
CLASSICAL FIELD THEORY IN THE TIME OF COVID-19

PROBLEM SHEET III

Problem 1.
Wrapping-charge extensions of the global-symmetry algebra

in the two-dimensional σ-model on the cylinder

Consider the cylinder Σ ≡ R × S1 ∋ (t, φ) ≡ σ (termed the worldsheet in this context), with the non-compact
direction timelike and the compact one spacelike with respect to the global metric

η(σ) = −dt⊗ dt + dφ⊗ dφ ,

as the spacetime of the two-dimensional theory of embeddings x ∶ Σ Ð→ M of Σ in a metric manifold (M,g)
(termed the target space) endowed with a de Rham 3-cocycle H ∈ Z3

dR(M) with periods Per(H) ⊂ 2πZ, the theory
being defined by the principle of least action for the Dirac–Feynman amplitude

ADF ∶ C∞(Σ,M) Ð→ U(1) ∶ xz→ Ametr[x] ⋅ Atop[x] ≡ ADF[x]
whose first (metric) factor takes the form

Ametr[x] = exp(− i
h̵
µ∫

Σ
Vol(Σ, η)x∗g(η∗) ) ≡ exp(− i

h̵
µ∫

Σ
Lmetr(σ,x, ∂x))

written in terms of a (mass) parameter µ ∈ R>0, the metric volume form Vol(Σ, η) on Σ, and the bi-vector

η∗(σ) = − 1
2
∂
∂t
⊗ ∂
∂t
+ 1

2
∂
∂φ

⊗ ∂
∂φ
,

dual to η, whereas the second (topological, or Wess–Zumino) term

Atop[x] = HolG(x(Σ))
is a Cheeger–Simons differential character of degree 2 modulo 2πZ termed the surface holonomy the
1-gerbe G of the curvature curv(G) = H, i.e., a(n abelian-)group homomorphism

HolG ∶ Z2(M) Ð→ U(1)
(where the abelian group Z2(M) of 2-cycles (that is closed submanifolds) in M , with the disjoint union as the binary
operation) with the property – crucial to our definition –

∀c∈C3(M) ∶ HolG(∂c) = exp ( i
h̵ ∫

c
curv(G))

(here, C3(M) is the (abelian) group of 3-cochains in M). The theory is called the (monophase) two-dimensional
non-linear bosonic σ-model and it is to be understood as a theory of fields with a local (on M) presentation

(xµ)µ∈1,D, D ≡ dimM , where the xµ are local coordinates on the target space. As for the topological term, we may
always assume hereunder that

HolG(x(Σ)) =loc. exp ( i
h̵ ∫

Σ
x∗B)

for B ∈ Ω2(O) a locally smooth primitive of H on some open set O ⊂M , i.e., H =loc. dB. This is to be compared with
the situation encountered in the discussion of the lagrangean model of propagation of a massive charged point-like
particle in externeal fields: gravitational and electromagnetic.

Perform the symmetry analysis of the field theory introduced above by solving the following sub-problems:

(i) Find the Euler–Lagrange equations for the (local) fields xµ. What do they describe if H ≡ 0?
(ii) Derive the presymplectic form of the field theory, expressing it in terms of the variables: xµ ≡ xµ↾Σt (the

restriction of a classical field configuration to the Cauchy hypersurface given by the equitemporal slice Σt ≡
{t} × S1 ≅ S1) and the kinetic momentum pµ ∶= ∂Lmetr

∂∂txµ
.

(iii) Check that flows of vector fields K ∈ Γ(TM) that are Killing for g and satisfy the strong invariance
indentity

K ⌟H = −dκ(1)

for some κ ∈ Ω1(M) are (global) symmetries of the theory.
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(iv) Find the Noether charges QK for the above symmetries. In so doing, lift the Killing fields K to vector fields

K̃[x,p] = K[x] +∆µ[x,p] δ
δpµ

on the space of states by solving the constraints −L K̃θ
!= 0 for θ the so-called

(kinetic-)action 1-form with a local presentation θ[x,p] = pµ δx
µ. Interpret the constraints (differential-

geometrically).
(v) Prove that Killing vector fields satisfying Eq. (1) span a Lie subalgebra gσ in the Lie algebra (Γ(TM), [⋅, ⋅]).

