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1. WPROWADZENIE

Na poprzednich wykltadach wprowadziliSmy rachunek rézniczkowy Cartana na grupie Liego G,
wiec
e pola wektorowe LI X1(G),
L i g—X0(G) + X — TA(X),

okreslajace globalng trywializacje wiazki stycznej TG = Gt _aaxg poprzez zadanie global-
nej bazy C*(G,R)-modutu T'(G),

{LAELtA}AeLDv D =dimG,

stowarzyszonej z dowolng baza {ta],.;p algebry Liego T.G =g, oraz
e dualng 1-formy LI Q! (G) rozpiete (nad R) na bazie dualnej

{68 4t Lasof =64
Te ostatnie generuja (nad R a wzgl. iloczynu zewnetrznego A) podprzestrzenie k-form LI,
QG ={weQ*(G) | Vg @ Lw=w},
otrzymujemy zatem

2(G)=(0|Ae1,D) _cQ(G).

AR

Powstaje naturalne pytanie o to, czy takze operator de Rhama dgr =d (pochodnej zewnetrznej)
ogranicza sie do tak zdefiniowanej algebry form lewoniezmienniczych. Odpowiedzi na nie
dostarcza

Stwierdzenie 1. Operator de Rhama ogranicza sie do algebry form lewoniezmienniczych na
grupie Liego G, tj. zachodzi

dQ3(G) cQL(G).
W szczegblnosci sa spelnione réwnania Maurera—Cartana
o) = -3 fpc 0f AOL
w ktorych wspotezynniki fp' sa stalymi struktury g w bazie {t4] ATD

[thtC]g = fBCA ta.
1
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Dowdd: Istnienie ograniczenia operatora de Rhama do Q% (G) jest natychmiastowa konsekwencja
przemienno$ci tego operatora z operatorem cofniecia,

E;w =w = égdw = df;w =dw.

Pozostaje zatem zaja¢ sie druga czescia tezy, wykorzystujac dodatkowo to, ze 2-forma d@f jest
w pelni okreslona przez wartosci przyjmowane przez nig na bazie LI modutu I'(G). Biorac pod
uwage fundamentalng tozsamosé (Cartana)

k
Z (_1)m+nW([Vm,Vn]7VO,Vl,r.ﬁ.\;JVk) )

m<n=1

k
dw(VO7V17 .- 7Vk) = Z (_l)l Vl - d(W(VO7V17 Tavk)) +
=0
(1)

stuszng dla dowolnej k-formy w € QF(M) (na rozmaitosci M) i dowolnych pél wektorowych
V eI(TM), 1€0,k (na tejze), obliczamy

d0{(Ls,Lc) = Lpad(Lea6f)-Lead(Lya6i)-6{([Ls,Lc])

Lp addi - Lo 2dég' - 00 (fzc” Lp) = —fc” Lp 207 = - f5c"

_%fDEA 95 A QE(LBaLC)-

Formy rézniczkowe na rozmaitosci M wymiaru dim M = d tworza wraz z (ograniczeniami)
dar kompleks (ko)laricuchowy de Rhama

d®=d dW®=d dld D=y d®=0
(Qo(M),d)  QO(M) —Es ol (M) = an Q4(M) —2— 0,

(k+1) (k) _ e
dir ~°dyg =0, ke0,d-1.
Jak wiemy z kursu Geometrii rézniczkowej, grupy homologii tego kompleksu,

H(M,R) = Kerd{) HEY (M, R) = 2% (M, R)/BEN(M,R), keO,d—1,

zwane grupami kohomologii de Rhama rozmaitosci M, w ktorych zapisie

Z5} (M, R) = Kerd iV

to grupa (k + 1)-kocykli de Rhama (czyli grupa (k + 1)-form zamknietych), a
BiEH(M,R) = Tmd ()

to grupa (k+1)-kobrzegéw de Rhama na M (czyli grupa (k+1)-form dokladnych), koduja is-
totna informacje o topologii M (nalezy pamieta¢ o homotopijnej niezmienniczosci kohomologii de
Rhama, ktora implikuje stalosé tejze kohomologii na klasach homotopii rozmaitosci). Szczegolowa
dyskusja natury tej informacji wykracza istotnie poza zakres niniejszego wyktadu, pozostaje nam
przeto zilustrowaé ja na pogladowym przykltadzie. Oto wiec z jednej strony mamy Lemat Poinca-
régo, ktory stwierdza trywialno$é rzeczonej informacji w przypadku obszaréw $ciagalnych, zatem
pozbawionych ,defektéw” topologicznych, tj., méwiac obrazowo, rozmaitych ,dziur”, ktoérych obec-
nos¢ kazdorazowo skutkuje pojawieniem sie niesciagalnych cykli (homologicznych), czyli podroz-
maitosci bez brzegu niebedacych brzegami. O stusznosci tej identyfikacji informacji topologicznej
zapisanej w kohomologii de Rhama rozmaitosci przekonujemy sie bez trudu zestawiajac pare roz-
maitosci rézniacych si¢ obecnoscia ,defektu” wlasnie: $ciggalng plaszczyzne R*? oraz nieiciagalna
splaszczyzne z dziurg” (tj. pierscien) R*?\ {0}. Jak stwierdziliémy wczeéniej, w tym pierwszym
przypadku mamy

Higp(R*?) = "R
2
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(zerowa grupa kohomologii ,zlicza” lokalne stale, czyli spojne sktadowe rozmaitosci — ich liczba
okresla potege ciala bazowego po prawej stronie powyzszej formuly). Tymczasem w przypadku
drugim pojawia sie nietrywialny 1-kocykl de Rhama odpowiadajacy niesciagalnej petli obiegajacej
wyjety punkt 0, a mianowicie

n(w,y) = L4

ktory we wspotrzednych biegunowych (dobrze okreslonych na R*2\ {0} wtasnie) przybiera posta¢

n(r cosg,r sing) =de,

w jawny sposéb dokumentujaca jego naturalny zwiazek z wyrézniona petla, a zarazem — zamknie-
tos¢,

dn=0.

Nietrywialnosé¢ 1-kocyklu n wynika wprost z nieistnienia globalnie gtadkiej O-formy (czyli funkcji)
pierwotnej ¢ (wspolrzedna ta ma nieciaglosé na potprostej Rsox{0}). I-kocykl 5 reprezentuje za-
tem klase kohomologii w H g (R**\{0}). Podkreslmy: definicja 1 ma sens jedynie na plaszczyznie
z wyjetym punktem 0, w ktérym 1-forma ta (gdy potraktowaé ja jako 1-forme na R*?) ma osobli-
wos¢, co wyjasnia jej nieobecnos¢ wsrod 1-form na Sciggalnej plaszczyznie. W istocie nietrudno
pokazaé, ze

Hir (R~ {0}) = (6"° + 6" R,

co odpowiada wiernie sytuacji topologicznej (grupa H, jR(RXQ ~ {0}) jest generowana przez klase
[n]). Opisana tu odpowiednio$¢ uogoélnia sie w postaci dwoistosci pomiedzy kohomologia de Rhama
i homologia (singularna), patrz: Ref. [Lee02] (np.).

Powyzsze rozwazania prowadza nas do zadania naturalnego pytania o informacje kodowang
przez homologie podkompleksu form lewoniezmienniczych

. . i =d d& ) =d d{PP=d 4 =0
(21.(G),d5); = dStas (@) = QU(G) —=2— O} (G) —== cm *0 L, gP(q) <=7 L g,

zwang kohomologia Cartana—Eilenberga grupy Liego G,
CaE*(G) = Hig L.(G,R).

Kohomologia ta odgrywa istotng role w konstrukcji teorii pola z nieliniowo zrealizowana symetria
wprowadzone]j przed laty przez Weinberga i Schwingera w kontekscie efektywnej teorii pola (np.
w ukladach ze spontanicznie naruszong symetria), a rozwinietej przez Salama, Strathdee’ego,
Colemana, Callana, Wessa, Ishama i wielu innych.

2. KOHOMOLOGIA CARTANA-EILENBERGA A ROZSZERZENIA ALGEBR LIEGO

Azeby odpowiedzie¢ sobie na zadane pytanie, przeformutujemy to ostatnie w terminach czysto
algebraicznych, przeszedlszy do stycznej T.G. Zanim to jednak uczynimy, poddamy nasze do-
tychczasowe rozwazania kohomologiczne, odniesione bezposrednio do geometrii rozmaitosci, wiec
intuicyjne, prostej abstrakcji, ktéra dopuszcza naturalne uogodlnienia. Zastanowimy sie przeto,
obecnosé jakich typow algebraicznych w definicji rachunku form rézniczkowych na rozmaitosci
wspolwarunkuje istnienie kompleksu de Rhama (wiec relacje dggl) o dg’g =0). Oto wiec mamy do
czynienia 7

e przestrzenia wektorowa (nad K=R): C*(M;R) =V,

e algebra Liego (takze nad K): (I'(TM),[-,-]lrcrany) = 8;

e przestrzenia form na g o wartosciach w V: Q*(M) c A*g*®xV (relacja zawierania (miast
rownosci) wynika z nieskoniczonego wymiaru V);

e realizacjg g na sobie w postaci rézniczkowari, tj. homomorfizmem (K-)algebr Liego

ad. : g— (EndK(g), [ ]) =glg(g) : V— [V, ']F(TM) =ady
3
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filtrujacym sie przez podalgebre rozniczkowan g,

Z.
g olk(9)

N

Der(g)

(jest to zagwarantowane przez tozsamosé Jacobiego dla komutatora pol wektorowych
['7 ']F(TM));
e realizacja g na V, czyli homomorfizmu (K-)algebr Liego
D. : g— (Endx (V),[]) =gix(V) : V+—Vid=% =Dy
(takze w postaci rozniczkowan, ale ten fakt, uwzgledniajacy dodatkowa strukture piers-
cienia na V, jest bez znaczenia z punktu widzenia konstrukeji kompleksu de Rhama).

