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Abstract. A constructive analysis is presented of the necessary and sufficient conditions for the

descent of a principal C×-bundle with a compatible connection to the base of a surjective submersion.

Inspiration is drawn from the study of the descent of differential forms to quotient manifolds for free
and proper group actions, subsequently generalised to that along arbitrary surjective submersions.

The general results are specialised – in a boomerang move – to the case of the descent of flatly
equivariant bundles of the said type to smooth orbispaces of Lie-group actions, of relevance to the

gauging of rigid smooth symmetries in field theories with a topological charge.
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1. Introduction

Symmetry is one of the deepest and most powerful guiding principles in the study of physical mod-
els. In one of its instantiations – the Gauge Principle – we are confronted with the task of descending
the dynamics from the configuration space to the space of orbits of the action of the (rigid) symmetry
group, and so, whenever – as, e.g., in the σ-model – there exists a higher-geometric object (e.g., a
bundle, a gerbe, an n-gerbe etc.) over the former space, which codetermines the original dynamics (in
the said example: through a Cheeger–Simons differential character), we are prompted to answer the
more challenging question:

Question 1: Under what circumstances does a higher-geometric object descend from a manifold to
the space of orbits of an action of a group on that manifold, or, more concretely, when is the object
isomorphic to the pullback of an object (of the same type) along the projection to the orbispace if the

latter is a manifold?

The bonus of finding a structural answer to the above question is the following: It enables us to
model the higher-geometric objects on an orbispace with the distinguished higher-geometric objects
on the mother manifold even if the orbispace is not a manifold, and similarly for the field theory.
Thus motivated, we shall approach the problem is steps, starting with the largely tractable issue of
descending a differential form to the orbispace, which we subsequently generalise to that of descending
a differential form to the base of an arbitrary surjective submersion. The generalisation shall provide
us with a useful intuition that we shall employ towards solving the original problem.

2. An étude on differential forms – the emergence of a cohomology-free complex

The higher-geometric objects that co-determine σ-model-type field theories of interest (to us) arise
as ‘geometrisations’ of Maxwell-type cocycles in the de Rham cohomology (possibly further refined, as
in the Wess–Zumino–Witten or Green–Schwarz case), and so it seems natural to start our journey by
carrying out a thorough investigation of the descent of these tnsorial objects. Prior to taking up the
challenge of elucidating the descent in the case of an arbitrary surjective submersion, we first deal with
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the familiar (and physically much relevant) setting: Let G be a Lie group1 of dimension d, and let M
be a smooth manifold of dimension D equipped with a smooth (left) action

λ⋅ ∶ G ×M Ð→M ∶ (g,m)z→ g ⊳m ≡ λg(m) .
The latter induces on M an integrable distribution spanned by the fundamental vector fields in
the image of the G-equivariant Lie-algebra homomorphism

K⋅1(⋅2) ∶ g Ð→ Γ(TM) ∶ X z→ −T((e,⋅2))(X,0TM(⋅2)) ≡ KX(⋅2) ,
with values

KX(m) = d
dt
↾t=0 λexp(−t⊳X)(m) ∈ TmM .

The integral leaves of the distribution are the orbits of the action, and if – as we shall assume henceforth
– the latter is free and proper, The Quotient Manifold Theorem2 ensures that there exists a(n essentially
unique) smooth structure on the orbispace

M/G = { G ⊳m ∣ m ∈M }
with respect to which the projection

πM/G ∶ M Ð→M/G ∶ mz→ G ⊳m
is a surjective submersion. In this setting, we arrive at a counterpart of the question from the Intro-
duction:

Question 2: Which differential forms on M are pullbacks of differential forms along the projection
to the orbispace if the latter is a manifold?

It is completely straightforward to solve the problem thus posed. Indeed, let O ⊂M be the domain of
a coordinate chart

κ ≡ (xµ)µ∈1,D ≡ (xa, vA)(a,A)∈1,D−d×1,d ∶ O ≅ÐÐ→ U ⊂ R×D−d ×R×d

∶ mz→ (xa(m), vA(m))(a,A)∈1,D−d×1,d

in which the vA coordinatise the integral leaves, whereas the xa – the transverse directions (such
adapted coordinates are explicitly constructed in the proof of the said theorem presented in the notes).
The condition that a p-form ω ∈ Ωp(M) be the pullback of a p-form ω ∈ Ωp(M/G) transcribes into
the identity

κ∗ω = ωµ1µ2...µp(xµ)dxµ1 ∧ dxµ2 ∧⋯ ∧ dxµp
!= ωa1a2...ap(xa)dxa1 ∧ dxa2 ∧⋯ ∧ dxap

(to be satisfied in a vicinity of every point in M in the respective local adapted coordinates). The
identity can be rewritten in the form

∀A∈1,d ∶ ( ∂
∂vA

⌟ κ∗ω != 0 ∧ −L ∂

∂vA
κ∗ω

!= 0 ) ,

which is amenable to an obvious ‘globalisation’:

∀X∈g ∶ KX ⌟ ω != 0 ∧ ∀g∈G ∶ λ∗gω
!= ω .