Demonstrate that the Lie algebra spanned by the extensions K̃ is (identically) isomorphic with gσ.
(vi) Fix a basis {KA}A∈1,d, d ≡ dimgσ in gσ and denote as κX , X = XAKA the 1-forms on M which satisfy

the identities

dκX = −X ⌟H .

Identify a potential source of a (wrapping-charge) central extension of gσ furnished by the Poisson algebra
of the Noether charges {QA ≡ QKA}A∈1,d whenever

(H1(M,R) ∋)[−LXκY − κ[X,Y ]]dR ≢ 0 , X,Y ∈ gσ
(in the standard de Rham cohomology).

Problem 2.
Central extensions and Lie-algebra cohomology

Let (P,Ω) be the (pre)symplectic space of states of a field theory, and let {K̃A}A∈1,N be a basis in the R-linear

space of vector fields on P generating the respective one-parameter families of symmetry transformations of the field
theory, spanning a Lie subalgebra ([⋅, ⋅] is the Lie bracket of vector fields on P)

(s ∶=
N

⊕
A=1

⟨K̃A⟩R , [⋅, ⋅]↾s×s) ⊂ (Γ(TP), [⋅, ⋅])

with structure equations

[K̃A, K̃B] = f C
AB K̃C .

To these vector fields, we have associated the corresponding Noether charges {QA}A∈1,N ⊂ C∞(P,R) that solve the

defining equations

δQA = −K̃A ⌟Ω , A ∈ 1,N .(2)

Our field-theoretic considerations, backed up by concrete examples, have led us to contemplate Poisson relations for
the charges Q̃A = −QA in the general form

{Q̃A, Q̃B}Ω = f C
AB Q̃C +CAB 1 ,

where the CAB = −CBA(≢ 0) are constants (this is emphasised by inserting the constant function 1 ∈ C∞(P,R) in
the above equation). In this manner, we have obtained a Lie subalgebra

(̂s ∶=
N

⊕
A=1

⟨Q̃A⟩R ⊕ ⟨1⟩R ,{⋅, ⋅}Ω↾ŝ×ŝ) ⊂ (C∞(P,R),{⋅, ⋅}Ω) .

Indeed, we have, trivially,

{Q̃A,1}Ω = 0 = {1,1}Ω ,

and so the Poisson bracket closes on the subspace ŝ, and the bracket is a Lie bracket by construction (due to the
closedness of the presymplectic form Ω). We shall, next, try to understand the relation between s and ŝ conceptually,
with view to systematising our knowledge on field-theoretic realisations of lagrangean symmetries.

Thus, note that the Jacobi identity

Jacŝ(Q̃A, Q̃B , Q̃C) = 0

implies the relations

f D
AB CDC + f D

CA CDB + f D
BC CDA = 0 , A,B,C ∈ 1,N .(3)

Consider the (abstract vector-space) dual s∗ of s and introduce a basis

B∗ ≡ {κA}A∈1,N

of the former vector space dual to the basis

B ≡ {K̃A}A∈1,N
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of s, determined by the relations

κA(K̃B) = δAB .
The constants CAB give rise to a 2-form on s given by

Θ ∶= CAB κA ∧ κB ∈ s∗ ∧ s∗

that we shall call the extension 2-cocycle. The consistency conditions (3) can now be written concisely as

Θ([K̃A, K̃B], K̃C) +Θ([K̃C , K̃A], K̃B) +Θ([K̃B , K̃C], K̃A) = 0 .

Taking into account the tri-R-linearity of the right-hand side, we may rewrite the above relation as

∀U,V,W∈s ∶ Θ([U ,V],W)+Θ([W,U],V) +Θ([V,W],U) = 0 .

