odpowiedniość między z(̃g) i Z (G̃) daje się łatwo uchwycić przy pomocy odwzorowania expG̃.
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Ostatnia definicja daje nam do ręki wygodne narzędzia do badania algebraicznego sensu ko-
homologii Cartana–Eilenberga. Odczytamy go z dwóch stwierdzeń, które ustalają zapowiadaną
wcześniej odpowiedniość między klasami H2(g;a) i rozszerzeniami centralnymi g przez a. Po-
dajemy je wraz z dość technicznymi dowodami, których wartość zasadza się na prostocie i kon-
struktywności, ta ostatnia zaś wytycza naturalny szlak ku „wersji odcałkowanej” – patrz: Uwaga
1. Zaczynamy od

Stwierdzenie 3. Przyjmijmy zapis Def. 3. Klasa równoważności rozszerzenia centralnego (g̃, [⋅, ⋅]g̃)
algebry Liego g przez a kanonicznie wyznacza klasę3 w H2(g;a). Klasa ta jest równa zeru wtedy
i tylko wtedy, gdy krótki ciąg dokładny stowarzyszony z rozszerzeniem rozszczepia się.

Dowód: Istnienie krótkiego ciągu dokładnego (2) implikuje istnienie odwzorowania K-liniowego
σ ∶ g Ð→ g̃ spełniającego relację (3) (podprzestrzeń ȷa(a) ⊂ g̃ ma dopełnienie proste), z czego
wywodzimy istnienie (kanonicznego) izomorfizmu przestrzeni K-liniowych

ι ∶ g̃ ≅ÐÐ→ a⊕ g ∶ X̃ z→ (ȷ−1a (X̃ − σ ○ πg(X̃)), πg(X̃)) .
(Podkreślmy: Przeciwdziedzina ι nie jest a priori sumą prostą algebr Liego, tylko sumą prostą
przestrzeni K-liniowych.) W rzeczy samej, odwzorowanie to jest dobrze określone, jako że X̃ −σ ○
πg(X̃) ∈ kerπg = im ȷa, a ȷa jest izomorfizmem na swój obraz. Odwrotność powyższego odwzoro-
wania przyjmuje jawną postać

ι−1 ∶ a⊕ gÐ→ g̃ ∶ (A,X) z→ ȷa(A) + σ(X) .
Możemy następnie podnieść ι do rangi izomorfizmu algebr Liego definiując na podprzestrzeni
wektorowej a⊕ g nawias Liego w terminach tych z g̃ i g wedle schematu

[(A1,X1), (A2,X2)]a⊕g ∶= ι([ι−1(A1,X1), ι−1(A2,X2)]g̃) = ι([σ(X1), σ(X2)]g̃)

= (ȷ−1a ([σ(X1), σ(X2)]g̃ − σ ○ πg([σ(X1), σ(X2)]g̃)), πg([σ(X1), σ(X2)]g̃))

= (ȷ−1a ([σ(X1), σ(X2)]g̃ − σ([X1,X2]g)), [X1,X2]g) .
Sensowność tej definicji jest zapewniona przez własności odwzorowania p-liniowego

Θσ ∶ g×2 Ð→ a ∶ (X1,X2) z→ ȷ−1a ([σ(X1), σ(X2)]g̃ − σ([X1,X2]g)) ,
które dostarcza ilościowej miary nie-homomorficzności cięcia σ. Oto bowiem ilekroć obliczymy je
na parze elementów g, spełniona jest relacja

Θσ(X2,X1) = −Θσ(X1,X2) ,
jest to zatem 2-kołańcuch na g o wartościach w a, przy czym ta ostatnia algebra objawia się tutaj
w roli trywialnego g-modułu. Kobrzeg tego kołańcucha znika,

δ
(2)
g Θσ(X1,X2,X3) = −Θσ([X1,X2]g,X3) −Θσ([X3,X1]g,X2) −Θσ([X2,X3]g,X1)

= −ȷ−1a ([σ([X1,X2]g), σ(X3)]g̃ + [σ([X3,X1]g), σ(X2)]g̃ + [σ([X2,X3]g), σ(X1)]g̃ − σ ○ Jacg(X1,X2,X3))

= ȷ−1a ([ȷa ○Θσ(X1,X2), σ(X3)]g̃ + [ȷa ○Θσ(X3,X1), σ(X2)]g̃ + [ȷa ○Θσ(X2,X3), σ(X1)]g̃

−Jacg̃(σ(X1), σ(X2), σ(X3)) + σ ○ Jacg(X1,X2,X3)) = 0 ,
gdzie to w ostatnim kroku przywołaliśmy inkluzję imȷa ⊂ z(g̃). Bez trudu weryfikujemy oczekiwaną
własność indukowanego nawiasu Liego:

Jaca⊕g((A1,X1), (A2,X2), (A3,X3)) = (−δ(2)g Θσ(X1,X2,X3),Jacg(X1,X2,X3)) = (0,0) ,

3W zapisie 2. grupy kohomologii algebra komutatywna algebra Liego a występuje w roli przestrzeni wektorowej
– formalnie rzecz ujmując, utożsamiamy a z jej obrazem w kategorii VectK względem funktora zapominania.
Taka dwoista rola a jest nieunikniona – wszak z jednej strony krótki ciąg dokładny opisujący rozszerzenie jest
diagramem w kategorii LiaAlgK, z drugiej zaś – kohomologia przyjmuje wartości w przestrzeni wektorowej.
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stwierdzając na tej podstawie, że rozszerzenie centralne w istocie kanonicznie wyznacza 2-kocykl
na g o wartościach w a.

W następnej kolejności zbadamy, jak 2-kocykl ów zmienia się przy przejściu do równoważnego
rozszerzenia centralnego. Mamy w tym wypadku do dyspozycji dwa monomorfizmy algebr Liego:
ȷAa ∶ a Ð→ g̃A, A ∈ {1,2} i dwa epimorfizmy algebr Liego: πAg ∶ g̃A Ð→ g wraz z odnośnymi
cięciami K-liniowymi σA ∶ gÐ→ g̃A. Biorąc pod uwagę przemienność diagramu

g̃1

ε

��

π1
g

!!
0 // a

ȷ1a

==

ȷ2a !!

g //
σ1

TT

σ2





0

g̃2

π2
g

== ,

wraz z tożsamością

π1
g ○ (ε−1 ○ σ2 − σ1) = π2

g ○ σ2 − π1
g ○ σ1 = idg − idg = 0 ,

która przesądza o istnieniu odwzorowania K-liniowego µε ∶ g Ð→ a (wszak Kerπ1
g = Imȷ1a) o

własności

ε−1 ○ σ2 − σ1 = ȷ1a ○ µε ,

bez trudu stwierdzamy, dla dowolnych wektorów X1,X2 ∈ g,

ȷ1a ○ (Θσ2 −Θσ1)(X1,X2) = (ε−1 ○ ȷ2a ○Θσ2 − ȷ1a ○Θσ1
)(X1,X2)

= [ε−1 ○ σ2(X1), ε−1 ○ σ2(X2)]g̃1
− [σ1(X1), σ1(X2)]g̃1

− ȷ1a ○ µε([X1,X2]g)

= [ȷ1a ○ µε(X1), ε−1 ○ σ2(X2)]g̃1
+ [σ1(X1), ε−1 ○ σ2(X2)]g̃1

− [σ1(X1), σ1(X2)]g̃1

−ȷ1a ○ µε([X1,X2]g) = [σ1(X1), ȷ1a ○ µε(X2)]g̃1
− ȷ1a ○ µε([X1,X2]g)

= −ȷ1a ○ µε([X1,X2]g) ≡ ȷ1a ○ δ
(1)
g µε(X1,X2) ,

a stąd już wprost (wobec injektywności ȷ1a)

Θσ2 −Θσ1 = δ
(1)
g µε , czyli [Θσ2]g = [Θσ1]g .

Na zakończenie dowodzimy ostatniej części tezy. Znikanie (klasy) 2-kocyklu Θσ w przypadku,
gdy σ jest cięciem w kategorii algebr Liego (a nie tylko w kategorii przestrzeni K-liniowych),
jest oczywiste, pozostaje zatem pokazać, że kohomologiczna trywialność Θσ implikuje istnienie
cięcia w kategorii algebr Liego. Warunek trywialności 2-kocyklu Θσ możemy zgrabnie przepisać
w postaci

[σ(X1), σ(X2)]g̃ = σµ([X1,X2]g) , σµ ∶= σ − ȷa ○ µ ∈ HomK(g, g̃) .