The latter identifies the descendable forms as those which are g-horizontal (the first condition) and
G-invariant (the second condition), and so, altogether, G-basic.

Here, our analysis reaches an early crossroads – from this point, we may take it in one of the two
natural directions: Either we replace differential forms with (physically inspired) de Rham cohomology
classes, or we replace πM/G with an arbitrary surjective submersion. The first path leads to the highly
structured realm of equivariant cohomology, whereas the second one takes us rather directly to the
theory of higher-geometric descent, circumnavigating the wuthering heights of Cartan’s cohomological
model. Each of them is interesting in its own right, and each carries its share of relevance to the
subject matter of interest to us – indeed, they reconverge at a structural solution to our problem. We
choose the former path for the sake of brevity, and with the tranquillising foreknowledge that the path
chosen ultimately does, with a touch ingenuity, take us to the physically motivated goal defined in the

1Most of our conclusions remain valid in the more general setting of topological (or even discrete) group actions, the

generalisation affecting essentially only the tangential structure.
2Cf., e.g., Ref. [Sus21] for a hands-on proof.
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introduction, whereupon we rediscover equivariance from a new, non-axiomatic angle, more geometric
(although no less algebraic) than the alternative one offered by the second approach.

Let us first take a step ‘away’ from the original problem by considering an arbitrary surjective sub-
mersion (for which there is, a priori, no structural choice of the vertical distribution) and adapting the
question from the earlier part of the section to the new, more general context:

Question 3: Which differential forms on the total space of a surjective submersion are pullbacks of
differential forms along the projection to its base?

By way of setting up the scene and developing the language for the statement of the solution (and for
the subsequent considerations), we give, with hindsight, the following

Definition 1. Let M and X be smooth manifolds, and let $ ∶ M Ð→X be a surjective submersion.
Denote the cartesian powers of M fibred over X as

M [n] ≡M ×X M ×X ⋯×X M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

= { (m1,m2, . . . ,mn) ∈M×n ∣ ∀i,j∈1,n ∶ $(mi) =$(mj) } .

The nerve of the surjective submersion $ is the simplicial submanifold

N(●)(Pair$(M)) ≡ (M($)(●), d(●)⋅ ≡ p̂r
(●+1)
⋅+1 , s(●)⋅ ≡ idM [⋅] × δ × idM [●−⋅−1])

∶
⋯

p̂r
(4)
i =pr1,2,...

î
,4

// ////// M [3]

p̂r
(3)
i =pr1,...

î
,3

////// M [2]
p̂r

(2)
i =pr3−i //// M

of the nerve3 of the pair groupoid (written in terms of τ ∶ M×2 ↺ ∶ (m1,m2)z→ (m2,m1))
Pair(M) = (M,M ×M,s = pr1, t = pr2, Id⋅ = (idM , idM), ○ = pr1,3, Inv = τ) ,

with the face maps

d
(n)
i ≡ p̂r

(n+1)
i+1 ∶ M [n+1] Ð→M [n] ∶ (m1,m2, . . . ,mn+1)z→ (m1,m2, . . .

m̂i+1

,mn+1) , i ∈ 0, n

related in an obvious manner to canonical projections, and the degeneracy maps

s
(n)
i ≡ idM [i] × δ × idM [n−i−1] ∶ M [n] Ð→M [n+1]

∶ (m1,m2, . . . ,mn)z→ (m1,m2, . . . ,mi,mi+1,mi+1,mi+2, . . . ,mn) , i ∈ 0, n − 1 .

In other words, it is the nerve of the (sub)groupoid

Pair$(M) = (M,M ×X M,s = pr1, t = pr2, Id⋅ = (idM , idM), ○ = pr1,3, Inv = τ) ,
which we shall refer to by the name of the $-fibred pair groupoid.

In what follows, we denote the pullback of a geometric object O (from a category with pullbacks)

along the face map pri1,i2,...,in ∶ M [n+k] Ð→M [n] (with 1 ≤ i1 < i2 < . . . < in ≤ n + k, k > 0) as

O[i1,i2,...,in] ≡ pr∗i1,i2,...,inO .