Uzywajac powyzszej struktury, bez trudu dekodujemy cartanowska definicje operatora de
Rhama jako

k k
k
déR)w = Z (—1)l ‘7;+1—>1(PYID~ ©° Pr§,3,4..,k+1w + Z (-1)"wo (ad. ° pr172,pr374,m7k+1) ° 0m+1—>2) )
1=0 m=l+1

w ktorym to zapisie o,-; jest permutacja przestawiajaca (¢ + 1)-wszy argument (k + 1)-formy na
miejsce j-te, a prj; .y p4 Jest rzutem kanonicznym na k+2-j ostatnich argumentow. Przy
tym jest absolutnie oczywiste, ze o jego homologicznosci przesadzaja konstytutywne wlasnosci
struktur uzytych w tej definicji (patrz: lista powyzej). Takie nieco bardziej abstrakcyjne spojrzenie
na dobrze juz zrozumiane struktury algebraiczno-rézniczkowe pozwala nam uczynié pierwszy krok
w kierunku interpretacji kohomologii niezmienniczej (Cartana—Eilenberga) w dwoch ponizszych
definicjach.
Definicja 1. Niechaj (g,[-,-]y) bedzie K-algebra Liego wymiaru dimg g = D. g-modul to para
(V,p.) zlozona z przestrzeni K-liniowej V' oraz homomorfizmu algebr Liego

p i g—glg(V) + X—px,
tj. odwzorowania spelniajacego warunek

Vx,yeg © [Px,pv]=px 0py —py opx = px,y],

ktore zadaje realizacje algebry Liego g na przestrzeni wektorowej V (zwyczajowo ozna-
czana tym samym symbolem)

p. 1 gxV—0V: (X v)—px(w)=Xp>wv.

Powyzsze pozwala stowarzyszy¢ z para (V, p.) naturalny kompleks (ko)taricuchow i (ko)homologi(ﬂ
o ktérych mowi

Definicja 2. Przyjmijmy dotychczasowe oznaczenia i niechaj (V) p.) bedzie g-modulem w sensie
Def.[1} p-kolaricuch na g o wartosciach w V' to odwzorowanie K-liniowe ¢ € Homg (g®*?, V),
p

ktore jest catkowicie skosne
VX, Xo,.., Xpeg, 0€6, f(Xa(l)’ Xo(2)s--- ,Xg(p)) = sign(o) f(Xl,Xg, ey Xp).
Zbior
CP(g:V)=/\"g" exV
takich odwzorowarni jest grupa przemienng (z operacja binarng zdefiniowang punktowo), zwana

grupa p-kolanicuchéw na g o wartoSciach w V|, przy czym przyjmujemy konwencje, w

1Bardziej gruntowne — szersze, glebsze i bardziej strukturalne — wprowadzenie to algebry homologicznej i jej
fizykalnych zastosowan oferuje caloroczny kurs pt. ,Metody Algebry Wyzszej w Fizyce — od form kwadratowych do
wiazek spinorowych” — patrz: notatki wyktadowe z II semestru.
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ktorej CY(g;V) = V. Indeksowana przez 0,D > p rodzina grup kotancuchéw tworzy kompleks
(ko)tancuchowy

e 5P 5P

L] 6(0) 6 g
(C*(@:v),857) + C(g;V) —— CM(g:V) — CP(g;V) 0
o operatorach kobrzegu
5P CP(g; V) — O (g; V), s osP) 20, ped,D-1

danych wzorami (zapisanymi dla dowolnych X;eg, i€0,p i ¢ e C*(g;V), ke {0,p>0})
k

5§O)f(X0) = XoNg,

P
M (-1 X > (X, X1,y ..., X))
=0 P 1

p
+ Z (_1)m+n<p([XmaXn]gvX03X17"'
P

m<n=1

5 (X0, X1, .., X))
P

, Xp) .

Grupa homologii powyzszego kompleksu
H(g;V)=2"(g:V), HP"Y(g;V) = 2" (g;V)/B"" ! (g; V), pe0,dimgg -1,
w ktorej zapisie
ZP(g; V) = Keréépﬂ)
to grupa (p+ 1)-kocykli na algebrze g o wartosciach w g-module V, a
BP*(g; V) = Tm

to grupa (p + 1)-kobrzegéw na algebrze g o wartoSciach w g-module V, nosi miano
(p+1)-tej grupy kohomologii algebry Liego g o warto$ciach w g-module V. Suma prosta
. dimgg
H'(g;V)= @ H"(g:V)
p=0
tych grup okresla kohomologie algebry Liego g o wartosciach w g-module V.
W szczegolnym przypadku K =R, V' =R i trywialnego dzialania p. =0 moéwimy o (grupach)
kohomologii Chevalleya—Eilenberga algebry Liego g,

CE*(g) = H{,-0)(;R) .
Uwzgledniwszy wszystkie nasze dotychczasowe ustalenia, bez trudu stwierdzamy

Stwierdzenie 2. Istnieje kanoniczny izomorfizm

CaE*(G) 2 CE*(yg) .

Dowdd: Wystarczy zauwazy¢é, ze kazda forma LI na grupie Liego G jest w pelni okreslona przez
swa wartos¢ w e, w ktorym to punkcie staje sie elementem AP T G = AP g* ®r R wlasnie. O

W powyzszym stwierdzeniu dokonuje sie transkrypcja struktury rézniczkowo-geometrycznej, jaka
jest niezmiennicza wersja kohomologii de Rhama, na jezyk czysto algebraiczny, w ktérym wyraza
sie kohomologia algebry Liego. Transkrypcja ta prowadzi do strukturalnej (algebraicznej) in-
terpretacji kohomologii Cartana—Eilenberga w terminach struktur rozszerzajacych — w sposob,
ktory zilustrujemy ponizej na przykladzie CaE?(G) — wyjsciowy obiekt algebraiczny g. Po jej
wyprowadzeniu pojawia sie naturalne pytanie o ,wersje odcatkowana’” do poziomu stosownego
srozszerzenia grupy” G. Okazuje sie, ze taka transkrypcja odwrotna jest co do zasady mozliwa na
gruncie Trzeciego Twierdzenia Liego oraz konstrukcji wiazki glownej o grupie strukturalnej U(1)
(wzgl. ich strukturalnych uogolnieni). Nie be jej rozpatrywaé w ogolnosci, w dalszej za$ czesci
wyktadu skupimy sie na nader czesto w rozwazaniach fizykalnych napotykanej grupie CE?(g).
W jej przypadku odcatkowanie — ilekroé¢ jest mozliwe — prowadzi do tzw. rozszerzen centralnych
grupy G, z ktérymi Czytelnik mogt sie spotkaé¢ w kontekscie podnoszenia symetrii sztywnych teorii
5
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klasycznej do jej przestrzeni Hilberta, a ktére sa opisywane przez krétkie ciagi dokladne grup
Liego

1—>AI—A>G£>G—>1

zapisywane w terminach wyj$ciowej grupy G, bedacej jej rozszerzeniem grupy G (odwzorowywanej
na te pierwsza przez epimorfizm Ilg) oraz grupy przemiennej A (odwzorowywanej w centrum
grupy Z(G)={geG | Vi : g-h-g'-h™' = e} przez monomorfizm I,) wystepujacej
w roli wiokna rozszerzenia (KerIlg = Im1,). Zrozumienie informacji algebraicznej zakodowanej
w tej grupie wymaga zastapienia struktur grupowych ich infinitezymalnymi (styczno$ciowymi)
odpowiednikami, przy czym (Lie-)grupowa operacja binarna przechodzi w (Lie-)algebraiczna ope-
racje binarna, czyli nawias Liego. Precyzyjnej formalizacji tego schematu dostarcza

Definicja 3. Niechaj (g,[,-];) bedzie algebra Liego (nad R) i niech (a,[-,-]a =0) bedzie komu-
tatywng algebra Liego (nad R). Rozszerzenie centralne algebry Liego g przez a to trojka
(9,74, mg) zlozona z

o algebry Liego (@,[,]5);
e homomorfizméw algebr Liego: 7 : a — g oraz mg : g — ¢

tworzacych krotki ciag doktadny algebr Liego
(2) 0—a>F—>g—0
i takich, ze 74(a) c 3(9), gdzie
3@ ={Xeq | Yyg: [XV]g=0}

jest centrum algebry Lieg(ﬂ 9. Rozszerzenie nazywamy rozszczepionym, ilekroé¢ epimorfizm
Ty ma cigcie w LieAlgg, tj. istnieje homomorfizm algebr Liego

oc:g—79g
o wlasnosci
3) mgoo =idg.

Mowimy wowcezas takze, ze krotki cigg doktadny stowarzyszony z rozszerzeniem rozszczepia sie.
Roéwnowazno$é miedzy rozszerzeniami (§A7j?,7ré4)7 Ae€{1,2} algebry Liego g przez
a to izomorfizm algebr Liego

[ 51i>§2

domykajacy diagram przemienny

=
o

0 a [l

(\
-~
11

dla zaoszczedzenia e-inkaustu.

20dpowiedniosé miedzy 3(§) i Z(G) daje sie latwo uchwycié przy pomocy odwzorowania expé.

6
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Ostatnia definicja daje nam do reki wygodne narzedzia do badania algebraicznego sensu ko-
homologii Cartana—Eilenberga. Odczytamy go z dwoch stwierdzen, ktore ustalaja zapowiadana
wezesniej odpowiedniosé miedzy klasami H?(g;a) i rozszerzeniami centralnymi g przez a. Po-
dajemy je wraz z do$¢ technicznymi dowodami, ktérych wartosé zasadza sie na prostocie i kon-
struktywnosci, ta ostatnia za$ wytycza naturalny szlak ku ,wersji odcatkowanej” — patrz: Uwaga
[ Zaczynamy od

Stwierdzenie 3. Przyjmijmy zapis Def. Klasa rownowaznosci rozszerzenia centralnego (g, [-,lg)
algebry Liego g przez a kanonicznie wyznacza klasﬂ w H?(g;a). Klasa ta jest rowna zeru wtedy
i tylko wtedy, gdy krotki ciag dokladny stowarzyszony z rozszerzeniem rozszczepia sie.