W świetle komutatywności ȷa(a) to daje nam relację

[σµ(X1), σµ(X2)]g̃ = σµ([X1,X2]g) ,

możemy zatem podnieść σµ do rangi homomorfizmu algebr Liego. Jako że ponadto spełniona jest
tożsamość

πg ○ σµ = πg ○ σ − πg ○ ȷa ○ µ = πg ○ σ = idg ,

rozpoznajemy w nim poszukiwane cięcie πg. □

W następnym kroku zajmiemy się przyporządkowaniem odwrotnym.
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Stwierdzenie 4. Przyjmijmy zapis Def. 3. Klasa w H2(g;a) kanonicznie zadaje klasę równoważ-
ności rozszerzeń centralnych (g̃, [⋅, ⋅]g̃) algebry Liego g przez a. Rozszerzenia te rozszczepiają się
wtedy i tylko wtedy, gdy klasa ta znika.

Dowód: Mając dany dowolny 2-kocykl Θ ∈ Z2(g;a), wyposażamy przestrzeń K-liniową a⊕ g =∶ g̃
w jawnie skośne odwzorowanie dwuliniowe

[⋅, ⋅]Θ ∶ g̃×2 Ð→ g̃ ∶ ((A1,X1), (A2,X2)) z→ (Θ(X1,X2), [X1,X2]g) .
Bez trudu sprawdzamy, że mamy do czynienia z nawiasem Liego,

Jacg̃((A1,X1), (A2,X2), (A3,X3)) = (−δ(2)g Θ(X1,X2,X3),Jacg(X1,X2,X3)) = (0,0) ,
przeto (g̃, [⋅, ⋅]Θ) jest algebrą Liego.

Komutatywność a przesądza o tym, że kanoniczna injekcja ȷa ∶ a Ð→ g̃ ∶ A z→ (A,0) jest
monomorfizmem algebr Liego dla tak określonej struktury na g̃. Z kolei kanoniczny K-liniowy
rzut πg ∶ g̃ Ð→ g ∶ (A,X) z→ X zyskuje teraz status epimorfizmu algebr Liego, o oczywistej
własności kerπg = im ȷa, na koniec więc otrzymujemy krótki ciąg dokładny algebr Liego

0Ð→ a
ȷaÐÐ→ g̃

πgÐÐ→ gÐ→ 0

który pozwala nam zidentyfikować g̃ jako rozszerzenie centralne g przez a.
W obecności dwóch kohomologicznych 2-kocykli: Θ2 = Θ1+δ(1)g µ, µ ∈ C1(g;a), opisany powyżej

schemat daje dwa nawiasy Liego na g̃ = a ⊕ g, czyli dwa rozszerzenia centralne algebry Liego g
przez a, przy czym łatwo widać, że K-liniowy automorfizm

εµ ∶ g̃Ð→ g̃ ∶ (A,X) z→ (A − µ(X),X)
izomorficznie odwzorowuje (g̃, [⋅, ⋅]Θ1) w (g̃, [⋅, ⋅]Θ2),
[εµ(A1,X1), εµ(A2,X2)]Θ2 = (Θ2(X1,X2), [X1,X2]g) = (Θ1(X1,X2) − µ([X1,X2]g), [X1,X2]g)

≡ εµ([(A1,X1), (A2,X2)]Θ1
) .

Przy tym spełnione są oczekiwane tożsamości:

πg̃(2) ○ εµ(A,X) =X ≡ πg̃(1)(A,X)
oraz

εµ ○ ȷ(1)a (A) = εµ(A,0) = (A,0) ≡ ȷ(2)a (A) .

Ilekroć Θ jest 2-kobrzegiem, Θ = δ(1)g µ, µ ∈ C1
0(g;a), możemy włożyć g w g̃ przy użyciu

odwzorowania K-liniowego

σµ ∶ gÐ→ g̃ ∶ X z→ (−µ(X),X)
w oczywisty sposób będące K-liniowym cięciem πg i podnoszące się do monomorfizmu algebr
Liego,

[σµ(X1), σµ(X2)]Θ = [(−µ(X1),X1), (−µ(X2),X2)]Θ = (Θ(X1,X2), [X1,X2]g)

= (−µ ([X1,X2]g) , [X1,X2]g) ≡ σµ ([X1,X2]g) .
Krótki ciąg dokładny algebr Liego stowarzyszony z opisanym rozszerzeniem rozszczepia się.

I odwrotnie, dowolne cięcie πg w kategorii algebr Liego jest nieodzownie postaci

σµ ∶ gÐ→ g̃ ∶ X z→ (−µ(X),X)
dla pewnego µ ∈ HomK(g,a) o własności

(Θ(X1,X2), [X1,X2]g) = [σµ(X1), σµ(X2)]Θ = σµ ([X1,X2]g) = (−µ ([X1,X2]g) , [X1,X2]g) ,

zatem Θ = δ(1)g µ, zgodnie z tezą dowodzonego stwierdzenia. □

Nasze studium podsumowuje
9



Teoria Grup II ’24/25 – 4., 5. i 6. Un tout petit peu de kohomologia i qu’est-ce que z tego wynika

Twierdzenie 1. Niechaj (g, [⋅, ⋅]g) będzie algebrą Liego. Istnieje kanoniczna bijekcja między
CE2(g) i zbiorem klas równoważności rozszerzeń centralnych g przez R. W obrazie tej bijekcji
klasa trywialna CE2(g) odpowiada klasie równoważności rozszerzenia rozszczepionego.

Przed przystąpieniem do egzemplifikacji powyższych abstrakcyjnych rozważań i ich umieszczeniem
w kontekście fizykalnym poddamy nasz ostatni wynik reinterpretacji pozwalającej na wyrobienie
sobie w odniesieniu do niego przydatnej intuicji (o istotnych konsekwencjach geometrycznych).

Uwaga 1. Istnienie rozszerzenia centralnego g przez a wyznaczanego przez Θ implikuje try-
wializację cofnięcia 2-kocyklu

Θ̃ ∶= π∗gΘ ∶ g̃×2 Ð→ a ∶ ((A1,X1), (A2,X2)) z→ Θ(X1,X2)
opisaną wzorem

Θ̃ = δ(1)g̃ µ̃ , µ̃ ∶= −πa ∶ g̃Ð→ a ∶ (A,X) z→ −A.(4)

Tym sposobem nietrywialny 2-kocykl na wyjściowej algebrze g znajduje swoją (kohomologiczną)
trywializację na jej rozszerzeniu g̃.

2.1. A Pair of Whatabouts. Powyższe rozważania pozostawiają nas z dwoma naturalnymi a
nietrywialnymi pytaniami, na które odpowiedzi są wprawdzie znane, lecz zrozumienie ich wyma-
gałoby poważnego (i czasochłonnego) strukturalnego odejścia od głównego nurtu niniejszego wy-
kładu i jako takie jest pozostawione zainteresowanym Słuchaczom do samodzielnego wypracowa-
nia:

(1) W jakich okolicznościach centralne rozszerzenie algebry Liego „całkuje się” do centralnego
rozszerzenia odnośnej grup Liego? W tym kontekście warto zauważyć, że obserwacja
będąca treścią Uwagi 1 rodzi skojarzenie z trywializacją 2-kocyklu de Rhama4 (czyli 2-
formy zamkniętej), takiego jak np. 2-forma Maxwella opisująca (w formacie jawnie loren-
tzowsko współzmienniczym) natężenie pola elektromagnetycznego, na przestrzeni totalnej
wiązki liniowej (lub głównej) z powiązaniem o krzywiźnie tożsamej z tymże 2-kocyklem. To
skojarzenie jest nie tylko w pełni usprawiedliwione, ale wiedzie wprost do systematycznego
studium odpowiedzi na wyjściowe pytanie – patrz: praca Tuynmana i Wiegerincka [TW87].

(2) Czy istnieje algebraiczna interpretacja wyższych klas kohomologii algebr Liego analogiczna
do tej słusznej dla H2(g,a) przedstawionej powyżej? Odpowiedź, dającą się najzgrab-
niej sformułować w języku teorii algebr typu L∞, czyli swoistych kategoryfikacji struk-
tury algebry Liego podanych przez Stasheffa w pracy [Sta92], znaleźli Baez i Crans w
pracy [BC04]. Przedstawiona tam konstrukcja tzw. 2-algebry Liego, stowarzyszonej z 3-
kocyklem na algebrze Liego, uogólnia się w naturalny sposób na przypadek wyższych ko-
cykli/kohomologii. Struktury te dostarczają narzędzi opisu (skategoryfikowanych) symetrii
teorii pola z gatunku modelu σ, opisujących propagację rozciągłych rozkładów energii i
ładunku topologicznego w zewnętrznych polach: grawitacyjnym i p-formy (uogólnienie pola
Maxwella) .