The left-hand side of the above equality is a 3-form on s fully determined by Θ (and the structure of s itself) that
we shall denote as

δ
(2)
s Θ(U ,V,W) ∶= Θ([U ,V],W)+Θ([W,U],V) +Θ([V,W],U)

and call the 3-coboundary of Θ. Thus, the 3-coboundary of the extension 2-cocycle vanishes identically.
In the next step, recall our simple test of ‘Lie-algebraic triviality’ of the one-dimensional extension ŝ of s: If we

can shift the Noether charges Q̃A by the respective constants ∆A ∈ R,

Q̃A z→ Q̃A −∆A 1 =∶ Q̂A ,
as allowed by the defining Eq. (2), in such a manner that the Poisson relations

{Q̂A, Q̂B}Ω = f C
AB Q̂C

hold true for the shifted charges, we are right to consider the extension ‘trivial’. For this to be the case, we need

CAB = −f C
AB ∆C , A,B ∈ 1,N ,

which we can rephrase in terms of the 1-form on s given by

µ ∶= ∆A κ
A ∈ s∗

as

∀U,V∈s ∶ Θ(U ,V) = −µ([U ,V]) .
The right-hand side of the above equality is a 2-form on s fully determined by µ (and the structure of s itself) that
we shall denote as

δ
(1)
s µ(U ,V) ∶= −µ([U ,V])

and call the 2-coboundary of µ. We may now restate our condition of ‘triviality’ in a simple manner: The extension
is trivial if the extension 2-cocycle is a 2-coboundary. We then have

Θ = δ(1)s µ Ô⇒ δ
(2)
s Θ ≡ δ(2)s (δ(1)s µ) ≡ (δ(2)s ○ δ(1)s )µ ≡ 0 .

Clearly, the identity

δ
(2)
s ○ δ(1)s ≡ 0

follows from the Jacobi identity for the underlying Lie algebra s.
The scheme uncovered above sounds (or at least should sound) familiar to those of us who have come across a

serious discussion of the exterior algebra (Ω●(M) ≡ ⊕dimM
k=0 Ωk(M),d) of differential forms on a manifold M . Indeed,

in that context, we encounter the de Rham coboundary operator(s)

d
(k)
dR ≡ d ∶ Ωk(M) Ð→ Ωk+1(M) , k ∈ 0,dimM ,

with the understanding that ΩdimM+1 ≡ 0. The fundamental property

d
(k+1)
dR ○ d(k)dR ≡ 0

leads to the emergence of the (real) de Rham cohomology

H●
dR(M) =

dimM

⊕
k=0

Hk(M) ,

with the (k + 1)-th de Rham cohomology group defined as the (abelian) quotient group

Hk+1(M) = kerd
(k+1)
dR /imd

(k)
dR , k ∈ 0,dimM , H0(M) ≡ kerd

(0)
dR(≡ R∣π0(M)∣) .
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As we have seen before, the de Rham cohomology and its geometrisations are relevant to the description and study
of the dynamics of systems endowed with topological charge (e.g., electromagnetically charged point-like particles).
Now, in the field-theoretic context of interest, natural question arise: Does our construction extend to a fully fledged
cohomology on g? If so, does the component of that cohomology discovered in our simple considerations effectively
quantify (physically motivated) extensions of a given Lie algebra (of symmetries)? Answering these mutually entangled
questions constitutes the goal of the present Problem.

(i) The cohomology of a Lie algebra with values in a module.
We begin by introducing an ancillary concept in

Definition 1. Let (g, [⋅, ⋅]g) be a Lie algebra over a base field K. A (left) g-module is a pair (((V,+V ,PV ≡
−(⋅), ● z→ 0V ),⊳K),⊳⋅) composed of a K-linear space ((V,+V ,PV , ● z→ 0V ),⊳K) (here, ⊳K is the action of
the base field K on the abelian group V ) endowed with a bi-K-linear mapping

`⋅ ∶ g × V Ð→ V ∶ (X,v) z→X ⊳g v ≡ `X(v)
satisfying – for any X1,X2 ∈ g and v ∈ V – the identity

[X1,X2]g ⊳g v =X1 ⊳g (X2 ⊳g v) −X2 ⊳g (X1 ⊳g v) .
In what follows, we write ⊳≡⊳g (whenever it does not lead to confusion) to unclutter the notation.