Dowdd: Istnienie krotkiego ciagu dokladnego implikuje istnienie odwzorowania K-liniowego
o : g — ¢ spelniajacego relacje (3) (podprzestrzen j,(a) c § ma dopelnienie proste), z czego
wywodzimy istnienie (kanonicznego) izomorfizmu przestrzeni K-liniowych

L f—adg: X — (jgl(f—amrg(y)),ﬂg(y)).

(Podkreslmy: Przeciwdziedzina ¢ nie jest a priori suma prosta algebr Liego, tylko suma prosta
przestrzeni K-liniowych.) W rzeczy samej, odwzorowanie to jest dobrze okreslone, jako ze X —o o
mg(X) ekermg =imjq, a Jq jest izomorfizmem na swoj obraz. Odwrotno$é powyzszego odwzoro-
wania przyjmuje jawng postac

T raeg—F o (A4,X) — 20(A) +0(X).

Mozemy nastepnie podniesé ¢ do rangi izomorfizmu algebr Liego definiujac na podprzestrzeni
wektorowej a @ g nawias Liego w terminach tych z § i g wedle schematu

[(A1,X1), (A2, X2)]aeg = ¢([¢7' (A1, X1),07 (A2, X2)]5) = e([0(X1),0(X2)]5)
= (5 ([0(X1),0(X2) ]z - o omg([0(X1),0(X2)]g)), ma([0(X1),0(X2)]5))

= (e ([o(X1),0(X2)]g - o([X1, X2]g)), [ X1, X2]q) -
Sensowno$¢ tej definicji jest zapewniona przez wlasnos$ci odwzorowania p-liniowego
O, + g% —a (X1, X2) — 5 ([0(X0). 0 (Xo) |~ o ([X1, Xalg))

ktore dostarcza iloSciowej miary nie-homomorficznosci ciecia o. Oto bowiem ilekro¢ obliczymy je
na parze elementéw g, spelniona jest relacja

O,(X2,X1) =-0,(X1,X2),

jest to zatem 2-kotaricuch na g o wartosciach w a, przy czym ta ostatnia algebra objawia sie tutaj
w roli trywialnego g-modutu. Kobrzeg tego kotaricucha znika,

5;(;2)90(X1,X2,X3) =-0,([X1,X2]g,X3) - 0,([ X3, X1]g, X2) - O0([X2, X3]g, X1)
== ([o([X1, X2]g), 0(X3)J5 + [0([X3, X1]g), 0(X2) J5 + [0([X2, X3]g), 0(X1)]5 — 0 0 Jacg (X1, X2, X3))
= Ja ([0 © O (X1, X2),0(X3)Jg + [Ja © 00 (X35, X1),0(X2) g + [Ja © O (X2, X3),0(X1) g

~Jacg(o(X1),0(X2),0(X3)) + 0 0 Jacg(X1, X2, X3)) =0,

gdzie to w ostatnim kroku przywotalismy inkluzje imy, c 3(§). Bez trudu weryfikujemy oczekiwana
wlasnosé indukowanego nawiasu Liego:

Jacaeg((A1, X1), (A2, X3), (A3, X3)) = (—552)90(X17X2,X3)7Jacg(XthXs)) =(0,0),

3w zapisie 2. grupy kohomologii algebra komutatywna algebra Liego a wystepuje w roli przestrzeni wektorowej
— formalnie rzecz ujmujac, utozsamiamy a z jej obrazem w kategorii Vectg wzgledem funktora zapominania.
Taka dwoista rola a jest nieunikniona — wszak z jednej strony krotki ciag dokladny opisujacy rozszerzenie jest
diagramem w kategorii LiaAlgy, z drugiej za$ — kohomologia przyjmuje wartosci w przestrzeni wektorowej.

7
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stwierdzajac na tej podstawie, ze rozszerzenie centralne w istocie kanonicznie wyznacza 2-kocykl
na g o wartosciach w a.

W nastepnej kolejnosci zbadamy, jak 2-kocykl 6w zmienia sie przy przejsciu do réwnowaznego
rozszerzenia centralnego. Mamy w tym wypadku do dyspozycji dwa monomorfizmy algebr Liego:
g2t a— Fa, Ae{1,2} i dwa epimorfizmy algebr Liego: 71;‘34 : §a — g wraz z odnos$nymi
cieciami K-liniowymi o4 : g — ga. Biorac pod uwage przemiennosé diagramu

g
1 N 1
Ja \ Ty
/ \
0——a € ' :294>O,
\
Ja ~V’
92

/
/ 2
Tg

OUQ—TFéoalzidg—idg:O,

wraz z tozsamoscia

1 ( -1 ) 2
o o - =
7'('g € 092 — 01 7'('g

ktora przesadza o istnieniu odwzorowania K-liniowego . : g — a (wszak Kem; = Imyl) o
wlasnosci

elooy—01 =750 pe,
bez trudu stwierdzamy, dla dowolnych wektorow X7, Xs € g,

Ja© (O, =04, )(X1,X3) = (67 0 J2 0O, — g © O, ) (X1, X2)

= [e7 0 0a(X1),e7 002 (Xo) g, ~ [01(X1), 01 (X2) g, — Ja © ([ X1, Xog)

= [Ja 0 e (X1), 67" 0 02 (Xo) g, + [01(X1), 67! 0 00(X2)]g, — [01(X1), 01 (X2) ],
~Ja © He([X1, X2]g) = [01(X1), 7q © e (X2) g, = Ja © ke ([ X1, X2]g)

= a0 ne([X1, Xa]g) = 35 0 6 e (X1, Xo),
a stad juz wprost (wobec injektywnosci 71)
O, =04, = 52(;1):“6 ) czyli [602]9 = [@01]9 .

Na zakonczenie dowodzimy ostatniej czesci tezy. Znikanie (klasy) 2-kocyklu ©, w przypadku,
gdy o jest cieciem w kategorii algebr Liego (a nie tylko w kategorii przestrzeni K-liniowych),
jest oczywiste, pozostaje zatem pokazaé, ze kohomologiczna trywialnosé¢ ©, implikuje istnienie
ciecia w kategorii algebr Liego. Warunek trywialnosci 2-kocyklu ©, mozemy zgrabnie przepisaé
w postaci

[0(X1),0(X2) 5 = 0. ([ X1, X2]g) Oy =0~ Jqop€Homg(g,d).
W $wietle komutatywnosci j4(a) to daje nam relacje
[Ult(Xl)agu(XZ)]’gT = Uu([X17X2]g) )

mozemy zatem podnies¢ o, do rangi homomorfizmu algebr Liego. Jako ze ponadto spelniona jest
tozsamosé

TG00, =MgO0 —TMg0 a0 fL=Tgoo =idg,

rozpoznajemy w nim poszukiwane cigcie mg. O

W nastepnym kroku zajmiemy si¢ przyporzadkowaniem odwrotnym.
8
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Stwierdzenie 4. Przyjmijmy zapis Def. Klasa w H?(g;a) kanonicznie zadaje klase rownowaz-
nosci rozszerzen centralnych (g, [-,-]5) algebry Liego g przez a. Rozszerzenia te rozszczepiaja sie
wtedy i tylko wtedy, gdy klasa ta znika.

Dowéd: Majac dany dowolny 2-kocykl © € Z2(g;a), wyposazamy przestrzen K-liniowa a®g =3
w jawnie sko$ne odwzorowanie dwuliniowe
[,]e : 2 —F ¢ ((A1,X1), (A2, X2)) — (0(X1, X2), [ X1, X2]q) -
Bez trudu sprawdzamy, ze mamy do czynienia z nawiasem Liego,
2

Jacg((A1, X1), (A2, Xa), (A3, X3)) = (0570 (X1, Xa, X3), Jacg (X1, X2, X3)) = (0,0),
przeto (g,[-,-]e) jest algebra Liego.

Komutatywno$é¢ a przesadza o tym, ze kanoniczna injekcja 34 : a —F : A — (A,0) jest
monomorfizmem algebr Liego dla tak okreslonej struktury na g. Z kolei kanoniczny K-liniowy
rzut mg 2 g — 9 : (A, X)+— X zyskuje teraz status epimorfizmu algebr Liego, o oczywistej
wlasnodci ker my = im 74, na koniec wigc otrzymujemy krotki cigg doktadny algebr Liego

0—a J—“) 'g l) g—0
ktory pozwala nam zidentyfikowaé g jako rozszerzenie centralne g przez a.

W obecnosci dwoch kohomologicznych 2-kocykli: ©4 = © +5g(;1) u, e C(g;a), opisany powyzej
schemat daje dwa nawiasy Liego na g = a @ g, czyli dwa rozszerzenia centralne algebry Liego g
przez a, przy czym ltatwo widaé, ze K-liniowy automorfizm

P T T (A X) (A p(X), X)
izomorficznie odwzorowuje (g, [-,-]lo,) w (§,[]o,),

(e (A1, X1),64(As, Xo)]o, = (O2(X1, X2), [ X1, Xalg) = (©1(X1, Xa) - ([ X1, X2]g), [X1, X2]g)

5#([(A17X1)7(A27X2)]91)'
Przy tym spelnione sa oczekiwane tozsamosci:

TGy © €n(A, X) = X =75, (4, X)
oraz

eno e (4) =,(A,0) = (4,0) = ) (4).
Ilekro¢ © jest 2-kobrzegiem, © = 65”/;, p € Cl(g;a), mozemy wlozyé g w § przy uzyciu

odwzorowania K-liniowego

ou 8T X (cu(X), X)

w oczywisty sposob bedace K-linjowym cieciem 7y i podnoszace si¢ do monomorfizmu algebr
Liego,

[0.(X1),0.(X2)]e [(—u(X1), X1), (—1(X2), X2)]e = (O(X1,X2), [ X1, X2]g)

(_N([leXQ]g) ) [X17X2]9) =0 ([XlaXQ]G) .