3. Przykład poglądowy

Na pierwszy rzut oka rozszerzenia algebr mogą się wydawać strukturami dość egzotycznymi i
ezoterycznymi. O ich powszechności i naturalności w ramach kanonicznego opisu symetrii ciągłych
w mechanice klasycznej i teorii pola w terminach odnośnych ładunków Noether oraz w opera-
torowym opisie tychże symetrii w teorii kwantowej przekona uważnego Czytelnika każdy rzetelny
kurs z tych dziedzin, w którym będą omawiane anomalie algebr ładunków i prądów symetrii w
obecności – np. – ładunku topologicznego na obiektach elementarnych teorii fizycznej (nałado-
wanych cząstkach punktowych, pętlach itp.), wzgl. rzutowych realizacji symetrii klasycznych na
przestrzeni Hilberta układu fizycznego. Prostej ilustracji takiego fizykalnego scenariusza dostarcza
poniższa dyskusja szczegółowa.

4Taka trywializacja 2-kocyklu F ∈ Z2
dR(M,R) wymaga jeszcze spełnienia warunku Per(F) ⊂ 2πZ (w którego

zapisie Per(F) jest grupą przemienną tzw. okresów 2-kocyklu F, czyli wyników jego całkowania po 2-cyklach
homologicznych w M).
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Przedmiotem naszego zainteresowania w niniejszym przykładzie są realizacje symetrii transla-
cyjnej w prostych układach mechanicznych – zarówno w reżymie klasycznym, jak i kwantowym –
w kontekście rozszerzeń centralnych algebr i grup Liego. Tytułem przygotowania do ich omówienia
rozważmy komutatywną algebrę Liego o 4 generatorach

t(3) = ⊕
µ∈{1,2,3}

⟨Pi⟩R

i nawiasach Liego

[Pi, Pj] = 0 , i, j ∈ {1,2,3} ,
czyli stycznościową algebrę Liego przemiennej grupy Liego translacji (w) R×3 ≡ T(3) o operacji
binarnej

m ∶ T(3) ×T(3) Ð→ T(3) ∶ (xi, yi) z→ (xi + yi) ,
odwrotności

Inv ∶ T(3) ↺ ∶ (xi) z→ (−xi)
i elemencie neutralnym

e = (0,0,0,0) .
Operacja binarna pozwala zdefiniować działanie lewe regularne grupy T(3) na sobie, dane wzorem

ℓ⋅ ∶ T(3) Ð→ Diff∞(T(3)) ∶ (xi) z→m((xi), ⋅) ≡ (xi + ⋅) =∶ ℓ(xi) ,

do którego będziemy się odwoływać w dalszej części naszych rozważań.
Jednym z pytań, na które poszukamy odpowiedzi, jest wpływ ładunku niesionego przez obiekt

fundamentalny układu mechanicznego na realizację rzeczonej symetrii translacyjnej w formalizmie
kanonicznym. Ujawnienie takiego wpływu wymaga obecności zewnętrznego pola elektromagnetycz-
nego, którego naturalnym modelem matematycznym (uwzględniającym relatywistyczną niezmien-
niczość maxwellowskiej dynamiki) jest 2-kocykl de Rhama na przestrzeni konfiguracyjnej układu
mechanicznego zdefiniowany w terminach natężenia pola elektrycznego oraz indukcji magnetycz-
nej. Jako że celem naszym jest studium mechaniki nierelatywistycznej na cięciu stałego czasu,
ograniczymy się do składowej przestrzenno-przestrzennej tegoż 2-kocyklu, którą identyfikujemy z
polem indukcji magnetycznej. Niechaj zatem

(ωij = −ωji) ∈ R(3)
będzie dowolną niezerową macierzą. Oznaczywszy elementy bazy t(3)∗ ≅ R×3 dualnej do {Pi}i∈{1,2,3}
jako πi, i ∈ {1,2,3},

πi(Pj) = δij , i, j ∈ {1,2,3} ,
definiujemy 2-kołańcuch na t(3) o wartościach w trywialnym t(3)-module R wzorem

ω ∶= ωij πi ∧ πj ∈ C2(t(3);R) ,(5)

tj. dla dowolnej pary wektorów XA =Xi
A Pi ∈ t(3), A ∈ {1,2} mamy

ω(X1,X2) = 2ωijXi
1X

j
2 .

Bez trudu sprawdzamy zamkniętość ω licząc (dla dowolnych XB =Xi
B Pi ∈ t(3), B ∈ {0,1,2} )

δ
(2)

t(3)
ω(X0,X1,X2)

= −ω(Xi
0X

j
1 [Pi, Pj]t(3),X3) + ω(Xi

0X
j
2 [Pi, Pj]t(3),X1) − ω(Xi

1X
j
2 [Pi, Pj]t(3),X0) = 0 .

Mamy zatem do czynienia z 2-kocyklem Chevalleya–Eilenberga,

ω ∈ Z2(t(3);R) .
Załóżmy, że jest to 2-kobrzeg, tj., że istnieje 1-kołańcuch θ ∈ C1(t(3);R) ≡ t(3)∗ o własności

ω = δ(1)
t(3)

θ ,

11
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która tłumaczy się na warunek

2ωijX
i
1X

j
2 = ω(X1,X2) != δ(1)

t(3)
θ(X1,X2) = −θ(Xi

1X
j
2 [Pi, Pj]) = −θ(0t(3)) ≡ 0 ,

prowadzący do sprzeczności z założeniem o niezerowości ω. 2-kocykl ω definiuje zatem nietry-
wialną klasę

[ω]t(3) ∈ CE2(t(3)) ,
więc także – w zgodzie z tezą Stw. 4 – rozszerzenie centralne

0Ð→ R
ȷRÐÐ→ t̃(3)ω

πt(3)ÐÐÐÐ→ t(3) Ð→ 0 .(6)

W tym kontekście 2-kocykl ω będziemy określać mianem 2-kocyklu rozszerzenia t̃(3)ω. W
świetle konstruktywnego dowodu Stw. 4 jako reprezentanta klasy równoważności takich rozszerzeń
możemy przyjąć

(t̃(3)ω = R⊕ t(3), [⋅, ⋅]
t̃(3)ω
) .

Oznaczywszy wektory bazowe w t̃(3)ω jako

Z ∶= (1,0) , P̃ i ∶= (0, Pi) , i ∈ {1,2,3} ,
dostajemy algebrę Liego

[P̃ i, P̃ j]t̃(3)ω = 2ωij Z , [P̃ i, Z]t̃(3)ω = 0t̃(3)ω , [Z,Z]
t̃(3)ω

= 0
t̃(3)ω

.

Bez trudu „całkujemy” powyższe rozszerzenie algebry Liego do rozszerzenia grupy Liego T(3)
przez R opisywanego przez krótki ciąg dokładny grup Liego

1Ð→ R IRÐÐ→ T̃(3)ω
ΠT(3)ÐÐÐÐ→ T(3) Ð→ 1 ,(7)

w którego zapisie IR i ΠT(3) są homomorfizmami grup Liego. W obecnych nader nieskompliko-
wanych okolicznościach moglibyśmy wręcz zgadnąć postać tego rozszerzenia, my jednak pójdzie-
my inną drogą, która pozwala powrócić do geometrycznego punktu wyjścia naszych rozważań, a
przy tym okazuje się znajdować zastosowanie w okolicznościach dużo mniej oczywistych (np. w
kontekście ładunkowych rozszerzeń (super)algebr Liego supersymetrii – patrz: praca [CdAIPB00]).

Zaczniemy od reinterpretacji powyższego zagadnienia i otrzymanego wyniku w terminach ra-
chunku różniczkowego na grupie Liego R×3. Zaczynamy od komutatywnej algebry pól translacyjnie
(lewo-)niezmienniczych na R×3, dla których bazą są pola

Li ≡ LPi ≡ ∂i , i ∈ {1,2,3}
o trywialnych komutatorach

[Li, Lj] = 0 , i, j ∈ {1,2,3} .
Dualną bazę przestrzeni 1-form translacyjnie (lewo-)niezmienniczych na R×3 tworzą 1-formy

θiL = dxi , i ∈ {1,2,3} .
Odpowiednikiem 2-kocyklu ω jest tutaj 2-kocykl de Rhama

Ω = ωij dxi ∧ dxj ,
jawnie translacyjnie (lewo-)niezmienniczy, lecz nieposiadający 1-formy pierwotnej o tej samej włas-
ności. Istotnie, 1-forma taka musiałaby być postaci

Θ = Θi dxi , Θi ∈ R
(R-liniowa kombinacja bazowych 1-form translacyjnie (lewo-)niezmienniczych), co jednak dopro-
wadziłoby nas do sprzeczności