◇

Next, we generalise the previously contemplated algebraic concept in

Definition 2. Let (g, [⋅, ⋅}g) and (a, [⋅, ⋅}a) be two Lie algebras over a common base field K. A central
extension of g by a is a Lie algebra (g̃, [⋅, ⋅]g̃) over K described by the short exact sequence of Lie
algebras

0Ð→ a
Ð→ g̃

πÐÐ→ gÐ→ 0 ,(4)

written in terms of an Lie-algebra monomorphism  and of a Lie-algebra epimorphism π, and such that
(a) ⊂ z(g̃) (the centre of g̃). Hence, in particular, a is necessarily commutative, that is [⋅, ⋅}a ≡ 0.

Whenever π admits a section, i.e., there exists a Lie-algebra homomorphism

σ ∶ gÐ→ g̃

with the property

π ○ σ = idg ,

the central extension is said to split.
An equivalence of central extensions g̃A,A ∈ {1,2} of g by a is represented by a commutative diagram

g̃1

≅

��

""
0 // a

<<

""

g // 0

g̃2

<< ,

in which the vertical arrow is a Lie-algebra isomorphism.

◇

Finally, we generalise our physically motivated construction of coboundary operators and identify the ensuing
cohomology in

Definition 3. Let (g, [⋅, ⋅}g) be a Lie algebra over a base field K and let (V, `⋅) be a g-module. A p-cochain
on g with values in V (also termed a V -valued p-form on g ) is a p-linear map ϕ

(p)
∶ g×p Ð→ V that is

totally skew-symmetric, i.e., for any Xi ∈ g, i ∈ 1, p, it satisfies

∀j∈1,p−1 ∶ ϕ
(p)

(X1,X2, . . . ,Xj−1,Xj+1,Xj ,Xj+2,Xj+3, . . . ,Xp) = −ϕ
(p)

(X1,X2, . . . ,Xp) .

Such maps form a group of p-cochains on g with values in V , denoted by Cp(g, V ). The family of these

groups indexed by p ∈ 0,dimK g forms a bounded complex

C●(g, V ) ∶ C0(g, V )
δ(0)gÐÐÐ→ C1(g, V )

δ(1)gÐÐÐ→ ⋯
δ(p−1)gÐÐÐÐ→ Cp(g, V )

δ(p)gÐÐÐ→ ⋯
δ
(dimK g−1)
gÐÐÐÐÐÐÐ→ CdimK g(g, V )
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with the coboundary operators

δ
(p)
g ∶ Cp(g, V ) Ð→ Cp+1(g, V )

determined by the formulæ (written for arbitrary elements X,Xi ∈ g, i ∈ 1, p + 1 and ϕ
(p)

∈ Cp(g, V ) for

p ∈ 1,dimK g − 1)

(δ(0)g ϕ
(0)

)(X) ∶= X ⊳ ϕ
(0)
,

(δ(p)g ϕ
(p)

)(X1,X2, . . . ,Xp+1) ∶=
p+1

∑
i=1

(−1)i−1Xi ⊳ ϕ
(p)

(X1,X2, . . .
î
,Xp+1) + ∑

1≤i<j≤p+1

(−1)i+j ϕ
(p)

([Xi,Xj]g,X1,X2, . . .
î,j
,Xp+1) ,

δ
(dimK g)
g ≡ 0 .

We distinguish the group of p-cocycles

Zp(g, V ) ∶= ker δ
(p)
g ,

and the group of p-coboundaries

Bp(g, V ) ∶= im δ
(p−1)
g .

The homology groups of the complex (C●(g, V ), δ(●)g ) are called the cohomology groups of g with

values in V and denoted by

Hp(g, V ) ∶= Zp(g, V )/Bp(g, V ) , p ∈ 1,dimK g , H0(g, V ) ∶= Z0(g, V ) .
◇

(i.1) Write out the first three nontrivial coboundary operators: δ
(p)
g , p ∈ {1,2,3} for ⊳ trivial, i.e., such that

X ⊳ v = 0V for arbitrary X ∈ g and v ∈ V .
(i.2) Prove the identities

δ
(p)
g ○ δ(p−1)

g = 0 , p ∈ 1,dimK g .

(i.3) Use the Jacobi identity for (g, [⋅, ⋅]g) to induce on g a natural structure of a g-module (the so-called
ad⋅-module). Reinterpret the said identity in terms of the ensuing g-valued Lie-algebra cohomology of g.