Krotki ciag dokladny algebr Liego stowarzyszony z opisanym rozszerzeniem rozszczepia sie.
I odwrotnie, dowolne ciecie my w kategorii algebr Liego jest nieodzownie postaci

op 68— 0 1 X — (-pu(X), X)
dla pewnego u € Homg(g,a) o wlasnosci

(0(X1, X2),[ X1, X2]g) = [0,(X1),0u(X2)]o = 04 ([X1, Xalg) = (= ([X1, X2]g) , [ X1, X2]g)

zatem O = 551) 1, zgodnie z teza dowodzonego stwierdzenia. O

Nasze studium podsumowuje
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Twierdzenie 1. Niechaj (g,[-,-]y) bedzie algebra Liego. Istnieje kanoniczna bijekcja miedzy
CE?(g) i zbiorem klas réwnowaznosci rozszerzen centralnych g przez R. W obrazie tej bijekcji
klasa trywialna CE? (g) odpowiada klasie rownowaznosci rozszerzenia rozszczepionego.

Przed przystapieniem do egzemplifikacji powyzszych abstrakcyjnych rozwazan i ich umieszczeniem
w kontekscie fizykalnym poddamy nasz ostatni wynik reinterpretacji pozwalajacej na wyrobienie
sobie w odniesieniu do niego przydatnej intuicji (o istotnych konsekwencjach geometrycznych).

Uwaga 1. Istnienie rozszerzenia centralnego g przez a wyznaczanego przez © implikuje try-
wializacje cofniecia 2-kocyklu

@IZ F;@ : §X2—>Cl : ((A17X1)7(A27X2))l—>®(X1,X2)
opisang wzorem
(4) @zéél)“', Bi=-mg : g—a: (A X)— -A.

Tym sposobem nietrywialny 2-kocykl na wyjsciowej algebrze g znajduje swoja (kohomologiczna)
trywializacje na jej rozszerzeniu g.

2.1. A Pair of Whatabouts. Powyzsze rozwazania pozostawiaja nas z dwoma naturalnymi a
nietrywialnymi pytaniami, na ktére odpowiedzi sa wprawdzie znane, lecz zrozumienie ich wyma-
galoby powaznego (i czasochtonnego) strukturalnego odejscia od gléwnego nurtu niniejszego wy-
ktadu i jako takie jest pozostawione zainteresowanym Stuchaczom do samodzielnego wypracowa-
nia:

(1) W jakich okoliczno$ciach centralne rozszerzenie algebry Liego ,catkuje sie” do centralnego
rozszerzenia odnosnej grup Liego? W tym kontekscie warto zauwazy¢, ze obserwacja
bedaca trescia Uwagi |1| rodzi skojarzenie z trywializacja 2-kocyklu de Rhamzﬂ (czyli 2-
formy zamknietej), takiego jak np. 2-forma Maxwella opisujaca (w formacie jawnie loren-
tzowsko wspolzmienniczym) natezenie pola elektromagnetycznego, na przestrzeni totalnej
wiazki liniowej (lub glownej) z powiazaniem o krzywiznie tozsamej z tymze 2-kocyklem. To
skojarzenie jest nie tylko w pelni usprawiedliwione, ale wiedzie wprost do systematycznego
studium odpowiedzi na wyj$ciowe pytanie — patrz: praca Tuynmana i Wiegerincka [TW8T7].

(2) Czy istnieje algebraiczna interpretacja wyzszych klas kohomologii algebr Liego analogiczna
do tej stusznej dla H?(g,a) przedstawionej powyzej? Odpowiedz, dajaca sie najzgrab-
niej sformutowaé w jezyku teorii algebr typu L., czyli swoistych kategoryfikacji struk-
tury algebry Liego podanych przez Stasheffa w pracy [Sta92], znalezli Baez i Crans w
pracy |[BC04]. Przedstawiona tam konstrukcja tzw. 2-algebry Liego, stowarzyszonej z 3-
kocyklem na algebrze Liego, uogélnia sie w naturalny sposéb na przypadek wyzszych ko-
cykli/kohomologii. Struktury te dostarczaja narzedzi opisu (skategoryfikowanych) symetrii
teorii pola z gatunku modelu o, opisujacych propagacje rozciagtych rozktadéw energii i
tadunku topologicznego w zewnetrznych polach: grawitacyjnym i p-formy (uogoélnienie pola
Maxwella) .

3. PRZYKELAD POGLADOWY

Na pierwszy rzut oka rozszerzenia algebr moga sie wydawaé strukturami do$é egzotycznymi i
ezoterycznymi. O ich powszechnosci i naturalnodci w ramach kanonicznego opisu symetrii ciagtych
w mechanice klasycznej i teorii pola w terminach odnosnych tadunkéw Noether oraz w opera-
torowym opisie tychze symetrii w teorii kwantowej przekona uwaznego Czytelnika kazdy rzetelny
kurs z tych dziedzin, w ktérym beda omawiane anomalie algebr ladunkéw i pradéw symetrii w
obecnosci — np. — tadunku topologicznego na obiektach elementarnych teorii fizycznej (natado-
wanych czastkach punktowych, petlach itp.), wzgl. rzutowych realizacji symetrii klasycznych na
przestrzeni Hilberta uktadu fizycznego. Prostej ilustracji takiego fizykalnego scenariusza dostarcza
ponizsza dyskusja szczegdtowa.

4Taka trywializacja 2-kocyklu F e ZgR(M,]R) wymaga jeszcze spelnienia warunku Per(F) c 27Z (w ktorego
zapisie Per(F) jest grupa przemienna tzw. okreséw 2-kocyklu F, czyli wynikéw jego calkowania po 2-cyklach
homologicznych w M).

10
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Przedmiotem naszego zainteresowania w niniejszym przykladzie s realizacje symetrii transla-
cyjnej w prostych uktadach mechanicznych — zaréwno w rezymie klasycznym, jak i kwantowym —
w kontekscie rozszerzen centralnych algebr i grup Liego. Tytulem przygotowania do ich oméwienia
rozwazmy komutatywng algebre Liego o 4 generatorach

t3)= @ (P),

ne{1,2,3}

i nawiasach Liego

[P, Pj]=0, 1,7 €{1,2,3},
czyli stycznosciowa algebre Liego przemiennej grupy Liego translacji (w) R*® = T(3) o operacji
binarnej

m : T(3)xT(3) — T(3) : (a",¢') — (2" +y'),

odwrotnosci

Inv : T(3) O : (2') — (-2')
i elemencie neutralnym

e=1(0,0,0,0).
Operacja binarna pozwala zdefiniowaé dzialanie lewe regularne grupy T(3) na sobie, dane wzorem
¢ : T(3) — Diff*(T(3)) : (2') —m((z"),) = (z" +) = L(uiy,

do ktoérego bedziemy sie odwolywaé¢ w dalszej czesci naszych rozwazan.

Jednym z pytan, na ktore poszukamy odpowiedzi, jest wpltyw tadunku niesionego przez obiekt
fundamentalny uktadu mechanicznego na realizacje rzeczonej symetrii translacyjnej w formalizmie
kanonicznym. Ujawnienie takiego wplywu wymaga obecno$ci zewnetrznego pola elektromagnetycz-
nego, ktorego naturalnym modelem matematycznym (uwzgledniajacym relatywistyczna niezmien-
niczo$¢ maxwellowskiej dynamiki) jest 2-kocykl de Rhama na przestrzeni konfiguracyjnej uktadu
mechanicznego zdefiniowany w terminach natezenia pola elektrycznego oraz indukcji magnetycz-
nej. Jako ze celem naszym jest studium mechaniki nierelatywistycznej na cieciu stalego czasu,
ograniczymy si¢ do sktadowej przestrzenno-przestrzennej tegoz 2-kocyklu, ktora identyfikujemy z
polem indukcji magnetycznej. Niechaj zatem

(wij = —wji) € R(3)

bedzie dowolng niezerowg macierza. Oznaczywszy elementy bazy t(3)* = R*® dualnej do {P;}e(1,2,3)
jako 7, i€ {1,2,3},

T (P;) =465, i,j€{1,2,3},
definiujemy 2-kotaricuch na t(3) o wartosciach w trywialnym t(3)-module R wzorem
(5) wi=wi T AT € Cz(t(3);R) ,
tj. dla dowolnej pary wektorow X4 = X P € t(3), A€ {1,2} mamy
w(X1, Xa) = 2w;j X X7
Bez trudu sprawdzamy zamknieto§é w liczac (dla dowolnych Xp = X5 P, e t(3), Be{0,1,2})

@)
Oy(s)

= —w(X{ X] [P, Pjlusy Xa) +w(Xo X3 [Py Pilisy, X1) - w(X1 X3 [P, Pylysy, Xo) = 0.
Mamy zatem do czynienia z 2-kocyklem Chevalleya—Eilenberga,

we Z*(t(3);R).

w(Xo, X1, X2)

Zalozmy, ze jest to 2-kobrzeg, tj., ze istnieje 1-kotaricuch 6 € C*(¢(3);R) = t(3)* o wlasnosci

(1)
t(3)9’
11
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ktora ttumaczy siq na warunek

2y X1 X3 = (X1, X) £ 601 0(X1, X2) = ~0( X1 X] [P Py 1) = -0(05)) =0,

prowadzacy do sprzecznoéci z zalozeniem o niezerowosci w. 2-kocykl w definiuje zatem nietry-
wialng klase

[w]i(s) € CE*(¢(3)) ,

wiec takze — w zgodzie z teza Stw.[d] - rozszerzenie centralne

Te(3)

(6) 0—>R£>{(§5w—>t(3)—>0.