0 ≠ Ω != dΘ = ∂jΘi dxj ∧ dxi = 0 .
Należy w tym momencie dobitnie podkreślić (rzecz oczywistą): 2-forma Ω jest dokładna w koho-
mologii de Rhama (trywialnej dla R×3) – ma np. 1-formę pierwotną

ϑ(x) = ωij xi dxj ,
12
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nie jest natomiast dokładna w kohomologii (lewo)niezmienniczej.
W świetle Uwagi 1 możemy oczekiwać, że trywializacja w kohomologii Cartana–Eilenberga

będzie możliwa dopiero po cofnięciu Ω na grupę Liego T̃(3)ω o algebrze Liego t̃(3)ω otrzymanej
uprzednio. Postać tej ostatniej każe nam podejrzewać, że jako zbiór grupa T̃(3)ω będzie postaci5

R ×T(3), z kanonicznym rzutem

ΠT(3) ≡ pr2 ∶ R ×T(3) Ð→ T(3)
jako epimorfizmem grup Liego współokreślającym rozszerzenie, przy czym pierwszy czynnik kar-
tezjański będzie podgrupą przemienną (o algebrze Liego R), a poszukiwana operacja binarna m̃
na R × T(3) będzie wprowadzać „poprawkę” do odnośnej operacji binarnej (dodawania) zależną
od drugich składowych argumentów. Jak wyznaczyć m̃? Zauważmy po pierwsze, że lewo-T̃(3)ω-
niezmiennicza 1-forma pierwotna Θ̃ dla Π∗T(3)Ω spełnia tożsamość

dΘ̃ = Π∗T(3)Ω = dΠ∗T(3)ϑ Ô⇒ Θ̃ −Π∗T(3)ϑ ∈ Z1(T̃(3)ω,R) ,

a ponieważ T̃(3)ω w antycypowanej postaci także jest ściągalna, przeto

Θ̃ = dF +Π∗T(3)ϑ

dla pewnej gładkiej funkcji F ∈ C∞(T̃(3)ω,R), przy czym w świetle Równ. (4), które identy-
fikuje Θ̃ jako 1-formę dualną do pola lewoniezmienniczego ∂Z na przemiennej grupie Liego R (o
kartezjańskiej współrzędnej globalnej Z) rozszerzającej T̃(3)ω, oczekujemy tożsamości

dF ≡ −dZ .
Postulujemy zatem

Θ̃(Z,x) = −dZ + ωij xi dxj .
Po drugie „zmienniczość” znalezionej przez nas 1-formy pierwotnej dla Ω względem lewych trans-
lacji na R×3 przybiera szczególnie prostą postać: oto poprawka do ϑ będąca wynikiem cofnięcia ϑ
wzdłuż ℓ(εi) dla stałego wektora ε ≡ (εi) ∈ R×3 jest 1-formą zamkniętą (to konstatacja niezależna
od grupy Liego, na której rozpatrujemy kohomologię Cartana–Eilenberga),

dϑ = Ω = ℓ∗εΩ = ℓ∗εdϑ = dℓ∗εϑ Ô⇒ ℓ∗εϑ − ϑ ∈ Z1(T(3),R) ,
więc też dokładną w konsekwencji trywialności kohomologii de Rhama T(3),

(ℓ∗εϑ − ϑ)(x) = d(ωij εi xj) .

To w połączeniu z wcześniejszym postulatem dotyczącym postaci Θ̃ pozwala wyprowadzić możliwą
postać operacji binarnej m̃ z warunku niezmienniczości Θ̃ względem lewostronnych translacji na
T̃(3)ω indukowanych przez m̃ właśnie. Istotnie, jeśli zapiszemy

ℓ̃(0,ε)(Z,xi) ≡ m̃((0, εi), (Z,xi)) =∶ (Φ(Z,x, ε), xi + εi) ,
uwzględniając po drodze homomorficzny charakter ΠT(3) ≡ pr2, to z warunku lewoniezmienniczości
Θ̃,

−dΦ(Z,x, ε) + ωij (xi + εi)dxj = ℓ∗(0,ε)Θ̃(Z,x)
!= Θ̃(Z,x) = −dZ + ωij xi dxj ,

odczytujemy (modulo constans)

Φ(Z,x, ε) = Z + ωij εi xj ,

co prowadzi nas do zapostulowania operacji binarnej na T̃(3)ω w postaci

m̃ ∶ T̃(3)ω × T̃(3)ω Ð→ T̃(3)ω ∶ ((Z1, x
i
1), (Z2, x

j
2)) z→ (Z1 +Z2 + ωmn xm1 xn2 , x

i
1 + xi2) .

5Rzecz jasna, nie ma jedynej grupy Liego odpowiadającej danej algebrze Liego R. W naszych rozważaniach
dokonujemy po prostu wyboru najprostszego.

13
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Pozostaje jeszcze tylko sprawdzić, że tak określona operacja binarna jest łączna. O tym, że tak
jest w istocie, przekonuje bezpośredni rachunek – z jednej strony:

m̃(m̃((Z1, x
i
1), (Z2, x

j
2)), (Z3, x

ρ
3)) = m̃((Z1 +Z2 + ωmn xm1 xn2 , x

i
1 + xi2), (Z3, x

ρ
3))

= (Z1 +Z2 + ωmn xm1 xn2 +Z3 + ωmn (xm1 + xm2 )xn3 , xi1 + xi2 + xi3) ,
z drugiej zaś:

m̃((Z1, x
i
1), m̃((Z2, x

j
2), (Z3, x

ρ
3))) = m̃((Z1, x

i
1), (Z2 +Z3 + ωmn xm2 xn3 , x

j
2 + x

j
3))

= (Z1 +Z2 +Z3 + ωmn xm2 xn3 + ωmn xm1 (xn2 + xn3 ), xi1 + xi2 + xi3) .
Rekonstrukcję krótkiego ciągu dokładnego grup Liego (7) „odcałkowującego” wyjściowy krótki ciąg
dokładny algebr Liego (6) uzupełniamy dokonując identyfikacji monomorfizmu

IR ∶ RÐ→ T̃(3)ω ∶ r z→ (r,0) .
Na tym etapie mamy już nie tylko rozszerzenie centralne grupy T(3), ale także – lewoniezmienniczą
bazę wiązki kostycznej T̃(3)ω:

Θ̃(Z,x) = −dZ + ωij xi dxj , θ̃iL(Z,x) = dxi , i ∈ {0,1,2,3} .
W uzupełnieniu roztrząsań różniczkowo-geometrycznych wyznaczamy bazę lewoniezmienniczą wiąz-
ki stycznej T̃(3)ω (w tym – podniesienia pól lewoniezmienniczych z T(3)), do której ta powyżej
jest dualną:

LZ(Z,x) = ∂
∂Z

, LP̃ i
(Z,x) = ∂

∂xi − ωij xj ∂
∂Z

, i ∈ {0,1,2,3} .
W bazie tej spełnione są oczekiwane relacje komutacji

[LP̃ i
, LP̃ j

] = 2ωij LZ , [LP̃ i
, LZ] = 0 , [LZ , LZ] = 0 .

Na zakończenie niniejszego studium przypadku wskażemy kontekst fizykalny, w którym rea-
lizowany jest powyższy scenariusz algebro-geometryczny. Punktem wyjścia jest tutaj lagranżjan
(nierelatywistycznej) cząstki punktowej o masie m poruszającej się w metryce δE = δij dxi ⊗ dxj

w przestrzeni euklidesowej R×3, dany w postaci

L(x, ẋ) = m
2
δij ẋ

i ẋj .

Wyprowadzamy z niej formułę na pęd kinetyczny

p = pi dxi , pi = ∂L
∂ẋi = δijmẋj .

W opisie kanonicznym teorii znajdujemy nawiasy Poissona

{xi, pj}Ω = δij , {xi, xj}Ω = 0 , {pi, pj}Ω = 0 , i, j ∈ {1,2,3} ,(8)

których postać wynika wprost z postaci (Darboux) formy presymplektycznej

Ω(x, p) = dpi ∧ dxi

modelu, otrzymanej zeń np. w formalizmie pierwszego rzędu. Warto tu w szczególności zwrócić
baczną uwagę na komutatywną algebrę (Poissona) pędów kinetycznych:

{pi, pj}Ω = 0 , i, j ∈ {1,2,3} .
Pola hamiltonowskie na przestrzeni stanów układu fizykalnego T∗R×3 sparametryzowanej przez
pary (xµ, pj) (dane Cauchy’ego trajektorii klasycznej) stowarzyszone z tymi pędami to

Vpi = ∂
∂xi , Vpi ⌟Ω = −dpi , i ∈ {1,2,3} .

