CLASSICAL FIELD THEORY IN THE TIME OF COVID-19
PROBLEM SHEET III

Problem 1.
WRAPPING-CHARGE EXTENSIONS OF THE GLOBAL-SYMMETRY ALGEBRA
IN THE TWO-DIMENSIONAL 0-MODEL ON THE CYLINDER

Consider the cylinder ¥ = R xS! 5 (t,¢) = o (termed the worldsheet in this context), with the non-compact
direction timelike and the compact one spacelike with respect to the global metric

(o) =-dt®dt+dp®do,

as the spacetime of the two-dimensional theory of embeddings « : ¥ — M of ¥ in a metric manifold (M,g)
(termed the target space) endowed with a de Rham 3-cocycle H e Z3; (M) with periods Per(H) c 27Z, the theory
being defined by the principle of least action for the Dirac-Feynman amplitude

Apr : C*(E,M) —UQ) : z+— Anen[z] - Atop[z] = Apr[]

whose first (metric) factor takes the form

Ametr[ ] :exp(—%,uv[E Vol(X,n) x*g(n*)) Eexp(—%u'/; Lmetr(a,m,ax))

written in terms of a (mass) parameter p € Rsg, the metric volume form Vol(X,7n) on X, and the bi-vector

* __190 o9 .10 o0
n(0)=-35®5+205® 55>

dual to 7, whereas the second (topological, or Wess—Zumino) term
Agop[z] = Holg(z(X))

is a Cheeger—Simons differential character of degree 2 modulo 27Z termed the surface holonomy the
1-gerbe G of the curvature curv(G) = H, i.e., a(n abelian-)group homomorphism

Holg : Zo(M) — U(1)

(where the abelian group Zs(M) of 2-cycles (that is closed submanifolds) in M, with the disjoint union as the binary
operation) with the property — crucial to our definition —

Yeecuany * Holg(9) =exp (3 [ curv(9))

(here, C5(M) is the (abelian) group of 3-cochains in M). The theory is called the (monophase) two-dimensional
non-linear bosonic o-model and it is to be understood as a theory of fields with a local (on M) presentation

(x”)“eﬁ, D = dim M, where the xz* are local coordinates on the target space. As for the topological term, we may
always assume hereunder that

Holg(l'(z)) Sloc. eXp(% _/E x*B)

for B € Q2(0) alocally smooth primitive of H on some open set O c M, i.e., H =}, dB. This is to be compared with
the situation encountered in the discussion of the lagrangean model of propagation of a massive charged point-like
particle in externeal fields: gravitational and electromagnetic.

Perform the symmetry analysis of the field theory introduced above by solving the following sub-problems:

(i) Find the Euler-Lagrange equations for the (local) fields z#. What do they describe if H = 07?
(ii) Derive the presymplectic form of the field theory, expressing it in terms of the variables: z* = x|y, (the
restriction of a classical field configuration to the Cauchy hypersurface given by the equitemporal slice ¥; =
{t} x S' 2 S') and the kinetic momentum p,, := %.
iii) Check that flows of vector fields K € I'(TM) that are Killing for and satisfy the strong invariance
g g
indentity

(1) KJH=-dk
for some k€ Q'(M) are (global) symmetries of the theory.



(iv) Find the Noether charges Qi for the above symmetries. In so doing, lift the Killing fields K to vector fields

Klz,p] = K[z] + Ap[z, p] % on the space of states by solving the constraints &6 20 for 0 the so-called

(kinetic-)action 1-form with a local presentation f[z,p] = p, dx*. Interpret the constraints (differential-
geometrically).

(v) Prove that Killing vector fields satisfying Eq. (1)) span a Lie subalgebra g, in the Lie algebra (I'(TM),[-,-]).
Demonstrate that the Lie algebra spanned by the extensions K is (identically) isomorphic with g,-.

(vi) Fix a basis {KA}Aeﬁv d=dimg, in g, and denote as rkx, X = X4 K4 the I-forms on M which satisfy
the identities

dex =-X JH.

Identify a potential source of a (wrapping-charge) central extension of g, furnished by the Poisson algebra
of the Noether charges {Qa = Qx,} o737 Whenever

(Hl(M,R) 3)[gxﬁy—n[x7y]]dR$O, X,YGgU
(in the standard de Rham cohomology).