W tym kontekscie 2-kocykl w bedziemy okresla¢ mianem 2-kocyklu rozszerzenia @w. W%
$wietle konstruktywnego dowodu Stw.[4] jako reprezentanta klasy rownowaznosci takich rozszerzer
mozemy przyjac

(@/)w =Re t(3)7 [7]@w) :

Oznaczywszy wektory bazowe w {(gjw jako

ZZZ(LO), ﬁi::(07pi)a i€{1,2,3},
dostajemy algebre Liego
[P“P ]t(3) =2wi; Z, [P“Z]t(?)) 0t(3) [, Z]t(g) Ot(S)

Bez trudu ,catkujemy” powyzsze rozszerzenie algebry Liego do rozszerzenia grupy Liego T(3)
przez R opisywanego przez krotki ciag doktadny grup Liego

T(B)

(7) 1—R —> T(3) —T@3) —1,
w ktorego zapisie Ig i llp(3) sa homomorfizmami grup Liego. W obecnych nader nieskompliko-
wanych okoliczno$ciach mogliby$my wrecz zgadnaé postaé tego rozszerzenia, my jednak pdjdzie-
my inna droga, ktéra pozwala powrdcié do geometrycznego punktu wyjscia naszych rozwazan, a
przy tym okazuje sie znajdowaé zastosowanie w okolicznos$ciach duzo mniej oczywistych (np. w
kontekscie tadunkowych rozszerzen (super)algebr Liego supersymetrii — patrz: praca [CAAIPBOQ]).
Zaczniemy od reinterpretacji powyzszego zagadnienia i otrzymanego wyniku w terminach ra-
chunku rézniczkowego na grupie Liego R*3. Zaczynamy od komutatywnej algebry pol translacyjnie
(lewo-)niezmienniczych na R*3, dla ktérych baza sa pola

L,=Lp =0, i€{1,2,3}
o trywialnych komutatorach

[L;,L;]=0, i,j€{1,2,3}.
Dualng baze przestrzeni 1-form translacyjnie (lewo-)niezmienniczych na R*3 tworza 1-formy

0i =dz*,  ie{1,2,3}.
Odpowiednikiem 2-kocyklu w jest tutaj 2-kocykl de Rhama
Q=w;;da’ Ada?
jawnie translacyjnie (lewo-)niezmienniczy, lecz nieposiadajacy 1-formy pierwotnej o tej samej wtas-
nosci. Istotnie, 1-forma taka musiataby by¢ postaci
©=0,;dz’, 0, R

(R-liniowa kombinacja bazowych 1-form translacyjnie (lewo-)niezmienniczych), co jednak dopro-
wadzitoby nas do sprzecznosci

0#Q2dO=0,0;da’ Ada’ =0
Nalezy w tym momencie dobitnie podkresli¢ (rzecz oczywista): 2-forma Q jest dokladna w koho-
mologii de Rhama (trywialnej dla R*®) — ma np. 1-forme pierwotna
I(x) = w;j ' da?

12
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nie jest natomiast doktadna w kohomologii (lewo)niezmienniczej.
W swietle Uwagi [I] mozemy oczekiwaé, ze trywializacja w kohomologii Cartana—Eilenberga

bedzie mozliwa dopiero po cofnieciu 2 na grupe Liego T(3),, o algebrze Liego t(3),, otrzymanej
uprzednio. Posta¢ tej ostatniej kaze nam podejrzewaé, ze jako zbior grupa T(3), bedzie postac
R x T(3), z kanonicznym rzutem

) =pry : RxT(3) — T(3)

jako epimorfizmem grup Liego wspotokreslajacym rozszerzenie, przy czym pierwszy czynnik kar-
tezjanski bedzie podgrupa przemienna (o algebrze Liego R), a poszukiwana operacja binarna i
na R x T(3) bedzie wprowadzaé ,poprawke”’ do odnosnej operacji binarnej (dodawania) zalezna
od drugich sktadowych argumentéw. Jak wyznaczy¢ m? Zauwazmy po pierwsze, ze lewo—f@w—
niezmiennicza 1-forma pierwotna © dla Hfr(3)Q spelnia tozsamosé

dO =I5 Q =dll} 50 =  O-Ijg e 2 (T(3),,.R),

a poniewaz T(3), w antycypowanej postaci takze jest Sciggalna, przeto
O =dF + 1359

dla pewnej gtadkiej funkcji F' e C*(T(3),,R), przy czym w $wietle Rown. 7 ktore identy-
fikuje © jako 1-forme dualng do pola lewoniezmienniczego J; na przemiennej grupie Liego R (o
kartezjariskiej wspolrzednej globalnej Z) rozszerzajacej T(3),,, oczekujemy tozsamosci
dF =-dZ.
Postulujemy zatem
O(Z,x) = ~dZ +w;j ' da? .

Po drugie ,zmienniczos¢” znalezionej przez nas 1-formy pierwotnej dla 2 wzgledem lewych trans-
lacji na R*3 przybiera szczegdlnie prosta postaé: oto poprawka do ¥ bedaca wynikiem cofniecia ¥
wzdtuz £,y dla statego wektora € = (%) e R*3 jest 1-formg zamknieta (to konstatacja niezalezna
od grupy Liego, na ktorej rozpatrujemy kohomologie Cartana-Eilenberga),

d9=Q=0Q=(dI=dy =  (9-9eZ'(T(3),R),
wiec tez dokladna w konsekwencji trywialnosci kohomologii de Rhama T(3),
(€29 -9)(x) =d(wije'a?).

To w polaczeniu z wezesniejszym postulatem dotyczacym postaci © pozwala wyprowadzié mozliwa
postaé operacji binarnej M z warunku niezmienniczosci © wzgledem lewostronnych translacji na

T(3),, indukowanych przez m wtasnie. Istotnie, jesli zapiszemy
Z}Oya)(z, 2') =1((0,¢°),(Z,2")) = (®(Z,2,¢),2" + "),
uwzgledniajac po drodze homomorficzny charakter Ilp(sy = pry, to z warunku lewoniezmienniczo$ci
o,
-d®(Z,x,¢) + wi; (x‘ + €i) dz’ = EZO’E)é(Z,x) 2 0(Z,x) = -dZ +w;j ' da?
odczytujemy (modulo constans)
O(Z,x,€) =7 +w;j ehad,

co prowadzi nas do zapostulowania operacji binarnej na T(3)_, w postaci
fii : T(3),xT(@A3), —T@A), : ((Z1,2}), (Zg,xé)) > (Z1 + Zy + Wy o7 2 2 + 2h).

5Rzecz jasna, nie ma jedynej grupy Liego odpowiadajacej danej algebrze Liego R. W naszych rozwazaniach
dokonujemy po prostu wyboru najprostszego.
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Pozostaje jeszcze tylko sprawdzié, ze tak okreslona operacja binarna jest taczna. O tym, ze tak
jest w istocie, przekonuje bezposredni rachunek — z jednej strony:

IYI(IYl((Zl,JjZl), (ZQ,,CE%))7 (Zg,.’lﬁg)) fﬁ((Zl + ZQ + Wmn ZL‘T .1'37.1'11 + .’E;), (Z3,.’173p))

= (21 + Zo + Winn 1" Th + Z3 + Wi (z{” + xg”) x?,x’l + ¥ xé) ,
z drugiej zas:
ii((Z1,21),1((22,23). (23, 25)))

fﬁ((thi)y (ZQ + 23 + Wi T x?,xé +x§))

= (21 + 2o+ Zg + Wi Ty Ty + Wi T (mg +x§),x§ +x§ +x§)
Rekonstrukeje krotkiego ciagu doktadnego grup Liego (7)) ,,odcatkowujacego” wyjsciowy krotki ciag
doktadny algebr Liego @ uzupelniamy dokonujac identyfikacji monomorfizmu
I : R—T(3), : r+—(r,0).
Na tym etapie mamy juz nie tylko rozszerzenie centralne grupy T(3), ale takze — lewoniezmiennicza
baze wigzki kostycznej T(3),,:
O(Z,x) = ~dZ +w;j ' da’ ; 6. (Z,x) = dz’, i€{0,1,2,3}.
W uzupeknieniu roztrzasan rézniczkowo-geometrycznych wyznaczamy baze lewoniezmiennicza wiaz-

ki stycznej T(3), (w tym — podniesienia pol lewoniezmienniczych z T(3)), do ktorej ta powyzej
jest dualna:

Lz(Z,x)=2-, Lp (Z,2) =2 —wija’ 22 i€{0,1,2,3}.
W bazie tej spelnione sa oczekiwane relacje komutacji
[Lﬁi7LFj]:2wijLZ7 [Lﬁi,Lz]ZO, [Lz,Lz]:O.

Na zakoriczenie niniejszego studium przypadku wskazemy kontekst fizykalny, w ktérym rea-
lizowany jest powyzszy scenariusz algebro-geometryczny. Punktem wyjscia jest tutaj lagranzjan
(nierelatywistycznej) czastki punktowej o masie m poruszajacej sie w metryce 0 = d;; dz* ® da?
w przestrzeni euklidesowej R*3, dany w postaci

L(z,&) =2 6;&" i’ .
Wyprowadzamy z niej formute na ped kinetyczny

) oL .
p =pida’, Pi = 557 =0igma’ .