Przechodząc do lagranżjanu (nierelatywistycznej) cząstki punktowej o masie m i ładunku elek-
trycznym q poruszającej się w przestrzeni euklidesowej R×3 w metryce δE i stałym polu magne-
tycznym B = Bi ∂i o potencjale wektorowym A = Ai ∂i, Ai(x) = − 1

2
ϵ i
jk xj Bk,

L(x, ẋ) = m
2
δij ẋ

i ẋj + q δij Ai(x) ẋj ,
14
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znajdujemy – obok wprowadzonego wcześniej pędu kinetycznego

p =mδij ẋ
j dxi ≡ pi dxi ,

także pęd kanoniczny

π = πi dxi , πi = ∂L
∂ẋi = δij (mẋj + qAj(x)) .

Forma presymplektyczna to tym razem

ΩF(x, p) = dπi ∧ dxi = dpi ∧ dxi + qF , F ≡ 1
2
ϵijkB

i dxj ∧ dxk =∶ fij dxi ∧ dxj .
Parametryzując przestrzeń stanów układu fizykalnego tak jak poprzednio, czyli parami (xi, pi)
(zamiast parami kanonicznie sprzężonymi (xi, πi)), wyznaczamy bez trudu elementarne pola
hamiltonowskie:

Vxi(x, p) = − ∂
∂pi

, Vxi ⌟ΩF = −dxi ,

Vpi(x, p) = ∂
∂xi − 2q fij ∂∂pj , Vpi ⌟ΩF = −dpi

oraz odnośne nawiasy Poissona

{xi, pj}ΩF
= δij , {xi, xj}ΩF

= 0 , {pi, pj}ΩF
= 2q fij , i, j ∈ {1,2,3} .(9)

Zauważmy, że w ograniczeniu do podalgebr w odnośnych algebrach Liego–Poissona

(C∞(T∗R×3,R),{⋅, ⋅}Ω) vs (C∞(T∗R×3,R),{⋅, ⋅}ΩF
)

generowanych przez pędy kinetyczne włączenie stałego pola magnetycznego B możemy zinterpre-
tować jako omówione wcześniej rozszerzenie (na poziomie liniowym w generatorach)

t(3) ωÐÐÐ→ t̃(3)F , ωij ≡ fij ,
w którym dodatkowym generatorem jest. . . ładunek elektryczny cząstki,

LZ = ȷR(1) ≡ q !
Ten sposób myślenia o „ładunkach” niesionych przez cząstki okazuje się być niezwykle naturalny,
uniwersalny i płodny – patrz: np. praca Gauntletta, Gomisa i Townsenda [GGT90].

Na obecnym etapie pozostaje jeszcze odpowiedzieć na pytanie o fizykalną realizację znalezionego
wcześniej grupowego wariantu rozszerzenia (7). Okazuje się, że ten jest związany z pewnym
wyróżnionym schematem kwantowania opisanego modelu fizykalnego, którego elementy omówimy
poniżej. Zaczniemy od kanonicznego skwantowania relacji (8), tj. wskazania ośrodkowej przestrzeni
Hilberta H i operatorowej realizacji na niej (w terminach operatorów samosprzężonych) algebry
Heisenberga

[x̂i, p̂j] = i h̵ δij idH , [x̂i, x̂j] = 0 , [p̂i, p̂j] = 0 , i, j ∈ {1,2,3} .
Jak powszechnie wiadomo (choćby z kursu Mechaniki kwantowej I), realizacji takiej dostarcza
przestrzeń Hilberta L2(R3,d3x) funkcji (zespolonych) na R3 całkowalnych z kwadratem (wzglę-
dem standardowej miary Lebesgue’a) – realizacja ta przyjmuje znajomą prostą postać:

x̂i ≡ xi , p̂i = −i h̵ ∂
∂xi , i ∈ {1,2,3} .

To kwantowomechaniczny elementarz (choć same operatory x̂i i p̂j okazują się być dość narowi-
ste). Pytanie brzmi: Jak zrealizować algebrę

[x̂i, p̂j] = i h̵ δij idH , [x̂i, x̂j] = 0 , [p̂i, p̂j] = 2i h̵ q fij idH , i, j ∈ {1,2,3}
(10)

otrzymaną w wyniku kanonicznego skwantowania relacji (9) w obecności ładunku elektrycznego
(i zewnętrznego pola magnetycznego)? I czy ma to cokolwiek wspólnego z rozszerzeniem T̃(3)?
Konstruktywnej odpowiedzi na pierwsze z tych pytań i zarazem pozytywnej odpowiedzi na drugie
z nich dostarcza schemat kwantowania rozwinięty przez Kostanta i Souriau6, który określamy
mianem kwantowania geometrycznego. Na zakończenie niniejszych notatek zaprezentujemy jedynie

6Schemat ten został w nader przystępny sposób przedstawiony w monografii Woodhouse’a [Woo92].
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jego wynik w rozważanym modelu fizykalnym, zastępując przy tym addytywną grupę R rozsze-
rzenia T̃(3) nad bazą R×3 multyplikatywną grupą okręgu U(1) ≅ R/2πZ ≅ S1, co daje nam (po
dodatkowej, trywialnej transpozycji składników kartezjańskich) rozszerzenie

π ≡ pr1 ∶ ŨT(3)ω ∶= R
×3 ×U(1) Ð→ R×3(11)

z działaniem binarnym

ŨT(3)ω × ŨT(3)ω Ð→ ŨT(3)ω ∶ ((x
i
1, u1), (xi2, u2)) z→ (xi1 + xi2, u1 ⋅ u2 ⋅ e2iωmn x

m
1 xn

2 )(12)

i indukowanym przezeń działaniem (lewym) ŨT(3)ω na sobie

λω⋅ ∶ ŨT(3)ω × ŨT(3)ω Ð→ ŨT(3)ω

∶ ((εi, ζ), (xi, z)) z→ (xi + εi, z ⋅ ζ ⋅ e2iωmn ε
m xn

) ≡ λ(ε,ζ)(x, z) .
Tak przygotowani możemy już przystąpić do konstrukcji operatorowej realizacji algebry (10). Tej
dostarczają po raz kolejny funkcje (zespolone) na T∗R3 całkowalne z kwadratem (i odpowiednio
spolaryzowane – np. w polaryzacji/„reprezentacji” pędowej), na których tym razem zadajemy
operatory

x̂i(x, p) = ih̵ ∂
∂pi

, p̂i(x, p) = −ih̵ ( ∂∂xi − q ϵijkBk ∂
∂pj
) + pi − 1

2
q ϵijk x

j Bk .

Operatory te otrzymujemy z ogólnego przepisu

hz→ −ih̵Vh − Vh ⌟ η + h ≡ ĥ ,
w którym Vh jest polem hamiltonowskim stowarzyszonym z h ∈ C∞(T∗R×3,R), η ∈ Ω1(T∗R×3)
zaś jest dowolną 1-formą pierwotną dla 2-kocyklu ΩF, która w naszym wypadku została wybrana
w postaci

η(x, p) = −xi dπi(x, p) = −xi (dpi + 1
2
q ϵijkB

j dxk) .
Bez trudu przekonujemy się, że wypisane powyżej operatory różniczkowe spełniają pożądane
relacje komutacyjne. Ażeby zrozumieć, w jaki sposób ich struktura i działanie na L2(T∗R×3,R)
wiąże się z rozszerzeniem (11), musimy wrócić do modelu klasycznego.

Model klasyczny ma symetrie ciągłe: pod wpływem translacji ℓε o stały wektor ε ∈ R×3 la-
granżjan zmienia się o zupełną pochodną czasową

L(ℓε ○ x, (ℓε ○ x)
⋅) = L(x, ẋ) + Ḟ (x)

funkcji gładkiej

F (x) = 1
2
q ϵijk ε

i xj Bk .