◇

We need one last formal step prior to stating the solution to the problem in hand. This we take in

Definition 2. In the notation of Def. 1, and for any p ∈ N, the descent (cochain) complex of $

in degree p is the semi-bounded cochain complex (Ωp($)(●),∆(●)):

0 // Ωp(X)
∆p

(0) // Ωp(M)
∆p

(1) // Ωp(M [2])
∆p

(2) // Ωp(M [3])
∆p

(3) // ⋯
∆p

(q−1) // Ωp(M [q])
∆p

(q) // ⋯

with the coboundary homomorphisms

∆p
(0)

∶=$∗ , ∆p
(q)

∶=
q+1

∑
i=1

(−1)i+1 d
(q)∗
i−1 ≡

q+1

∑
i=1

(−1)i+1 p̂r
(q+1)∗
i , q ∈ N× .

◇

3In order not to lose your nerve when reading on, consult App.A.
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Remark 3. The identities

∆p
(n+1)

○∆p
(n)

= 0 , n ∈ N
are readily checked by hand. The first of them derives as

∆p
(1)

○∆p
(0)

≡ (pr∗2 − pr∗1)$∗ ≡ ($ ○ pr2)∗ − ($ ○ pr1)∗ ≡ 0 ,

whereas the remaining ones follow from the so-called simplicial identities

d
(n−1)
i ○ d(n)j = d(n−1)

j−1 ○ d(n)i , i < j ,
readily verified directly. Indeed, we obtain, for n > 0,

∆p
(n+1)

○∆p
(n)

≡
n+2

∑
k=0

n+1

∑
l=0

(−1)k+l d(n+2)∗
k ○ d(n+1)∗

l =
n+2

∑
k=0

n+1

∑
l=0

(−1)k+l (d(n+1)
l ○ d(n+2)

k )∗

=
n+2

∑
k=1

k−1

∑
l=0

(−1)k+l (d(n+1)
k−1 ○ d(n+2)

l )∗ +
n+1

∑
k=0

(d(n+1)
k ○ d(n+2)

k )∗ +
n

∑
k=0

n+1

∑
l=k+1

(−1)k+l (d(n+1)
l ○ d(n+2)

k )∗

= −
n+1

∑
k=0

k

∑
l=0

(−1)k+l (d(n+1)
k ○ d(n+2)

l )∗ +
n+1

∑
k=0

(d(n+1)
k ○ d(n+2)

k )∗ +
n

∑
k=0

n+1

∑
l=k+1

(−1)k+l (d(n+1)
l ○ d(n+2)

k )∗

= −
n+1

∑
k=1

k−1

∑
l=0

(−1)k+l (d(n+1)
k ○ d(n+2)

l )∗ +
n

∑
k=0

n+1

∑
l=k+1

(−1)k+l (d(n+1)
l ○ d(n+2)

k )∗ ≡ 0 .

The significance of the cochain complex introduced above is clarified in the following observation, due
to Murray, cf. Ref. [Mur96].

Proposition 4. In the notation of Def. 2. For any p ∈ N, the cohomology of the descent complex for
$ vanishes identically,

H●(Ωp($)(●),∆(●)) ∶=
Ker ∆p

(●)

Im ∆p

(●−1)

≡ 0 .

In particular, p-forms on the total space M that are pullbacks of p-forms on the base X are precisely
those from the kernel of ∆p

(1)
,

∀ω∈Ωp(M) ∶ ( ∃ω∈Ωp(X) ∶ ω =$∗ω ⇐⇒ (pr∗2 − pr∗1)ω↾M [2] = 0 ) .

Proof. Let U ≡ {Uα}α∈A be an open cover of X ≡M [0] whose elements support respective sections

ςα ∶ M [0]
α ≡ Uα Ð→M ≡M [1] , $ ○ ςα = idUα .

First of all, we trivialise the cohomology in restriction to the M
[1]
α ≡Mα ≡ $−1(Uα) and their higher

fibred powers M
[n]
α ≡M [n] ∩M×n

α , n ≥ 2. To this end, consider the smooth mappings

ς(q)α ∶ M [q]
α Ð→M [q+1]

α ∶ (m1,m2, . . . ,mq)z→ (ςα ○$(m1),m1,m2, . . . ,mq) , q ∈ N× .

The corresponding pullback operators

hp;α
(1)

∶= ς∗α ∶ Ωp(M [1]
α )Ð→ Ωp(M [0]

α ) , hp;α
(q+1)

∶= ς(q)∗α ∶ Ωp(M [q+1]
α )Ð→ Ωp(M [q]

α ) , q ∈ N× ,

together with the zero map

hp;α
(0)

≡ 0 ∶ Ωp(M [0]
α )Ð→ 0 ,

compose a cochain homotopy between the identity and zero cochain maps on the restriction of the

descent cochain complex to the M
[n]
α , n ∈ N,

0

id

��

0

��

// Ωp(M [0]
α )

id

��

0

��

∆p

(0) //

hp;α

(0)