(ii) The algebraic meaning of H2(g,a).
We shall now establish a natural correspondence between classes in H2(g,a) and equivalence classes of

supercentral extensions of g by a commutative Lie algebra a considered as a g-module with the trivial
g-action. We begin our discussion with

Proposition 4. Let (g, [⋅, ⋅]g) be a Lie algebra, and let (a,0) be a commutative Lie algebra. An equivalence
class of central extensions (g̃, [⋅, ⋅]g̃) of g by a canonically determines a class in H2(g,a). This class vanishes
iff the short exact sequence determined by the extensions splits.

Prove the Proposition by using the vector-space isomorphism (demonstrate that it is well-defined and that it
is what we call it!)

ι̃ ∶ g̃
≅ÐÐ→ a⊕ g ∶ X̃ z→ (−1 (X̃ − σ ○ π(X̃)) , πg(X̃))

induced by a K-linear section σ of π, i.e., of a K-linear map σ ∶ g Ð→ g̃ with the property πg ○ σ = idg.
Next, use ι̃ to induce on a⊕ g a Lie bracket that extends [⋅, ⋅]g on g in such a manner that ι̃ is promoted
to the rank of a Lie-algebra isomorphism. The first part is proven by considering (linear, symmetry and
cohomological) properties of the mapping

Θσ ∶ g×2 Ð→ a ∶ (X1,X2) z→ −1
a ([σ(X1), σ(X2)]g̃ − σ ([X1,X2]g)) ,

whereupon the mapping

ε−1 ○ σ2 − σ1 ,

defined for the vertical isomorphism ε ∶ g̃1
≅ÐÐ→ g̃2 of the equivalence and for the sections σA ∶ g Ð→

g̃A, A ∈ {1,2} that determine the respective extensions of g by a, should be scrutinised in order to establish
cohomological equivalence of extension 2-cocycles coming from equivalent extensions.

The second part of the Proposition is concerned with the situation in which Θσ = δ(1)g µ. Thus, one should
look at the linear mapping

σµ ∶= σ − a ○ µ ∈ HomK(g, g̃) .
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From the point of view of physical applications, it is of utmost significance that the assignment of classes in
H2(g,a) to central extensions of g by a commutative Lie algebra a detailed above may, in fact, be inverted.
This is stated in

Proposition 5. Let (g, [⋅, ⋅]g) be a Lie algebra, and let (a,0) be a commutative Lie algebra, regarded as a
trivial g-module. A class in H2(g,a) canonically induces an equivalence class of central extensions (g̃, [⋅, ⋅]g̃)
of g by a. The extensions split iff the former class vanishes.

Prove the Proposition by investigating properties the bi-K-bilinear map

[⋅, ⋅}Θ ∶ g̃×2 Ð→ g̃ ∶ ((A1,X1), (A2,X2)) z→ (Θ(X1,X2), [X1,X2}g)
determined by a given 2-cocycle Θ ∈ Z2(g,a) on g̃ ∶= a ⊕ g, alongside the natural K-linear maps a Ð→ g̃

(injection) and g̃ Ð→ g (projection). In the case of cohomologous 2-cocycles, Θ2 = Θ1 + δ(1)g µ, µ ∈ C1(g,a),
take a closer look at the mapping

εµ ∶ g̃Ð→ g̃ ∶ (A,X) z→ (A − µ(X),X) .

For the second part of the thesis, associate with Θ = δ(1)g µ, µ ∈ C1(g,a) the K-linear mapping

σµ ∶ gÐ→ g̃ ∶ X z→ (−µ(X),X)
and study its properties.

Let us conclude the purely algebraic part of our exposition with the following remark that sheds some light
upon our results:

Remark 6. The existence of an extension of g by a determined by Θ is tantamount to a trivialisation of
the pullback 2-cocycle

Θ̃ ∶= π∗gΘ ∶ g̃×2 Ð→ a ∶ ((A1,X1), (A2,X2)) z→ Θ(X1,X2)
given by

Θ̃ = δ(1)g̃ µ̃ , µ̃ ∶= −πa ∶ g̃Ð→ a ∶ (A,X) z→ −A.
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