Oczekiwanie, iżby symetrie te podnosiły się do teorii kwantowej, jest w pełni uzasadnione. Tu
jednak natrafiamy na obstrukcję: o ile operator położenia jest nieczuły na przesunięcia, operator
pędu podlega transformacji

p̂i(ℓε(x), p) = p̂i(x, p) − 1
2
q ϵijk ε

j Bk ,

jeśli zatem nie poddamy stosownej korekcie (fazowej) funkcji falowej ψ ∈ L2(T∗R×3,R), wartości
oczekiwane tego operatora i wszelkich operatorów pochodnych,

⟨O(x̂i, p̂j)⟩ψ ≡ ∫T∗R×3 Vol(T∗R×3;ΩF)ψ(x, p)O(x̂i, p̂j)(x, p)ψ(x, p)

nie będą niezmiennicze względem przesunięć (należy zwrócić uwagę, że 2-forma symplektyczna
ΩF jest translacyjnie niezmiennicza, cechę tę ma zatem także symplektyczna forma objętości
Vol(T∗R×3;ΩF)). Jest przy tym jasne, że konieczna postać7 transformacji symetrii funkcji falowej

L2ℓ⋅ ∶ T(3) ×L2(T∗R×3,R) Ð→ L2(T∗R×3,R) ∶ ((εi), ψ) z→ ε ⊳ ψ ≡ L2ℓε(ψ) ,

(ε ⊳ ψ)(x, p) = e− iq
2h̵ ϵijk ε

i xj Bk ⋅ ψ(ℓ−ε(x), p)

7Zauważmy, że operator położenia pozostaje niezmieniony pod wpływem translacji ℓε.
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(uwzględniliśmy to, że działanie na argumencie funkcji falowej poprzez cofnięcie wzdłuż ℓε jest
działaniem prawym, my zaś dążymy do skonstruowania działania lewego). Istotnie, oczekiwana
niezmienniczość amplitud jest wówczas prostą konsekwencją translacyjnej niezmienniczości sym-
plektycznej miary objętości,

⟨O(x̂i, p̂j)⟩ε⊳ψ = ∫
T∗R×3

Vol(T∗R×3;ΩF) (ε ⊳ ψ)(x, p)O(x̂i, p̂j)(x, p) (ε ⊳ ψ)(x, p)

= ∫
T∗R×3

Vol(T∗R×3;ΩF)ψ(ℓ−ε(x), p) ⋅ e
iq
2h̵ ϵijk ε

i xj Bk

⋅O(x̂i, p̂j)(x, p) e−
iq
2h̵ ϵijk ε

i xj Bk

⋅ ψ(ℓ−ε(x), p)

= ∫
T∗R×3

Vol(T∗R×3;ΩF)ψ(ℓ−ε(x), p) ⋅ O(x̂i, p̂j + 1
2
q ϵjkl ε

kBl)(x, p)ψ(ℓ−ε(x), p)

= ∫
T∗R×3

Vol(T∗R×3;ΩF)ψ(ℓ−ε(x), p) ⋅ O(x̂i, p̂j)(ℓ−ε(x), p)ψ(ℓ−ε(x), p)

= ⟨O(x̂i, p̂j)⟩ψ .

Na obecnym etapie zasadnym wydaje się ustalenie własności odwzorowania L2ℓ⋅. Czy mamy do
czynienia z działaniem grupy T(3)? W bezpośrednim rachunku stwierdzamy

(L2ℓε1 ○ L2ℓε2)(ψ)(x, p) = e−
iq
2h̵ ϵijk ε

i
1 x

j Bk

⋅ (L2ℓε2(ψ))(ℓ−ε1(x), p)

= e−
iq
2h̵ ϵijk ε

i
1 x

j Bk

⋅ e−
iq
2h̵ ϵijk ε

i
2 ℓ−ε1(x)

j Bk

⋅ ψ(ℓ−ε2 ○ ℓ−ε1(x), p)

= e−
iq
2h̵ ϵijk ε

i
1 ε

j
2B

k

⋅ e−
iq
2h̵ ϵijk (ε1+ε2)

i xj Bk

⋅ ψ(ℓ−(ε1+ε2)(x), p)

≡ e−
iq
2h̵ ϵijk ε

i
1 ε

j
2B

k

⋅ L2ℓε1+ε2(ψ)(x, p) ,
zatem L2ℓ⋅ nie jest działaniem. Jest natomiast działaniem rzutowym, a ponieważ takie dzia-
łania często spotykanym w kontekście kwantowania symetrii klasycznych (w związku ze swobodą
redefinicji fazy funkcji falowej), przeto omówimy je po krótce w pewnej ogólności. Oto więc mamy
do czynienia z realizacją grupy G na przestrzeni K-liniowej V , czyli homomorfizmem

GÐ→ GL(V,K)/K× ≡ PGL(V,K)
grupy G w grupę ilorazową PGL(V,K), określaną mianem rzutowej grupy głównej liniowej
przestrzeni V , który możemy równoważnie opisywać jako odwzorowanie

R ∶ GÐ→ GL(V,K)
o własności

∀g,h∈G ∃c(g,h)∈K× ∶ R(g) ○R(h) = c(g, h) ⊳ R(g ⋅ h) .
Można zadać pytanie, kiedy tak określone odwzorowania współdeterminują działanie rozszerzenia
centralnego G przez K×,

1Ð→ K×
(eG,idK×)ÐÐÐÐÐÐÐ→ G ×K× ≡ G̃

pr1ÐÐÐ→ GÐ→ 1

o operacji binarnej

µ̃ ∶ G̃ × G̃Ð→ G̃ ∶ ((g1, k1), (g2, k2)) z→ (g1 ⋅ g2, k1 ⋅ k2 ⋅ c(g1, g2)) .(13)

Jest to możliwe, gdy odwzorowanie

c ∶ G ×GÐ→ K× ∶ (g, h) z→ c(g, h)(14)

spełnia warunek

∀g1,g2,g3∈G ∶ c(g1, g2) ⋅ c(g1 ⋅ g2, g3) = c(g2, g3) ⋅ c(g1, g2 ⋅ g3) ,(15)

oto bowiem wtedy zapostulowana powyżej operacja binarna µ̃ okazuje się być łączna, a my
możemy zadać działanie grupy G̃ w postaci odwzorowania

R̃ ∶ G̃Ð→ GL(V,K) ∶ (g, k) z→ k ⊳ R(g) ,
17



Teoria Grup II ’24/25 – 4., 5. i 6. Un tout petit peu de kohomologia i qu’est-ce que z tego wynika

którego homomorficzność sprawdzamy w bezpośrednim rachunku:

R̃(g1, k1) ○ R̃(g2, k2) = k1 ⊳ R(g1) ○ (k2 ⊳ R(g2)) = k1 ⊳ (k2 ⊳ (R(g1) ○R(g2)))

= k1 ⋅ k2 ⊳ (c(g1, g2) ⊳ R(g1 ⋅ g2)) = k1 ⋅ k2 ⋅ c(g1, g2) ⊳ R(g1 ⋅ g2)

≡ R̃ ○ µ̃((g1, k1), (g2, k2)) .
Interpretacja samego warunku wymaga kolejnej

Definicja 4. Niechaj G będzie grupą, A zaś – grupą przemienną, na której określone jest dzia-
łanie (lewe) G, tj. dany jest homomorfizm grup

Λ⋅ ∶ GÐ→ AutGrp(A) ∶ g Ð→ Λg ,

przy czym jak zwykle będziemy też pisać, nadużywając nieco notacji,

Λ ∶ G ×AÐ→ A ∶ (g, a) z→ g ⊳ a ≡ Λg(a) .
Mówimy, że para (A,Λ⋅) jest modułem grupy G. p-kołańcuch na G o wartościach w A
to odwzorowanie

f ∶ G×p Ð→ A,

przy czym dla p = 0 przyjmujemy konwencję: G×0 ≡ {●} (singleton), z której wynika, że 0-
kołańcuch na G o wartościach w A to element A. Zbiór Cp(G;A) ≡ Map(G×p,A) takich
odwzorowań dziedziczy z A strukturę grupy przemiennej (z operacją binarną zdefiniowaną punk-
towo) – grupę tę określamy mianem grupy p-kołańcuchów na G o wartościach w A. Indek-
sowana przez N ∋ p rodzina grup kołańcuchów tworzy kompleks (ko)łańcuchowy

(C●(G;A), δ(●)G ) ∶ C
0(G;A)

δ
(0)
GÐÐÐ→ C1(G;A)

δ
(1)
GÐÐÐ→ ⋯

δ
(p−1)
GÐÐÐÐ→ Cp(G;A)

δ
(p)
GÐÐÐ→ ⋯

o operatorach kobrzegu

δ
(p)
G ∶ Cp(G;A) Ð→ Cp+1(G;A) , δ

(p+1)
G ○ δ(p)G = 0 , p ∈ N

danych wzorami (zapisanymi dla dowolnych gi ∈ G, i ∈ 0, p i c
k
∈ Ck(G;A), k ∈ {0, p > 0})

δ
(0)
G φ

0

(g0) = g0 ⊳ φ
0

− φ
0

,

δ
(p)
G φ

p

(g0, g1, . . . , gp) = g0 ⊳ φ
p

(g1, g2, . . . , gp) +
p

∑
j=1

(−1)j φ
p

(g0, g1, . . . , gj−2, gj−1 ⋅ gj , gj+1, gj+2, . . . , gp)

+(−1)p+1 φ
p

(g0, g1, . . . , gp−1) .