��

Ωp(M [1]
α )

id

��

0

��

∆p

(1) //

hp;α

(1)

||

Ωp(M [2]
α )

id

��

0

��

∆p

(2) //

hp;α

(2)

||

Ωp(M [3]
α )

id

��

0

��

∆p

(3) //

hp;α

(3)

||

⋯
∆p

(q−1) //

hp;α

(4)

��

Ωp(M [q]
α )

id

��

0

��

∆p

(q) //

hp;α

(q)

��

⋯
hp;α

(q+1)

��
0 // Ωp(M [0]

α )
∆p

(0)

// Ωp(M [1]
α )

∆p

(1)

// Ωp(M [2]
α )

∆p

(2)

// Ωp(M [3]
α )

∆p

(3)

// ⋯
∆p

(q−1)

// Ωp(M [q]
α )

∆p

(q)

// ⋯

,

that is, we have

hp;α
(q+1)

○∆p
(q)

+∆p
(q−1)

○ hp;α
(q)

= id
Ωp(M

[q]
α )

− 0 = id
Ωp(M

[q]
α )

, q ∈ N .
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Indeed, for q = 0, we obtain

hp;α
(1)

○∆p
(0)

+ 0 ○ hp;α
(0)

≡ ς∗α ○$∗ = ($ ○ ςα)∗ = id∗
M

[0]
α

≡ id
Ωp(M

[0]
α )

;

for q = 1,

hp;α
(2)

○∆p
(1)

+∆p
(0)

○ hp;α
(1)

≡ ς(1)∗α ○ (pr∗2 − pr∗1) +$∗ ○ ς∗α = id∗
M

[0]
α
− (ςα ○$)∗ +$∗ ○ ς∗α = id∗

M
[0]
α

≡ id
Ωp(M

[1]
α )

;

and, finally, for q > 1,

hp;α
(q+1)

○∆p
(q)

+∆p
(q−1)

○ hp;α
(q)

≡ ς(q)∗α ○
q+1

∑
i=1

(−1)i+1 p̂r
(q+1)∗
i +

q

∑
i=1

(−1)i+1 p̂r
(q)∗
i ○ ς(q−1)∗

α

=
q+1

∑
i=1

(−1)i+1 (p̂r
(q+1)
i ○ ς(q)α )∗ +

q

∑
i=1

(−1)i+1 (ς(q−1)
α ○ p̂r

(q)
i )∗

= (p̂r
(q+1)
1 ○ ς(q)α )∗ +

q+1

∑
i=2

(−1)i+1 (p̂r
(q+1)
i ○ ς(q)α )∗ +

q

∑
i=1

(−1)i+1 (ς(q−1)
α ○ p̂r

(q)
i )∗

= id∗
M

[q]
α

+
q+1

∑
i=2

(−1)i+1 (p̂r
(q+1)
i ○ ς(q)α )∗ +

q

∑
i=1

(−1)i+1 (ς(q−1)
α ○ p̂r

(q)
i )∗

= id
Ωp(M

[0]
α )

+
q

∑
i=1

(−1)i (p̂r
(q+1)
i+1 ○ ς(q)α − ς(q−1)

α ○ p̂r
(q)
i )∗ = id

Ωp(M
[0]
α )

,

where the last equality follows from the identities:

p̂r
(q+1)
2 ○ ς(q)α (m1,m2, . . . ,mq) ≡ p̂r

(q+1)
2 (ςα ○$(m1),m1,m2, . . . ,mq) = (ςα ○$(m1),m2,m3, . . . ,mq)

= (ςα ○$(m2),m2,m3, . . . ,mq) ≡ ς(q−1)
α (m2,m3, . . . ,mq) ≡ ς(q−1)

α ○ p̂r
(q)
1 (m1,m2, . . . ,mq)

and, for i ∈ 2, q,

p̂r
(q+1)
i+1 ○ ς(q)α (m1,m2, . . . ,mq) ≡ p̂r

(q+1)
i+1 (ςα ○$(m1),m1,m2, . . . ,mq) = (ςα ○$(m1),m1,m2, . . .

m̂i
,mq)

≡ ς(q−1)
α (m1,m2, . . .

m̂i
,mq) ≡ ς(q−1)

α ○ p̂r
(q)
i (m1,m2, . . . ,mq) .

Given ωα ∈ Ker ∆p
(q)

∩Ωp(M [q]
α ), the homotopy formula yields

ωα = hp;α
(q+1)

○∆p
(q)

(ωα) +∆p
(q−1)

○ hp;α
(q)

(ωα) = ∆p
(q−1)

(hp;α
(q)

(ωα)) ∈ Im ∆p
(q−1)

,

so that the cohomology does vanish locally over X.

Passing to the global level, let ω ∈ Ker ∆p
(q)

, so that, in particular, ω↾
M

[q]
α

∈ Ker ∆p
(q)

∩Ωp(M [q]
α ) for

each α ∈ A , whence

ω↾
M

[q]
α

= ∆p
(q−1)

(hp;α
(q)

(ω↾
M

[q]
α

)) .