W opisie kanonicznym teorii znajdujemy nawiasy Poissona
(8) {z",pj}a =46}, {z,27}0 =0, {pi,pita=0,  4,je{l,2,3},
ktorych posta¢ wynika wprost z postaci (Darboux) formy presymplektycznej

Q(z,p) = dp; Adz’

modelu, otrzymanej zenn np. w formalizmie pierwszego rzedu. Warto tu w szczegdlnosci zwrécié
baczna uwage na komutatywna algebre (Poissona) pedéw kinetycznych:

{pivpj}Q:O» 1736{17273}

Pola hamiltonowskie na przestrzeni stanéw uktadu fizykalnego T*R*? sparametryzowanej przez
pary (z*,p;) (dane Cauchy’ego trajektorii klasycznej) stowarzyszone z tymi pedami to

V,, = 2 V,, 1= ~dp;, ie{1,2,3}.

= e
Przechodzac do lagranzjanu (nierelatywistycznej) czastki punktowej o masie m i ladunku elek-
trycznym ¢ poruszajacej sie w przestrzeni euklidesowej R*® w metryce &g i statym polu magne-
tycznym B = B*0; o potencjale wektorowym A = A*9;, A*(x) = —% € T BF,

L(z, &) =2 63" i +q8;; A'(z) 47,
14
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znajdujemy — obok wprowadzonego wcze$niej pedu kinetycznego
p =md;; & dat = p;dat
takze ped kanoniczny
7 =mdat, ﬂi:%:éij(m:tj+qu(m)).
Forma presymplektyczna to tym razem
QOr(z,p) =dm; Ada’ = dp; Adz’ +¢F, F= %Eijk B'da? Adz® = fij dz' Ada .
Parametryzujac przestrzeni stanéw ukladu fizykalnego tak jak poprzednio, czyli parami (x%,p;)

(zamiast parami kanonicznie sprzezonymi (z%,m;)), wyznaczamy bez trudu elementarne pola
hamiltonowskie:

V,i(x,p) = _Bap,, , Vi 1Qp = —da®,
Vi(xvp):%_2qfij%a Vp, 1 Qp = —dp;
oraz odnosne nawiasy Poissona
9) {".pj}ta. =0, {z',27}q, =0, {pi,pjtar =24 fij, i,j €{1,2,3}.

Zauwazmy, ze w ograniczeniu do podalgebr w odno$nych algebrach Liego—Poissona
(Cw(T*RxgaR)v{'a'}Q) Vs (Cw(T*Rxng)v{'v'}QF)

generowanych przez pedy kinetyczne wlaczenie statego pola magnetycznego B mozemy zinterpre-

towaé jako omowione wezesniej rozszerzenie (na poziomie liniowym w generatorach)

t(3) — t(3)p, wij = fij
w ktérym dodatkowym generatorem jest...ladunek elektryczny czastki,
LZ = ]R(l) = q!

Ten spos6b myslenia o tadunkach” niesionych przez czastki okazuje sie by¢ niezwykle naturalny,
uniwersalny i ptodny — patrz: np. praca Gauntletta, Gomisa i Townsenda [GGT90].

Na obecnym etapie pozostaje jeszcze odpowiedzie¢ na pytanie o fizykalng realizacje znalezionego
wczesniej grupowego wariantu rozszerzenia . Okazuje sig, ze ten jest zwigzany z pewnym
wyrdznionym schematem kwantowania opisanego modelu fizykalnego, ktorego elementy omowimy
ponizej. Zaczniemy od kanonicznego skwantowania relacji , tj. wskazania oSrodkowej przestrzeni
Hilberta H i operatorowej realizacji na niej (w terminach operatoréw samosprzezonych) algebry
Heisenberga

(@, 9;]=ihd";idy, [z',77] =0, [5:,p;]1=0, i,5€{1,2,3}.
Jak powszechnie wiadomo (choéby z kursu Mechaniki kwantowej I), realizacji takiej dostarcza

przestrzeri Hilberta L?(R3,d3x) funkcji (zespolonych) na R? catkowalnych z kwadratem (wzgle-
dem standardowej miary Lebesgue’a) — realizacja ta przyjmuje znajoma prosta postaé:

T =al, pi=-ihZ, ie{l,2,3}.

To kwantowomechaniczny elementarz (cho¢ same operatory Z° i D; okazujg si¢ by¢ do§¢ narowi-
ste). Pytanie brzmi: Jak zrealizowaé algebre

(@, 9;] =ih6";idy, [z',77] =0, (5, P;] = 2ihq fijidyy, i,j€{1,2,3}
(10)

otrzymana w wyniku kanonicznego skwantowania relacji @D w obecnosci tadunku elektrycznego
(i zewnetrznego pola magnetycznego)? I czy ma to cokolwiek wspolnego z rozszerzeniem T_(?T)?
Konstruktywnej odpowiedzi na pierwsze z tych pytan i zarazem pozytywnej odpowiedzi na drugie
z nich dostarcza schemat kwantowania rozwiniety przez Kostanta i SouriaLﬂ ktory okreslamy
mianem kwantowania geometrycznego. Na zakoriczenie niniejszych notatek zaprezentujemy jedynie

6Schemat ten zostal w nader przystepny sposob przedstawiony w monografii Woodhouse’a [Wo092].
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jego wynik w rozwazanym modelu fizykalnym, zastepujac przy tym addytywna grupe R rozsze-
rzenia T(3) nad baza R*3 multyplikatywna grupa okregu U(1) = R/27Z = S, co daje nam (po
dodatkowej, trywialnej transpozycji sktadnikow kartezjariskich) rozszerzenie
(11) m=pr; : UT(3), =R xU(1) — R*
z dzialaniem binarnym

(12) UT(3)w X UT(3)w — UT(3)w : ((xzi7u1)’ (q;z2’ U2)) — (xll + xé’ Uy - Us - einmn " x;’)

i indukowanym przezen dziataniem (lewym) UT(3),_ na sobie

A ¢ UT@3),xUT(3), — UT(3),

((5,0), (2%,2)) > (2" + €', 2- C-e®omn =" ") = N oy (2, 2).
Tak przygotowani mozemy juz przystapi¢ do konstrukeji operatorowej realizacji algebry . Tej
dostarczaja po raz kolejny funkcje (zespolone) na T*R? calkowalne z kwadratem (i odpowiednio
spolaryzowane — np. w polaryzacji/,reprezentacji” pedowej), na ktorych tym razem zadajemy
operatory

T (x,p) =ih -, Pi(w,p) = =ik (&= - qein B %ﬁ) +pi— 5 qéijpz’ BY.

Operatory te otrzymujemy z ogblnego przepisu
h— —ihVy -V, an+h=h,
w ktorym V), jest polem hamiltonowskim stowarzyszonym z h € C“(T*RXB,R), n e QYT*R*?)
za$ jest dowolng 1-forma pierwotng dla 2-kocyklu Qp, ktéra w naszym wypadku zostata wybrana
w postaci
n(z,p) = -z’ dm;(z,p) = -2’ (dp; + %qﬁijk BI dwk) .

Bez trudu przekonujemy sie, ze wypisane powyzej operatory rozniczkowe spelniaja pozadane
relacje komutacyjne. Azeby zrozumieé¢, w jaki sposob ich struktura i dziatanie na L?(T*R*3,R)
wiaze sie z rozszerzeniem , musimy wréci¢ do modelu klasycznego.

Model klasyczny ma symetrie ciagte: pod wptywem translacji . o staty wektor e ¢ R*? la-
granzjan zmienia sie o zupelna pochodna czasowa

L(t.oz,(b.ox)) = L(x,i) + F(x)
funkcji gladkiej
F(x) = %qeijk.eixj Bk,
Oczekiwanie, izby symetrie te podnosily sie do teorii kwantowej, jest w pelni uzasadnione. Tu

jednak natrafiamy na obstrukcje: o ile operator polozenia jest nieczulty na przesuniecia, operator
pedu podlega transformacji

@(fs(x),p) :p\l(zvp) - %qeijk €j Bk7

jesli zatem nie poddamy stosownej korekcie (fazowej) funkcji falowej v € L2(T*R*3,R), wartosci
oczekiwane tego operatora i wszelkich operatoréow pochodnych,

(O 7)), = [, Vol(TE00) W@ ) (.7 ) (a.) V(1)

nie bedq niezmiennicze wzgledem przesunieé (nalezy zwrocié uwage, ze 2-forma symplektyczna
Qp jest translacyjnie niezmiennicza, ceche te ma zatem takze symplektyczna forma objetosci
Vol(T*R*3;Qr)). Jest przy tym jasne, ze konieczna postad’| transformacji symetrii funkcji falowej

L2 : T(3) x LA(T*R*,R) — LA(T*R*3,R) : ((¢%),¥) —e> = L2 (),
(> 0)(w.p) = o 3 ="' By (0 (). p)

7Zauwaz'my, ze operator polozenia pozostaje niezmieniony pod wplywem translacji £c.
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(uwzgledniliémy to, ze dzialanie na argumencie funkcji falowej poprzez cofniecie wzdtuz £. jest
dzialaniem prawym, my za$ dazymy do skonstruowania dzialania lewego). Istotnie, oczekiwana
niezmienniczo$¢ amplitud jest wowczas prosta konsekwencja translacyjnej niezmienniczosci sym-
plektycznej miary objetosci,

(0@ 5)).., = [T oy VOUTRA:00) (¢ 5 0) (2.p) O(F 7)) (@.p) (= > ) ()
[F*Rxs VOI(T*RX:));QF) ( _e(x), p) e%q”ngBk
O, 7y) (x,p) e "7 B (0 (), p)
—(z),p) - O(T, B + S a€ejme” B') (z,p) ¥ (¢_c(z),p)
—(2),p) - O(Z",7;)(L-c(2),p) ¥(L-c(2), p)

| VoUTR:00)
[ VolT R Q) v

(0@"5)), -
Na obecnym etapie zasadnym wydaje sic ustalenie wlasnosci odwzorowania L2/.. Czy mamy do
czynienia z dzialaniem grupy T(3)? W bezposrednim rachunku stwierdzamy

(L2, o L20,) () (w,p) = e shcumcia’ BY (L%z(w))(&m(x),p)

= e eijrey 2’ BY S €ijk 5 ey (2)! B @/J(gfeg 06—61(‘%)7}?)