Grupa homologii powyższego kompleksu

H0(G;A) ≡ Z0(G;A) , Hp+1(G;A) ≡ Zp+1(G;A)/Bp+1(G;A) , p ∈ N ,
w której zapisie

Zp+1(G;A) ≡ Ker δ
(p+1)
G

to grupa (p + 1)-kocykli na grupie G o wartościach w G-module A, a

Bp+1(G;A) ≡ Im δ
(p)
G

to grupa (p+1)-kobrzegów na grupie G o wartościach w G-module A, nosi miano (p+1)-
tej grupy kohomologii grupy G o wartościach w G-module A. Suma prosta

H●(G;A) = ⊕
p∈N

Hp(G;A)

tych grup określa kohomologię grupy G o wartościach w G-module A.

Uwaga 2. Warto zwrócić uwagę na to, że H0(G;A) to zbiór niezmienników działania Λ⋅.
Wprowadzona tu kohomologia dostarcza naturalnego uogólnienia pojęcia niezmiennika. Odgrywa
niebagatelną rolę w dyskusji cechowania symetrii sztywnych w teoriach fizycznych.
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Bogatsi o powyższą definicję bez trudu identyfikujemy warunek (15) narzucony na odwzorowanie
(14): oto zdefiniowanie działania rozszerzenia centralnego G̃ zrealizowanej rzutowo grupy G
wymaga, iżby odwzorowanie to było 2-kocyklem na G o wartościach w trywialnym G-module
K× (z Λ⋅ ≡ idK×),

(15) ⇐⇒ c
!∈ Z2(G;K×) .

Będziemy go nazywać 2-kocyklem działania rzutowego R. Zauważmy przy tym, że poprawie-
nie wyjściowego 2-kocyklu c o 2-kobrzeg δ

(1)
G d, d ∈ C1(G;K×) nie zmienia jakościowo sytuacji,

gdyż poprawka może być zaabsorbowana w redefinicję odwzorowania R wedle schematu

R z→ Inv ○ d ⊳ R ≡ Rd ,
tj., jeśli R spełnia warunek

∀g,h∈G ∶ R(g) ○R(h) = c(g, h) ⋅ δ(1)G d(g, h) ⊳ R(g ⋅ h) ≡ c(g, h) ⋅ d(h) ⋅ d(g ⋅ h)−1 ⋅ d(g) ⊳ R(g ⋅ h) ,
to wówczas Rd spełnia warunek

∀g,h∈G ∶ Rd(g) ○Rd(h) = c(g, h) ⊳ Rd(g ⋅ h) .
Ponadto, rzecz jasna,

δ
(2)
G (c ⋅ δ

(1)
G d) = δ(2)G c ,

przeto koniec końców w rozpatrywanym przez nas zagadnieniu znaczenie ma jedynie klasa koho-
mologii 2-kocyklu działania rzutowego.

W naszych wcześniejszych rozważaniach fizykalnych realizacja algebry (10) doprowadziła nas
wprost do definicji działania rzutowego L2ℓ⋅ grupy T(3) o własności

∀ε1,ε2∈T(3) ∶ L2ℓε1 ○ L2ℓε2 = e−
iq
2h̵ ϵijk ε

i
1 ε

j
2B

k

⊳ L2ℓε1+ε2 .
Łatwo przekonujemy się, że pojawiający się tutaj 2-kołańcuch na T(3) o wartościach w trywialnym
T(3)-module U(1) (notacja multyplikatywna dla grupy przemiennej U(1)!) dany wzorem

cF ∶ T(3) ×T(3) Ð→ U(1) ∶ (ε1, ε2) z→ e−
iq
2h̵ ϵijk ε

i
1 ε

j
2B

k

jest 2-kocyklem,

δ
(2)

T(3)
cF(ε1, ε2, ε3) = e−

iq
2h̵ ϵijk ε

i
2 ε

j
3B

k

⋅ e
iq
2h̵ ϵijk (ε1+ε2)

i εj3B
k

⋅ e−
iq
2h̵ ϵijk ε

i
1 (ε2+ε3)

j Bk

⋅ e
iq
2h̵ ϵijk ε

i
1 ε

j
2B

k

≡ 1 .
Obserwacja ta pozwala zrozumieć strukturę zapostulowanej przez nas transformacji symetrii funkcji
falowej jako odzwierciedlenie ukrytego za nią działania rozszerzenia centralnego

1Ð→ U(1)
(0,idU(1))ÐÐÐÐÐÐÐ→ T(3) ×U(1) ≡ T̃(3)h̵

pr1ÐÐÐ→ T(3) Ð→ 1

na przestrzeni Hilberta ładunku elektrycznego w stałym polu magnetycznym. Porównując operację
binarną indukowaną na rozszerzeniu T̃(3)h̵ w tych okolicznościach wedle schematu (13),

µ̃h̵ ∶ T̃(3)h̵ × T̃(3)h̵ Ð→ T̃(3)h̵ ∶ ((ε1, u1), (ε2, u2)) z→ (ε1 + ε2, u1 ⋅ u2 ⋅ e
−

iq
2h̵ ϵijk ε

i
1 ε

j
2B

k

) ,

z operacją binarną (12) na grupie ŨT(3)ω otrzymanej przez (równoważne) scałkowanie central-
nego rozszerzenia algebry Liego t(3) indukowanego przez 2-kocykl ω na t(3), konstatujemy z
serdecznym wzruszeniem, iż

T̃(3)h̵ ≡ ŨT(3)ω , ωij ≡ − 1
2h̵
q fij = − 1

4h̵
q ϵijkB

k .

I na tym jednak nie koniec. . .Możemy wszak zadać pytanie o (naturalny) mechanizm indukcji dzia-
łania „kwantowej grupy translacji” T̃(3)h̵ na przestrzeni Hilberta skwantowanego geometrycznie
modelu dynamiki masywnego ładunku elektrycznego w stałym polu magnetycznym. Odpowiedź na
to pytanie nasuwa się sama w geometrycznym paradygmacie opisu zjawisk fizykalnych, u którego
podstaw – tak w mechanice klasycznej, jak i w teorii pola (a nawet w niektórych schematach
kwantowania obu) – leży w wymiarze formalnym pojęcie wiązki włóknistej (lub innej „wyższej ge-
ometrii”, jak (n-)wiecheć wiązek), które jest omawiane ze szczegółami i w konkretnych zastosowa-
niach na 2. i 3. semestrze wykładu monograficznego pt. „Elementy algebry i geometrii wyższej w
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fizyce” Autora. Nie mogąc zakładać znajomości dyskutowanych tam struktur geometrycznych i
algebraicznych, możemy jedynie – z braku czasu na rozleglejszą argumentację – podsunąć Czytel-
nikowi niezbędną intuicję, wywiedzioną z kursu Algebry.

Punktem wyjścia w konstrukcji, którą chcemy zaproponować, jest potraktowanie rozważanych
przez nas funkcji falowych ψ ∶ T∗R×3 Ð→ C jako odwzorowań z przestrzeni stanów T∗R×3 układu
fizycznego w produkt kartezjański T∗R×3 ×C tejże z rozmaitością C ≅ R×2 szczególnej postaci

(idT∗R×3 , ψ) ∶ T∗R×3 Ð→ T∗R×3 ×C ∶ (x, p) z→ ((x, p), ψ(x, p)) ,
czyli takich, które są prawymi odwrotnościami rzutu

pr1 ∶ T∗R×3 ×CÐ→ T∗R×3 .(16)

W języku wiązek włóknistych to ostatnie odwzorowanie nosi miano rzutu na bazę T∗R×3 wiązki
(trywialnej) T∗R×3 ×C, dla którego (idT∗R×3 , ψ) jest (globanym) cięciem. Tak określona wiązka
(pre)kwantowa8 T∗R×3 ×C jest wprost ze swej natury wiązką jednowymiarowych przestrzeni C-
liniowych nad bazą T∗R×3 – w naszym przypadku każde jej włókno pr−11 ({(x, p)}) nad punktem
(x, p) ∈ T∗R×3 bazy jest po prostu przestrzenią V ≡ C (w ogólnym przypadku mamy do czynienia
z przestrzenią C-liniową niekanonicznie izomorficzną z C). Wybór bazy w tej (i w każdej innej)
jednowymiarowej przestrzeni C-liniowej jest równoznaczny ze wskazaniem izomorfizmu

β ∶ C ≅ÐÐ→ V ,

a zbiór IsoC(C, V ) wszystkich takich izomorfizmów, więc też zbiór wszystkich baz, jest naturalnie
utożsamialny z grupą GL(1,C) ≡ C×. Można też, rzecz jasna, rozważać podklasę IsoHC (C, V ) baz
powiązanych ze sobą transformacjami utożsamialnymi z dowolną podgrupą H ⊂ GL(1,C), np.
bazy Iso