Choose a partition of unity {%(0)α ≡ %α}α∈A on X subordinate to U , and induce from it the pullback

partition of unity {%(q)α ≡$∗
(q)%α}α∈A on M [q] (for each q ∈ N×) using the projection

$(q) ∶=$ ○ pr1 ∶ M [q] Ð→X .

We have the obvious identities

$∗%(0)α ≡ %(1)α , p̂r
(q+1)∗
i %(q)α = %(q+1)

α , q ∈ N× ,

and so may write

ω = ∑
α∈A

%(q)α ω ≡ ∑
α∈A

%(q)α ω↾
M

[q]
α

= ∑
α∈A

%(q)α ∆p
(q−1)

(hp;α
(q)

(ω↾
M

[q]
α

)) = ∆p
(q−1)

(∑
α∈A

%(q−1)
α hp;α

(q)
(ω↾

M
[q]
α

)) ,

which yields the desired conclusion

ω ∈ Im ∆p
(q−1)

.

�

We shall, next, lift the intuitions developed hereabove to the higher-geometric objects of interest.
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3. The de(s)cent category

In this section, we discuss the descent of principal C×-bundles with compatible connections along
surjective submersions, drawing inspiration from Danny Stevenson’s PhD Thesis [Ste00], in which a
closely related issue was addressed in the context of gerbe theory. More specifically, we intend to an-
swer, in a structured manner, the following question:

Question 4: Under what circumstances is a principal C×-bundle with a compatible connection
(P,M,πP,C×,A) over the total space M of a surjective submersion $ ∶ M Ð→X isomorphic to the

pullback along $ of a principal C×-bundle with a compatible connection over the base X of the
surjective submersion?

We first identify, on the basis of the hitherto considerations, the object of our chief interest (cf.
Refs. [GSW10, GSW13]), which – as shall turn out presently – yields a succinct answer to a suitably
refined variant of the question posed above.

Definition 5. Adopt the notation of Def. 1. The principal C×-bundle descent category

C×−BunDes∇($)

is composed of

● the object class with elements, termed $-descendable principal C×-bundles with a com-
patible connection, given by simplicial principal C×-bundles with a compatible connection
P ≡ ((P,M,πP,C×,A), χ) over M($)(●), i.e., pairs made up of a principal C×-bundles over

M($)(0),

C× // P

πP

��
M

,

with a principal C×-connection A ∈ Ω1(P), and of a connection-preserving isomorphism

P[1] ≡ d(1)∗1 P ≡M [2]
pr1
×πP

P

pr1

��

χ // M [2]
pr2
×πP

P ≡ d(1)∗0 P ≡ P[2]

pr1

��
M [2]

id
M[2]

M [2]

,(3.1)

of principal C×-bundles over M($)(1), subject to the coherence constraint over M($)(2)
expressed by the commutative diagram

P[1] ≡ d(2)∗2 d
(1)∗
1 P

d
(2)∗
2 χ≡χ[1,2] // d(2)∗2 d

(1)∗
0 P d

(2)∗
0 d

(1)∗
1 P ≡ P[2]

d
(2)∗
0 χ≡χ[2,3]

��
d
(2)∗
1 d

(1)∗
1 P

d
(2)∗
1 χ≡χ[1,3]

// d(2)∗1 d
(1)∗
0 P d

(2)∗
0 d

(1)∗
0 P ≡ P[3]

;

(3.2)

● for any pair PK ≡ ((PK ,M,πPK ,C×,AK), χK), K ∈ {1,2} of objects, a morphism class

HomC×−BunDes∇($)(P1,P2)
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with elements, termed (connection-preserving) $-descendable (principal C×-bundle)
morphisms, given by connection-preserving isomorphisms

(Φ, idM) ∶

P1

πP1

��

Φ // P2

πP2

��
M

idM
M

of principal C×-bundles over M($)(0), subject to the coherence constraint over M($)(1)
expressed by the commutative diagram

P1 [1] ≡ d(1)∗1 P1

Φ[1]≡d
(1)∗
1 Φ

��

χ1 // d(1)∗0 P1 ≡ P1 [2]

d
(1)∗
0 Φ≡Φ[2]

��
P2 [1] ≡ d(1)∗1 P2 χ2

// d(1)∗0 P2 ≡ P2 [2]

.(3.3)

◇

Remark 6. Let us unwrap the above definition and, in so doing, work out formulæ that will come in
handy presently. First off, we look at the definition of the bundle isomorphism χ. Given that it covers
the identity on the common base of the two principal C×-bundles, we associate with it a smooth map