Problem 2.
CENTRAL EXTENSIONS AND LIE-ALGEBRA COHOMOLOGY

Let (P,Q) be the (pre)symplectic space of states of a field theory, and let {EA}Aem be a basis in the R-linear
space of vector fields on P generating the respective one-parameter families of symmetry transformations of the field
theory, spanning a Lie subalgebra ([-,-] is the Lie bracket of vector fields on P)

N

(5 = @ <i€A>]R ’ [’] rsXS) c (F(TP)’ [?])

A=1
with structure equations
[KAv EB] = fABC EC .
To these vector fields, we have associated the corresponding Noether charges {Qa} Ad N C C*(P,R) that solve the
defining equations
(2) 0Qa=-Ks20, Ael,N.

Our field-theoretic considerations, backed up by concrete examples, have led us to contemplate Poisson relations for
the charges Q4 = -Q4 in the general form

{Qa.Qp}a=fap Qc+Capl,
where the Cyp = —Cpa(# 0) are constants (this is emphasised by inserting the constant function 1 € C*(P,R) in
the above equation). In this manner, we have obtained a Lie subalgebra
N

(g:: A (©A>R © <]—>R ) {'7 }Q r's\x's\) c (Coo(PvR)7 {'7 }Q) .
-1
Indeed, we have, trivially,
{Qa,1}0=0={1,1}q,
and so the Poisson bracket closes on the subspace &, and the bracket is a Lie bracket by construction (due to the
closedness of the presymplectic form ). We shall, next, try to understand the relation between s and § conceptually,

with view to systematising our knowledge on field-theoretic realisations of lagrangean symmetries.
Thus, note that the Jacobi identity

Jacs(Qa,Qp,Qc) =0
implies the relations
(3) fag” Coc+ fes’ Cop + fgc” Cpa=0,  A,B,Cel,N.
Consider the (abstract vector-space) dual s* of s and introduce a basis
B* = {gA}AN
of the former vector space dual to the basis

B= {EA}AELiN



of s, determined by the relations
KZA(E B) =54
The constants Cap give rise to a 2-form on s given by
O:=Cupr* ArP es* ns*

that we shall call the extension 2-cocycle. The consistency conditions can now be written concisely as

O([Ra K], ) + O([Rers Rul, Kis) + O([K 5 Rl Kon) 0.
Taking into account the tri-R-linearity of the right-hand side, we may rewrite the above relation as

Vuywe = O(U,VI,W) +0([W,U],V)+6([V.W],U)=0.

The left-hand side of the above equality is a 3-form on s fully determined by © (and the structure of s itself) that
we shall denote as

50U, V. W) = O([U V], W) + O(IW.U]. V) + (V. W].U)

and call the 3-coboundary of ©. Thus, the 3-coboundary of the extension 2-cocycle vanishes identically.
In the next step, recall our simple test of ‘Lie-algebraic triviality’ of the one-dimensional extension & of s: If we
can shift the Noether charges Q4 by the respective constants A4 € R,

Qar—Qa-Ax1=Qn,

as allowed by the defining Eq. , in such a manner that the Poisson relations
{Q4,QB}a = fax Qc
hold true for the shifted charges, we are right to consider the extension ‘trivial’. For this to be the case, we need
Cap=-fag’ Ac,  ABel,N,
which we can rephrase in terms of the 1-form on s given by
pi=Asr?es*
as
Vuves + OWU,V) = -p([U,V]).

The right-hand side of the above equality is a 2-form on s fully determined by p (and the structure of s itself) that
we shall denote as

o8 U, V) = —n(U, V])
and call the 2-coboundary of y. We may now restate our condition of ‘triviality’ in a simple manner: The extension
is trivial if the extension 2-cocycle is a 2-coboundary. We then have

0=y = P0=62("u) = (6P s u=0.
Clearly, the identity
5706l =0

follows from the Jacobi identity for the underlying Lie algebra s.