U(1)
C (C, V ) z orbity działania podgrupy U(1) ⊂ C× ≡ GL(1,C). Należy podkreślić, że

każdą taką H-orbitę można utożsamić z H niekanonicznie dopiero po wybraniu dowolnego jej
punktu. Mając taki dowolny element β∗ ∈ IsoHC (C, V ), jesteśmy w stanie odtworzyć wyjściową
przestrzeń C-liniową V jako β∗(C). Z punktu widzenia geometryzacji dyskutowanych pojęć i
operacji algebraicznych dużo bardziej naturalne wydaje się pytanie o możliwość odtworzenia V
bez wyróżniania jakiejkolwiek bazy, czyli wprost ze zbioru IsoHC (C, V ) × C. Usunięcie ∣H∣-krotnej
nadwyżki elementów musi przy tym uwzględniać status ontologiczny wszystkich zaangażowanych
obiektów. W sukurs przychodzi nam podkreślana wyżej struktura H-torsora na IsoHC (C, V ), która
podpowiada schemat „wyprojektowania” ∣H∣-krotnej nadwyżki poprzez przejście do przestrzeni
orbit diagonalnego działania H na IsoHC (C, V ) ×C danego wzorem

H × (IsoHC (C, V ) ×C) Ð→ IsoHC (C, V ) ×C ∶ (h, (β, z)) z→ (β ○ h,h−1(z)) ,
w którym H traktujemy pedantycznie jako podgrupę GL(1,C). W wyniku tej operacji otrzymu-
jemy zbiór (orbit)

(IsoHC (C, V ) ×C)/H ∋ [(β, z)]∼ ,
którego elementy to klasy abstrakcji [(β, z)]∼ względem relacji równoważności

(β1, z1) ∼ (β2, z2) ⇐⇒ ∃h∈H ∶ (β2, z2) = (β1 ○ h,h−1(z1))
i który jest w sposób kanoniczny izomorficzny z V , a to poprzez odwzorowanie

[ev] ∶ (IsoHC (C, V ) ×C)/H
≅ÐÐ→ V ∶ [(β, z)]∼ z→ β(z) ,

którego dobra określoność (tj. niezależność od wyboru reprezentanta klasy (β, z)]∼) wynika z
łączności superpozycji odwzorowań,

∀h∈H ∶ β ○ h(h−1(z)) = β ○ (h ○ h−1)(z) = β(z) .

Istnienie izomorfizmu [ev] pozwala zaindukować na (IsoHC (C, V ) ×C)/H naturalną strukturę C-
liniową.

8Konstrukcja, którą tu wprowadzamy „tylnymi drzwiami”, jest zupełnie ogólna i nie zawsze prowadzi do produk-
towej przestrzeni totalnej jak ta tutaj: T∗R×3 × C. Ta uwaga ma na celu zdjęcie z naszych dalszych rozważań
potencjalne odium trywialności, a zarazem sztuczności i nadmiarowości.
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Powyższa dyskusja dotyczy w szczególności U(1)-torsora Iso
U(1)
C (C, V ) ≡ U(1) (złożonego z

przemnożeń liczb zespolonych przez fazy z U(1), co stanowi podstawę utożsamienia z U(1)) –
mamy zatem

[ev] ∶ (U(1) ×C)/U(1) ≅ÐÐ→ C ∶ [(u, z)]∼ z→ u ⋅ z .(17)

Dokonawszy geometryzacji tej konstrukcji nad bazą T∗R×3, tj. „wyprojektowawszy” działanie

U(1) × (T∗R×3 ×U(1) ×C) Ð→ T∗R×3 ×U(1) ×C ∶ (g, ((x, p), u, z)) z→ ((x, p), u ⋅ g, g−1 ⋅ z) ,
odnajdujemy wiązkę stowarzyszoną

(T∗R×3 ×U(1) ×C)/U(1) Ð→ T∗R×3 ∶ [((x, p), u, z)]
∼
z→ (x, p)(18)

z wiązką główną

T∗R×3 ×U(1) Ð→ T∗R×3 ∶ ((x, p), u) z→ (x, p)
poprzez naturalne działanie U(1) na C (przez mnożenie). Wiązka (18) (rozmaitość) jest kano-
nicznie izomorficzna (dyfeomorficzna) z wiązką (pre)kwantową (16),

Bun[ev] ∶ (T∗R×3 ×U(1) ×C)/U(1) Ð→ T∗R×3 ×C ∶ [((x, p), u, z)]
∼
z→ ((x, p), u ⋅ z) ,

por. (17). Tym, co sprawia, że nie jest to jedynie matematyczne kuriozum, jest zanurzenie

T̃(3)h̵ ≡ R
×3 ×U(1) ↪ T∗R×3 ×U(1) ∶ (x,u) z→ ((x, p), u) ,

które implikuje istnienie działania „kwantowej grupy translacji” T̃(3)h̵ na T∗R×3 × U(1) × C
będącego lewym działaniem regularnym tej grupy na składniku kartezjańskim pr1,3(R×3 × R×3 ×
U(1) ×C) = R×3 ×U(1),

Bunλ⋅ ∶ T̃(3)h̵ × (T
∗R×3 ×U(1) ×C) Ð→ T∗R×3 ×U(1) ×C

∶ ((ε, ζ), ((x, p), u, z)) z→ ((x + ε, p), u ⋅ ζ ⋅ e−
iq
2h̵ ϵijk ε

i xj Bk

, z) ,
przemiennego z wyprojektowywanym działaniem U(1), więc zstępującego do przestrzeni orbit
(T∗R×3 ×U(1) ×C)/U(1) w postaci

[Bunλ]⋅ ∶ T̃(3)h̵ × (T
∗R×3 ×U(1) ×C)/U(1) Ð→ (T∗R×3 ×U(1) ×C)/U(1)

∶ ((ε, ζ), [((x, p), u, z)]
∼
) z→ [((x + ε, p), u ⋅ ζ ⋅ e−

iq
2h̵ ϵijk ε

i xj Bk

, z)]
∼

i tym samym dającego nam możliwość zaindukowania na wiązce (pre)kwantowej T∗R×3 ×C na-
turalnego działania

λh̵⋅ ∶ T̃(3)h̵ × (T
∗R×3 ×C) Ð→ T∗R×3 ×C

wedle schematu opisanego przez diagram przemienny

T̃(3)h̵ × (T∗R×3 ×U(1) ×C)/U(1)
[Bunλ]⋅ // (T∗R×3 ×U(1) ×C)/U(1)

Bun[ev]

��
T̃(3)h̵ × (T∗R×3 ×C)

λh̵
⋅

//

id
T̃(3)h̵×Bun[ev]−1

OO

T∗R×3 ×C

.

Otrzymujemy tym sposobem działanie

λh̵(ε,z)((x, p), z) = ((x + ε, p), e−
iq
2h̵ ϵijk ε

i xj Bk

⋅ z)
o oczywistej składowej w bazie

λh̵(ε,ζ) ∶ T∗R×3↺ ∶ (x, p) z→ (ℓε(x), p)
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(wszak działanie T̃(3)h̵ jest rozszerzeniem działania T(3)) i zależnej od punktu w bazie składowej
we włóknie

Fλh̵(ε,ζ)(x, p) ∶ pr−11 ({(x, p)}) ↺ ∶ z z→ e−
iq
2h̵ ϵijk ε

i xj Bk

⋅ z .
Z tych dwóch możemy już w standardowy sposób złożyć lewe działanie „kwantowej grupy translacji”
T̃(3)h̵ na funkcjach falowych:

L2λh̵⋅ ∶ T̃(3)h̵ ×L
2(T∗R×3) Ð→ L2(T∗R×3) ∶ ((ε, ζ), ψ) z→ Fλh̵(ε,ζ)(⋅) ⋅ ψ ○ λ

h̵
(ε,ζ)−1(⋅) .

Na końcu naszej długiej i chwilami nieoczywistej drogi czeka na nas nagroda – dobra nowina:

L2ℓε ≡ L2λh̵(ε,1) !
Udało się nam zatem zrozumieć postać rzutowego działania grupy translacji T(3) na przestrzeni
Hilberta, wymuszoną przez wybór geometrycznego schematu kwantowania, jako ograniczenie na-
turalnego działania rozszerzenia tejże grupy T̃(3)h̵ na przestrzeni (całkowalnych z kwadratem)
cięć trywialnej wiązki wektorowej T∗R×3 ×C nad klasyczną przestrzenią stanów.

Więcej ciekawych szczegółów i przykładów Czytelnik znajdzie w monografii de Azcárraga i Izquierdo
pt. “Lie groups, Lie algebras, cohomology and some applications in physics” [dAI95].

Zadanie na ćwiczenia 1 (na przyszłość). Udowodnić i zinterpretować Drugi Lemat Whiteheada
dla dowolnej skończenie wymiarowej półprostej algebry Liego g:

CE2(g) = 0 .
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