H ∶ M [2]
pr1
×πP

PÐ→ P

with the property expressed by the commutative diagram

M [2]
pr1
×πP

P

pr1

��

H // P

πP

��
M [2]

pr2

// M

,

which enables us to rewrite χ as

χ(m1,m2, p) = (m1,m2,H(m1,m2, p))

for any (m1,m2) ∈ M×2 such that $(m1) = $(m2) and p ∈ P such that m1 = πP(p). Let us, next,
establish a presentation of the isomorphism in local trivialisations of its domain and codomain. To this
end, we fix a cover {Oi}i∈I of M whose elements support the respective local trivialisations

τi ∶ π−1
P (Oi)

≅ÐÐ→ Oi ×C× ,

and the corresponding local potentials

Ai ∶= σ∗iA ∈ Ω1(Oi) , σi ≡ τ−1
i (⋅,1)

of the curvature of P. Subsequently, we define a subset

I[2] ∶= { (i1, i2) ∈ I×2 ∣ Õ(i1,i2) ∶= (Oi1 ×Oi2) ∩M [2] ≠ ∅ }

and use it index elements of an open cover {Õ(i1,i2)}(i1,i2)∈I[2] of the fibred square M [2] over which
both the domain and codomain of χ trivialise as

τ̃
[A]

(i1,i2)
∶ P[A]↾Õ(i1,i2)

≅ÐÐ→ Õ(i1,i2) ×C× ∶ (m1,m2, p)z→ (m1,m2,pr2 ○ τiA(p)) , A ∈ {1,2} .

The latter maps have the obvious inverses

τ̃
[A]−1

(i1,i2)
∶ Õ(i1,i2) ×C× Ð→ P[A]↾Õ(i1,i2)

∶ (m1,m2, z)z→ (m1,m2, τ
−1
iA

(mA, z)) .

Using these, we readily compute local potentials of the pullback connection 1-forms

A[A] = pr∗2A ,
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to wit,

A
[A]

(i1,i2)
= σ̃[A]∗

(i1,i2)
A[A] = pr∗Aσ

∗
iA
A ≡ pr∗AAiA ∈ Ω1(Õ(i1,i2)) , σ̃

[A]

(i1,i2)
≡ τ̃ [A]−1

(i1,i2)
(⋅,1) .

We also obtain, for any (m1,m2) ∈ Õ(i1,i2) and z ∈ C×, the local data

τ̃
[2]

(i1,i2)
○ χ ○ τ̃ [1]−1

(i1,i2)
(m1,m2, z) = (m1,m2, h(i1,i2)(m1,m2) ⋅ z)

of χ, expressed in terms of some h(i1,i2) ∈ C∞(Õ(i1,i2),U(1)). In other words, we have

H(m1,m2, τ
−1
i1 (m1, z)) = τ−1

i2
(m2, h(i1,i2)(m1,m2) ⋅ z) ≡ τ−1

i2
(m2,1) ⊲ h(i1,i2)(m1,m2) ⋅ z ,

(3.4)

where in the last transition the C×-equivariance of the local trivialisation was used. The assumption
that connection be preserved by χ,

χ∗A[2] = A[1] ,(3.5)

now translates into the local statement

Ai2(m2) = Ai1(m1) + i d log h(i1,i2)(m1,m2) .
Passing to the coherence constraint satisfied by χ, we establish, for any (m1,m2,m3) ∈M×3 with

$(mA) =$(mB), A,B ∈ {1,2,3} and p ∈ P such that m1 = πP(p),
(m1,m2,m3,H(m2,m3,H(m1,m2, p))) = χ[2,3](m1,m2,m3,H(m1,m2, p))

= χ[2,3] ○ χ[1,2](m1,m2,m3, p) != χ[1,3](m1,m2,m3, p) = (m1,m2,m3,H(m1,m3, p)) ,
and, consequently, derive the useful ‘telescoping’ identity

H(m2,m3,H(m1,m2, p)) =H(m1,m3, p) .(3.6)

Upon specialising the above identity to the case m1 =m2 =m3 =∶m and invoking the injectivity of χ,
we derive the identity

H(m,m,p) = p ,(3.7)

and so also – for m1 =m3 –

H(m2,m1,H(m1,m2, p)) =H(m1,m1, p) = p .(3.8)

The latter description also has a local counterpart. Indeed, define

I[3] ∶= { (i1, i2, i3) ∈ I×3 ∣ Õ(i1,i2,i3) ∶= (Oi1 ×Oi2 ×Oi3) ∩M [3] ≠ ∅ }
and set

τ
[B]

(i1,i2,i3)
∶ P[B]↾Õ(i1,i2,i3)

≅ÐÐ→ Õ(i1,i2,i3) ×C×

∶ (m1,m2,m3, p)z→ (m1,m2,m3,pr2 ○ τiB(p)) , B ∈ {1,2,3} ,
to obtain – for (B,C) ∈ {(1,2), (2,3), (1,3)} –

χ[B,C] ○ τ [B]−1

(i1,i2,i3)
(m1,m2,m3, z) = τ [C]−1

(i1,i2,i3)
(m1,m2,m3, h(iA,iB)(mA,mB) ⋅ z) ,

and hence the anticipated local form

h(i2,i3)(m2,m3) ⋅ h(i1,i2)(m1,m2) = h(i1,i3)(m1,m3) ,(3.9)

from which we deduce the local counterparts of Eqs. (3.7) and (3.8),

h(i,i)(m,m) = 1 , h(i2,i1)(m2,m1) = h(i1,i2)(m1,m2)−1 .