The scheme uncovered above sounds (or at least should sound) familiar to those of us who have come across a
serious discussion of the exterior algebra (Q°*(M) = @M QF(M),d) of differential forms on a manifold M. Indeed,
in that context, we encounter the de Rham coboundary operator(s)

d¥ =d : Qb (M) — QN(M),  keO,dim M,

QdimM+1 —

with the understanding that 0. The fundamental property

o ool =0
leads to the emergence of the (real) de Rham cohomology
dim M
H(ER(M) = ]@) Hk(M)a

with the (k +1)-th de Rham cohomology group defined as the (abelian) quotient group
k+1) o (K — 0 x
HkJrl(M):kerd((iRJr )/1md((1R), ke€0,dimM , HO(M)Ekerd((ng(E R O(M)‘).



As we have seen before, the de Rham cohomology and its geometrisations are relevant to the description and study
of the dynamics of systems endowed with topological charge (e.g., electromagnetically charged point-like particles).
Now, in the field-theoretic context of interest, natural question arise: Does our construction extend to a fully fledged
cohomology on g7 If so, does the component of that cohomology discovered in our simple considerations effectively
quantify (physically motivated) extensions of a given Lie algebra (of symmetries)? Answering these mutually entangled
questions constitutes the goal of the present Problem.

C.(Q,V) : Co(gav) - Cl(gvv) — Cp(g,V) :

(i) The cohomology of a Lie algebra with values in a module.

We begin by introducing an ancillary concept in

Definition 1. Let (g,[-,-]4) be a Lie algebra over a base field K. A (left) g-module is a pair (((V,+v,Py =
—(-),®# — 0y),>k),>.) composed of a K-linear space ((V,+y,Py,e —> 0y),>k) (here, bk is the action of
the base field K on the abelian group V') endowed with a bi-K-linear mapping

£ gxV —V: (X,U)r—>Xl>g”UE€X(’U)
satisfying — for any X7, X € g and v € V — the identity
[X17X2:|g [>g v :X1 l>g (X2 l>g ’U) —X2 l>g (Xl [>g ’U) .

In what follows, we write >=>y (whenever it does not lead to confusion) to unclutter the notation.

Next, we generalise the previously contemplated algebraic concept in

Definition 2. Let (g,[-,-}y) and (a,[-,-}a) be two Lie algebras over a common base field K. A central
extension of g by a is a Lie algebra (g,[-,-]z) over K described by the short exact sequence of Lie
algebras

0—a i) ﬁ N g— 0,
written in terms of an Lie-algebra monomorphism j and of a Lie-algebra epimorphism 7, and such that
J(a) c 3(8) (the centre of §). Hence, in particular, a is necessarily commutative, that is [-,-}4 = 0.
Whenever 7 admits a section, ¢.e., there exists a Lie-algebra homomorphism
o:g—9
with the property
moo =idg,

the central extension is said to split.
An equivalence of central extensions §a,A € {1,2} of g by a is represented by a commutative diagram

0

RN
o

92
in which the vertical arrow is a Lie-algebra isomorphism.
o

Finally, we generalise our physically motivated construction of coboundary operators and identify the ensuing
cohomology in

Definition 3. Let (g, [-,-}4) be a Lie algebra over a base field K and let (V,£.) be a g-module. A p-cochain

on g with values in V (also termed a V-valued p-form on g) is a p-linear map ¢ : g*?» — V that is
()

totally skew-symmetric, i.e., for any X; € g, i € 1, p, it satisfies
Vjeﬁ . ((p)(Xl,X27 e 7Xj—17 Xj.,_]_, Xj,Xj+2,Xj+3, e 7Xp) = —((p)(Xl,Xg, ey Xp) .
p P
Such maps form a group of p-cochains on g with values in V', denoted by CP(g, V). The family of these
groups indexed by p € 0,dimg g forms a bounded complex

50 5 §P-1) 5P 5(dimg g-1) .
g g dimg g
CcHE (g, V)




with the coboundary operators
o+ CP(a. V) — CM (g, V)
determined by the formule (written for arbitrary elements X,X; € g, i € 1,p+1 and ¢ € CP(g,V) for
()

pel,dimgg-1)

0
(P e)X) = X» o,
0) (0)
(p) ptl . .
(65”7 0 ) (X1, Xoy o, Xpr1) = 2 (-1 Xie (X1, Xoy o, Xpi) + Y (F1) 0 ([X4, X ]a0 X1, X2,y Xpi1)
() i=1 () v 1<i<j<p+1 (») 1,
5éding) = 0.