W(t-e(2).p)
U(-e(2).p)

k k
= e -5k eijreiel B e -1L e (e1+e2)" 0’ B 1/’(€—(51+52)($)7P)

= e 3h €k 81 EJ B* I—2Z€1+€2 (’(/J)(St‘,p) )

zatem L2(. nie jest dzialaniem. Jest natomiast dziataniem rzutowym, a poniewaz takie dzia-
tania czesto spotykanym w kontekscie kwantowania symetrii klasycznych (w zwiazku ze swoboda
redefinicji fazy funkeji falowej), przeto omowimy je po krotce w pewnej ogolnosci. Oto wiec mamy
do czynienia z realizacja grupy G na przestrzeni K-liniowej V', czyli homomorfizmem
G — GL(V,K)/K* = PGL(V,K)
grupy G w grupe ilorazowa PGL(V,K), okreslang mianem rzutowej grupy gléwnej liniowej
przestrzeni V, ktéry mozemy rownowaznie opisywaé jako odwzorowanie
R : G — GL(V,K)

o wlasnosci

vg,hEG EIc(g,h)eIKX : R(g) © R(h) = c(g, h) > R(g : h) .
Mozna zadaé pytanie, kiedy tak okreslone odwzorowania wspotdeterminuja dziatanie rozszerzenia
centralnego G przez K>,

1— K (cc i) CxK =G 2 a1
o operacji binarnej
(13) i GxG—G : ((g1.k1), (g2, k2)) — (g1 g2, k1 - k2 c(g1,92)) -
Jest to mozliwe, gdy odwzorowanie
(14) c: GxG—K" : (g,h) — c(g,h)
spelia warunek
(15) V1,092,905 (g1, 92) - (91 92,93) = c(g2,93) - (91,92 g3) »

oto bowiem wtedy zapostulowana powyzej operacja binarna 71 okazuje si¢ by¢ taczna, a my
mozemy zadaé¢ dziatanie grupy G w postaci odwzorowania
R : G—GL(V,K) : (g,k) — k> R(g),
17
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ktorego homomorficznosé sprawdzamy w bezposrednim rachunku:
R(gi,k1) o R(g2,k2) = kiv R(g1)o (k2> R(g2)) =k1v (k2> (R(g1) o R(g2)))

ki ko> (c(g1,92) > R(g1-92)) = k1 - ko - c(g1,92) » R(g1 - g2)

= Rofi((g1.k1), (g2, k2)) .

Interpretacja samego warunku wymaga kolejnej

Definicja 4. Niechaj G bedzie grupa, A za$ — grupa przemienng, na ktorej okreslone jest dzia-
lanie (lewe) G, tj. dany jest homomorfizm grup
A G— Autgrp(4) : g— Ay,
przy czym jak zwykle bedziemy tez pisaé¢, naduzywajac nieco notacji,
A:GxA—A: (ga)—graz=As(a).
Mowimy, ze para (A,A.) jest modulem grupy G. p-kolanicuch na G o wartosciach w A
to odwzorowanie
f : pr - A7
przy czym dla p = 0 przyjmujemy konwencje: G*O = {e} (singleton), z ktorej wynika, ze 0-
kolaricuch na G o wartosciach w A to element A. Zbior CP(G;A) = Map(G*P, A) takich
odwzorowan dziedziczy z A strukture grupy przemiennej (z operacja binarna zdefiniowana punk-
towo) — grupe te okreslamy mianem grupy p-kolancuchéw na G o wartosciach w A. Indek-
sowana przez N > p rodzina grup kolancuchéw tworzy kompleks (ko)tancuchowy
O+ eore S i gy S 5
(C*(G;A),05") : C°(G;A) —=— C'(G; A) —— - CP(G;A) —=— ...

o operatorach kobrzegu

s L CP(G;A) — CPTL(G; 4), 5P os® 0, peN

danych wzorami (zapisanymi dla dowolnych g; € G, i €0,p i ce Ck(G; A), ke{0,p>0})

0
IP0(g0) = govw-g,
0 0 0

p .
90> 091,92, 9p) + . (1) ©(g0, 915+ Gj=2:Gj1 Gj» Gj+1,Gj+25- - -+ Ip)
P j=1 P

+(_1)p+1 90(903 gis--- 7gp71) .
p

587)@(907915 s 79;0)
P

Grupa homologii powyzszego kompleksu
H(G; A) = Z2°(G; 4), HP*Y(G; A) = Z°1(G; A)/BPTH(G; A), peN,
w ktorej zapisie
7P (G; A) = Ker 58””
to grupa (p + 1)-kocykli na grupie G o wartosciach w G-module 4, a
BP*H(G; A) = Imég)
to grupa (p+1)-kobrzegow na grupie G o wartosciach w G-module A, nosi miano (p+1)-
tej grupy kohomologii grupy G o wartosciach w G-module A. Suma prosta

H*(G;A) = HP(G; A)

peN
tych grup okresla kohomologie grupy G o wartosciach w G-module A.

Uwaga 2. Warto zwrocié¢ uwage na to, ze H°(G;A) to zbiér niezmiennikéow dziatania A..
Wprowadzona tu kohomologia dostarcza naturalnego uogoélnienia pojecia niezmiennika. Odgrywa
niebagatelng role w dyskusji cechowania symetrii sztywnych w teoriach fizycznych.
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Bogatsi o powyzsza definicje bez trudu identyfikujemy warunek narzucony na odwzorowanie
(14): oto zdefiniowanie dzialania rozszerzenia centralnego G zrealizowanej rzutowo grupy G

wymaga, izby odwzorowanie to bylo 2-kocyklem na G o wartosciach w trywialnym G-module
K* (z A =idgx),

(15) — céZz(G;KX).
Bedziemy go nazywaé¢ 2-kocyklem dzialania rzutowego R. Zauwazmy przy tym, ze poprawie-
nie wyjsciowego 2-kocyklu ¢ o 2-kobrzeg 58)d, d € CY(G;K*) nie zmienia jakosciowo sytuacji,
gdyz poprawka moze by¢ zaabsorbowana w redefinicje odwzorowania R wedle schematu
R—Invod> R=Ry,

tj., jesli R spelnia warunek

Vonea  R(g)oR(h) =c(g,h) 85 d(g.h) > R(g-h) = c(g.h)-d(h)-d(g-h)™" - d(g) » R(g-h),
to wowczas Ry spelnia warunek
Vgnea © Ra(g) o Ra(h)=c(g,h) > Ra(g-h).

Ponadto, rzecz jasna,
8P (c-657d) =6,

przeto koniec koricéw w rozpatrywanym przez nas zagadnieniu znaczenie ma jedynie klasa koho-
mologii 2-kocyklu dziatania rzutowego.

W naszych wczesniejszych rozwazaniach fizykalnych realizacja algebry doprowadzita nas
wprost do definicji dziatania rzutowego L?(. grupy T(3) o wlasnosci

12 2 —1ld . et el B 2
Yoy cper(sy ¢ L2, o L2, =e et By 12

Latwo przekonujemy sig, ze pojawiajacy sie tutaj 2-kotancuch na T(3) o wartosciach w trywialnym
T(3)-module U(1) (notacja multyplikatywna dla grupy przemiennej U(1)!) dany wzorem

_ia o i gk
cr t T(3)xT(3) — U(1) : (e1,63) —> e 2niarcie2B
jest 2-kocyklem,

2 _ia o oigpk i iggpgk  _ia o i ik ia . .0 pgk
5&1()3)017(51752’ €3) = e 2hn iikE2Es BY | oaw cigh (e1te2)' ey BY | o eiju ey (ea+e3)? BY | gpeijnerey BY 2 1
Obserwacja ta pozwala zrozumie¢ strukture zapostulowanej przez nas transformacji symetrii funkeji
falowej jako odzwierciedlenie ukrytego za nig dziatania rozszerzenia centralnego

(0,idy (1) —— pr
1— U(1) — 2 T(3) x U(1) = T(3),, —— T(3) — 1

na przestrzeni Hilberta ladunku elektrycznego w stalym polu magnetycznym. Poréwnujac operacje
binarng indukowana na rozszerzeniu T(3), w tych okolicznosciach wedle schematu 7

fin © T(3)p x T(3)y — T(B)n ¢ ((e1,u), (e2,u2)) —> (£1 +£2yuy - ug - €73k k12 B

z operacja, binarna na grupie UT(3), otrzymanej przez (rownowazne) scatkowanie central-
nego rozszerzenia algebry Liego t(3) indukowanego przez 2-kocykl w na t(3), konstatujemy z
serdecznym wzruszeniem, iz

T(3), =UT(@3),, wij = -5 q fij = -2 e BY .
I na tym jednak nie koniec. . . Mozemy wszak zada¢ pytanie o (naturalny) mechanizm indukeji dzia-
tania ,kwantowej grupy translacji” T_(\f{) 5, Dha przestrzeni Hilberta skwantowanego geometrycznie
modelu dynamiki masywnego tadunku elektrycznego w stalym polu magnetycznym. Odpowiedz na
to pytanie nasuwa sie sama w geometrycznym paradygmacie opisu zjawisk fizykalnych, u ktorego
podstaw — tak w mechanice klasycznej, jak i w teorii pola (a nawet w niektorych schematach
kwantowania obu) — lezy w wymiarze formalnym pojecie wiazki wioknistej (lub innej ,wyzszej ge-
ometrii”, jak (n-)wieche¢ wiazek), ktore jest omawiane ze szczegdtami i w konkretnych zastosowa-
niach na 2. i 3. semestrze wyktadu monograficznego pt. ,Elementy algebry i geometrii wyzszej w
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fizyce” Autora. Nie mogac zaklada¢ znajomosci dyskutowanych tam struktur geometrycznych i
algebraicznych, mozemy jedynie — z braku czasu na rozleglejsza, argumentacje — podsuna¢ Czytel-
nikowi niezbedng intuicje, wywiedziona z kursu Algebry.