Finally, we consider the local presentation of morphisms Φ. Upon fixing a common trivialising cover
{Oi}i∈I of M for P1 and P2, with the respective local trivialisations

τKi ∶ π−1
PK (Oi)

≅ÐÐ→ Oi ×C× , K ∈ {1,2}
and the corresponding local connection potentials

AKi ∶= σK ∗
i AK ∈ Ω1(Oi) , σKi ≡ τK −1

i (⋅,1) ,
we arrive at a local presentation

τ̃2
i ○Φ ○ τ̃1−1

i (m,z) = (m,fi(m) ⋅ z)
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for some fi ∈ C∞(Oi,U(1)), which enters the relations

A2
i = A1

i + i d log fi

encoding the condition of preservation of connection,

Φ∗A2 = A1 .

The coherence constraint of Diag. (3.3) imposed upon Φ over M($)(1) now reads, in the previous
notation adapted to the situation in hand (through attachment of indices 1 (for χ1) and 2 (for χ2) to
H and the hi1,i2),

H2(m1,m2,Φ(p)) = Φ ○H1(m1,m2, p) , p ∈ π−1
P1

({m1}) ,(3.10)

and, locally,

h2
(i1,i2)

⋅ pr∗1fi1 = pr∗2fi2 ⋅ h1
(i1,i2)

.

We have the desired

Theorem 7. Adopt the notation of Def. 5 and denote by C×−Bun∇(X; idX) the category of princi-
pal C×-bundles with a compatible connection over the base X of the surjective submersion $, with
morphisms covering the identity on the base. The pullback functor

$̂∗ ∶ C×−Bun∇(X; idX)Ð→ C×−BunDes∇($) ,
with components defined by the formulæ

$̂∗ ∶ ObC×−Bun∇(X; idX)Ð→ ObC×−BunDes∇($)

∶ (P,X, πP,C×,A)z→ (($∗P,M,π$∗P,C×,P$∗A), idpr∗1$
∗P) ,

$̂∗ ∶ MorC×−Bun∇(X; idX)Ð→MorC×−BunDes∇($)

∶ ( P1 ≡ (P1,X, πP1 ,C
×,A1)

(Φ,idX)
ÐÐÐÐÐ→ (P2,X, πP2 ,C

×,A2)) ≡ P2 )z→ ( $̂∗P1

($∗Φ,idM )
ÐÐÐÐÐÐÐ→ $̂∗P2 ) ,

in which π$∗P ≡ pr1 and P$ ≡ pr2 is to be understood as the covering map of $ in the commutative
diagram

$∗P ≡M $×πP
P

π$∗P≡pr1

��

P$≡pr2 // P

πP

��
M $

// X

,(3.11)

and in which

($∗Φ, idM) ∶

$∗P1 ≡M $×πP1
P1

π$∗P1
≡pr1

��

$∗Φ≡idM×Φ // M $×πP2
P2 ≡$∗P2

pr1≡π$∗P2

��
M

idM
M

,(3.12)

is an equivalence of categories.

Proof. We begin by checking the well-definedness of the pullback functor $̂∗. Thus, consider the
pullback of a principal C×-bundle with a compatible connection P ≡ (P,X, πP,C×,A) along $, i.e.,
the principal C×-bundle with the total space given in Diag. (3.11) and the connection 1-form

P$∗A ≡ pr∗2A .
The relevant pullbacks to M [2] by the canonical projections prA, A ∈ {1,2} may now be written as

pr∗A$
∗P ≡M [2]

prA×π$∗P
$∗P ≡M [2]

prA×pr1
(M $×πP

P) ≡M [2]
$○prA×πP

P ≡ ($ ○ prA)
∗
P ,
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with – under this identification –

(P$∗A)
[A]

= pr∗2A

But by definition

$ ○ pr2↾M [2] =$ ○ pr1↾M [2] ,

and so we may take

($∗P)
[2]

≡ pr∗2$
∗P ≡ pr∗1$

∗P ≡ ($∗P)
[1]
,

with

(P$∗A)
[2]

= (P$∗A)
[1]
,

which justifies the choice of the trivial connection-preserving isomorphism

idpr∗1$
∗P ∶ ($∗P)