We distinguish the group of p-cocycles
Z°(g, V') := ker 6" ,
and the group of p-coboundaries
BP(g,V) :=imdsy Y
The homology groups of the complex (C‘(g,V),(?é')) are called the cohomology groups of g with
values in V' and denoted by
H"(g,V):= Z"(g,V)/B"(g,V),  pel,dimgg, H%(g,V):=2%g,V).

<&

(i.1) Write out the first three nontrivial coboundary operators: 55;;)7 pe{l,2,3} for > trivial, i.e., such that
X >wv=0y for arbitrary X eg and veV.
(i.2) Prove the identities

o o6V =0, pel dimxg.

(i.3) Use the Jacobi identity for (g,[-,-]g) to induce on g a natural structure of a g-module (the so-called
ad.-module). Reinterpret the said identity in terms of the ensuing g-valued Lie-algebra cohomology of g.

(i) The algebraic meaning of H?(g,a).
We shall now establish a natural correspondence between classes in H?(g,a) and equivalence classes of
supercentral extensions of g by a commutative Lie algebra a considered as a g-module with the trivial

g-action. We begin our discussion with

Proposition 4. Let (g,[-,-]g) be a Lie algebra, and let (a,0) be a commutative Lie algebra. An equivalence
class of central extensions (g, [-,-]z) of g by a canonically determines a class in H?(g,a). This class vanishes
iff the short exact sequence determined by the extensions splits.

Prove the Proposition by using the vector-space isomorphism (demonstrate that it is well-defined and that it
is what we call it!)

T:3—adg : X»—>(]’1()?—Uo7r()?)),7rg(f))

induced by a K-linear section o of w, i.e., of a K-linear map ¢ : g — g with the property w00 =id,.
Next, use 7 to induce on a @ g a Lie bracket that extends [-,-]g on g in such a manner that 7 is promoted
to the rank of a Lie-algebra isomorphism. The first part is proven by considering (linear, symmetry and
cohomological) properties of the mapping

O, : QXQ —a (X, X2)— ];1 ([U(Xl)aU(XQ)]E_0([X17X2]9)) )
whereupon the mapping
elo o9 — 01,
defined for the vertical isomorphism ¢ : G = g2 of the equivalence and for the sections o4 : g —
G4, Ae{1,2} that determine the respective extensions of g by a, should be scrutinised in order to establish
cohomological equivalence of extension 2-cocycles coming from equivalent extensions.

The second part of the Proposition is concerned with the situation in which 0, = 551) w. Thus, one should
look at the linear mapping

0, =0 —Jaop € Homg(g,) .



From the point of view of physical applications, it is of utmost significance that the assignment of classes in
H?(g,a) to central extensions of g by a commutative Lie algebra a detailed above may, in fact, be inverted.
This is stated in

Proposition 5. Let (g,[-,-]g) be a Lie algebra, and let (a,0) be a commutative Lie algebra, regarded as a
trivial g-module. A class in H*(g,a) canonically induces an equivalence class of central extensions (g, [ -I5)
of g by a. The extensions split iff the former class vanishes.

Prove the Proposition by investigating properties the bi-K-bilinear map
[,le : % —7F : ((A1,X1), (A2, X2)) — (O(X1, X2), [ X1, Xa}4)
determined by a given 2-cocycle © € Z?(g,a) on § := a ® g, alongside the natural K-linear maps a — §

(injection) and § — g (projection). In the case of cohomologous 2-cocycles, Os = ©1 + 55”;1, peCl(g,a),
take a closer look at the mapping

en 1 T8 ¢ (A4X)— (A-u(X),X).
For the second part of the thesis, associate with © = §él)u7 peCl(g,a) the K-linear mapping
0u: 9—TF X (-u(X),X)
and study its properties.

Let us conclude the purely algebraic part of our exposition with the following remark that sheds some light
upon our results:

Remark 6. The existence of an extension of g by a determined by © is tantamount to a trivialisation of
the pullback 2-cocycle

(:j:: 71';@ : §X2—>a : ((A17X1),(A27X2))'—>@(X17X2)
given by
@zéél)N, fi=-mq : g—a: (4,X)— -A.
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