Punktem wyjscia w konstrukcji, ktorg chcemy zaproponowad, jest potraktowanie rozwazanych
przez nas funkcji falowych 1) : T*R*3 — C jako odwzorowan z przestrzeni stanéow T*R*® uktadu
fizycznego w produkt kartezjanski T*R*3 x C tejze z rozmaitoscia C = R*? szczegolnej postaci

(idT*Rxg’aw) : T*RXS - T*RX:S xC : (l'vp) — ((SU,P)J/J(%p)),
czyli takich, ktére sa prawymi odwrotnoéciami rzutu
(16) pr; @ T"R® xC — T*R*?.
W jezyku wiazek wtoknistych to ostatnie odwzorowanie nosi miano rzutu na baze T*R*® wigzki
(trywialnej) T*R*3 x C, dla ktorego (idt«gxs,?) jest (globanym) cieciem. Tak okreslona wigzka
(pre)kwantowaﬁ T*R*3 x C jest wprost ze swej natury wiazka jednowymiarowych przestrzeni C-
liniowych nad baza T*R*® — w naszym przypadku kazde jej wtékno pri({(z,p)}) nad punktem
(z,p) € T*R*® bazy jest po prostu przestrzeniag V = C (w ogélnym przypadku mamy do czynienia
7z przestrzenia C-liniows niekanonicznie izomorficzna z C). Wybor bazy w tej (1 w kazdej innej)
jednowymiarowej przestrzeni C-liniowej jest rownoznaczny ze wskazaniem izomorfizmu

B:C>V,

a zbior Isoc(C, V') wszystkich takich izomorfizmow, wiec tez zbior wszystkich baz, jest naturalnie
utozsamialny z grupa GL(1,C) = C*. Mozna tez, rzecz jasna, rozwazaé podklase Iso (C,V) baz
powiazanych ze soba transformacjami utozsamialnymi z dowolna podgrupa H c GL(1,C), np.
bazy Isog(l)((QV) z orbity dzialania podgrupy U(1) c¢ C* = GL(1,C). Nalezy podkresli¢, ze
kazda taka H-orbite mozna utozsami¢ z H mniekanonicznie dopiero po wybraniu dowolnego jej
punktu. Majac taki dowolny element S, € Isog(C,V), jestesmy w stanie odtworzy¢ wyjsciowa
przestrzenn C-liniowa V' jako [.(C). Z punktu widzenia geometryzacji dyskutowanych poje¢ i
operacji algebraicznych duzo bardziej naturalne wydaje si¢ pytanie o mozliwosé odtworzenia V'
bez wyrdzniania jakiejkolwiek bazy, czyli wprost ze zbioru Isog((c7 V) x C. Usuniecie [H|-krotnej
nadwyzki elementéw musi przy tym uwzgledniaé¢ status ontologiczny wszystkich zaangazowanych
obiektoéw. W sukurs przychodzi nam podkreslana wyzej struktura H-torsora na Iso(PcI (C, V), ktora
podpowiada schemat ,wyprojektowania” |H|-krotnej nadwyzki poprzez przejscie do przestrzeni
orbit diagonalnego dziatania H na Isog (C,V) xC danego wzorem

H x (Isof (C,V) x C) — Isof (C, V) x C : (h,(B,2)) —> (Boh,h™'(2)),
w ktorym H traktujemy pedantycznie jako podgrupe GL(1,C). W wyniku tej operacji otrzymu-
jemy zbior (orbit)
(Isof (C,V) x C)/H 5 [(3,2)],

ktorego elementy to klasy abstrakcji [(f,2)]. wzgledem relacji rownowaznosci

(B1,21) ~ (B2, 22) — Jnert ¢ (B2,22) = (Broh,h™'(21))
i ktory jest w sposob kanoniczny izomorficzny z V', a to poprzez odwzorowanie

[ev] & (Isof (C,V) x C)/H—=V : [(8,2)]. — B(2),
ktorego dobra okreslono$é (tj. niezaleznosé od wyboru reprezentanta klasy (5,z)].) wynika z
tacznosci superpozycji odwzorowail,
Vheu : Bo h(hil(z)) =fBo (h ) hil)(z) =6(z).

Istnienie izomorfizmu [ev] pozwala zaindukowaé na (Isof (C,V) x C)/H naturalna strukture C-

liniowa.

8K0nstrukcja, ktora tu wprowadzamy ,tylnymi drzwiami”, jest zupelnie ogélna i nie zawsze prowadzi do produk-
towej przestrzeni totalnej jak ta tutaj: T*R*3 x C. Ta uwaga ma na celu zdjecie z naszych dalszych rozwazan
potencjalne odium trywialnosci, a zarazem sztucznosci i nadmiarowosci.
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Powyzsza dyskusja dotyczy w szczegolnosei U(1)-torsora Isog(l)(QV) = U(1) (zlozonego z
przemnozen liczb zespolonych przez fazy z U(1), co stanowi podstawe utozsamienia z U(1)) —
mamy zatem

(17) [ev] = (U(1)xC)/U(1) =C o [(w2)]e—u-z.
Dokonawszy geometryzacji tej konstrukcji nad baza T*R*3, tj. ,wyprojektowawszy” dziatanie
U(1) x (T*RX?’ x U(1) x (C) — T*R*®xU(1) xC : (g, ((x7p)7u,z)) — ((gc,p),u-g,g_1 ~z),
odnajdujemy wiazke stowarzyszona
(18) (T"RXS xU(1) xC)/U(1) — TR : [((x,p),u,z)]N — (z,p)
z wigzka gléwna

TR xU(1) — TR : ((z,p),u) — (2.p)

poprzez naturalne dziatanie U(1) na C (przez mnozenie). Wiazka (rozmaitosé) jest kano-
nicznie izomorficzna (dyfeomorficzna) z wiazka (pre)kwantowa (L6)),

Bunfev] : (T*R** x U(1) xC)/U(1) — T*R** xC : [((z,p),u,2)]_ — ((z,p),u-z),
por. . Tym, co sprawia, ze nie jest to jedynie matematyczne kuriozum, jest zanurzenie
T(3), =R xU(1) > TR xU(1) : (2,u) — ((z,p),u),

ktore implikuje istnienie dzialania ,kwantowej grupy translacji” T(3), na T*R*® x U(1) x C
bedacego lewym dziataniem regularnym tej grupy na skladniku kartezjanskim prl’g(RX3 x R*3 x
U(1) xC) = R*3 x U(1),

Bun\. T_(\é’)h x (T*R*® x U(1) xC) — T*R** x U(1) x C
(2.0 ((.p),uw.2)) = (2 +ep) u- ¢ o2k n = P )

przemiennego z wyprojektowywanym dzialaniem U(1), wiec zstepujacego do przestrzeni orbit
(T*R** x U(1) xC)/U(1) w postaci

[BunA]. = T(3), x (T*R** x U(1) x C)/U(1) — (T*R** x U(1) x C)/U(1)
((E,C), [((J;,p),u,z)]w) — [((m+5,p)7u~C-e_%€ijkEiIJ Bk,z)]

i tym samym dajacego nam mozliwo$é¢ zaindukowania na wiazce (pre)kwantowej T*R*3 x C na-
turalnego dziatania

A T(3), x (TR xC) — TR x C

wedle schematu opisanego przez diagram przemienny

—_— unl\].
T(3), x (TR x U(1) x C)/U(1) — 2N (T+r<3 U (1) x C)/U(1)
idﬁn xBun[ev]™! Bun[ev]
T(3), x (TR x C) = TR xC

Otrzymujemy tym sposobem dzialanie

iq i, 7 nk
eijre ) B
ijk 'Z)

A?s,z)((xvp)v Z) = (((E + Eap)a e 2
o oczywistej sktadowej w bazie

A?&C) : T*]RX3 O : (I,p) — (és(:z’)’p)
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(wszak dzialanie T(3),, jest rozszerzeniem dziatania T(3)) i zaleznej od punktu w bazie skladowej

we wldknie
iq o gini gk
F)‘FE,C)(x’p) . przl({(ﬂ?,p)}) O 2 e—2% eijre x’ BY P
7 tych dwoch mozemy juz w standardowy sposob zlozyé lewe dziatanie , kwantowej grupy translacji”
T(3),, na funkcjach falowych:

L2A" : T(3), x L*(T'R®®) — L*(T'R™) = ((£,0),%) — FAL ()90 Al o1 ().
Na koricu naszej dtugiej i chwilami nieoczywistej drogi czeka na nas nagroda — dobra nowina:
L2 = L2AT, ) !

Udalo sie nam zatem zrozumieé postaé rzutowego dziatania grupy translacji T(3) na przestrzeni
Hilberta, wymuszong przez wybor geometrycznego schematu kwantowania, jako ograniczenie na-
turalnego dzialania rozszerzenia tejze grupy T(3), na przestrzeni (calkowalnych z kwadratem)
cie¢ trywialnej wigzki wektorowej T*R*3 x C nad klasyczna przestrzenia stanow.

Wiecej ciekawych szczegotow i przykladow Czytelnik znajdzie w monografii de Azcarraga i Izquierdo
pt. “Lie groups, Lie algebras, cohomology and some applications in physics” [dAT95].

Zadanie na ¢wiczenia 1 (na przysztos¢). Udowodnié i zinterpretowaé¢ Drugi Lemat Whiteheada
dla dowolnej skonczenie wymiarowej potprostej algebry Liego g:

CE*(g) = 0.
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