[1]

≅ÐÐ→ ($∗P)
[2]

as the remaining datum in the definition of an object of C×−BunDes∇($) induced from P.
Next, take a connection-preserving isomorphism of principal C×-bundles over X

(Φ, idX) ∶

P1

πP1

��

Φ // P2

πP2

��
X

idX
X

and consider the pullback isomorphism (3.12). Taking into account the triviality of the isomorphism
datum for both pullback bundles alongside the former identifications for the (double-)pullback bundles,
we arrive at the coherence condition of Diag. (3.3) in the form

($∗P1)[1] ≡M
[2]

$○pr1
×πP1

P1

pr∗1$
∗Φ≡id

M[2]×Φ

��

idpr∗
1
$∗P1 // M [2]

$○pr1
×πP1

P1 ≡ ($∗P1)[2]

id
M[2]×Φ≡pr∗2$

∗Φ

��
($∗P2)[1] ≡M

[2]
$○pr1

×πP2
P2

idpr∗
1
$∗P2

// M [2]
$○pr1

×πP2
P2 ≡ ($∗P2)[2]

,

putting on display its triviality. Thus, the functor $̂∗ is, indeed, well-defined.
Next, we induce a principal C×-bundle over X from a descendable principal C×-bundle (P, χ) ≡

((P,M,πP,C×,A), χ). To this end, consider an open cover U ≡ {Uα}α∈A of X whose elements support
the respective local sections

ςα ∶ Uα Ð→M

of the surjective submersion $, i.e., we have

$ ○ ςα = idUα .

With these, we may associate the family of pullback principal C×-bundles

Pα ∶= ς∗αP ≡ Uα ςα×πP
P

πPα≡pr1

��

Pςα≡pr2 // P

πP

��
Uα ςα

// M

,

which over Uαβ ≡ Uα ∩ Uβ (assumed non-empty), with the corresponding sections

ςα,β ∶= (ςα, ςβ) ∶ Uαβ Ð→M [2] ,

become related as

χα,β ∶= ς∗α,βχ ∶ ς∗α,βpr∗1P ≡ Uαβ ςα,β×pr1
(M [2]

pr1
×πP

P) ≡ Uαβ ςα×πP
P ≡ Pα↾Uαβ
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≅ÐÐ→ Pβ↾Uαβ ≡ Uαβ ςβ×πP
P ≡ Uαβ ςα,β×pr1

(M [2]
pr2
×πP

P) ≡ ς∗α,βpr∗2P

∶ (x, (ςα(x), ςβ(x), p)) ≡ (x, p)z→ (x,H(ςα(x), ςβ(x), p))

≡ (x, (ςα(x), ςβ(x),H(ςα(x), ςβ(x), p))) ,
i.e., under the above identifications,

χα,β ≡ (pr1,pr2 ○ χ ○ (ςα,β × idP)) ,
so that over Uαβγ ≡ Uα ∩ Uβ ∩ Uγ (assumed non-empty), with the corresponding sections

ςα,β,γ ∶= (ςα, ςβ , ςγ) ∶ Uαβγ Ð→M [3] ,

we obtain

ς∗α,β,γpr∗1P ≡ Pα↾Uαβγ

ς∗α,β,γpr∗1,3χ≡χα,γ↾Uαβγ

��

ς∗α,β,γpr∗1,2χ≡χα,β↾Uαβγ // Pβ↾Uαβγ ≡ ς∗α,β,γpr∗2P

ς∗α,β,γpr∗2,3χ≡χβ,γ↾Uαβγ

��
ς∗α,β,γpr∗3P ≡ Pγ↾Uαβγ idPγ ↾Uαβγ

Pγ↾Uαβγ ≡ ς∗α,β,γpr∗3P

.

The disjoint union of local bundles:

P⊔ ∶= ⊔
α∈A

Pα

clearly is not a bundle (unless ∣A ∣ = 1), but it may be turned into one with the help of a construction
similar in spirit to that used in the constructive proof of The Clutching Theorem for principal C×-
bundles. Indeed, we may consider on P⊔ a relation

(x1, p1, α1) ∼χ⋅,⋅ (x2, p2, α2) ⇐⇒ { x1 = x2 ∈ Uα1α2

(x2, p2) = χα1,α2(x1, p1) ≡ (x1,H(ςα(x1), ςβ(x1), p1))
We readily check that it is actually an equivalence relation. Indeed, its reflexivity is ensured, for x ∈ Uα,
by property (3.7),

x = x ∈ Uα ≡ Uαα ∧ χα,α(x, p) ≡ (x,H(ςα(x), ςα(x), p)) = (x, p) ;

symmetry follows, for y ∈ Uαβ , from property (3.8) (and Uβα ≡ Uαβ),

(y, p2) = χα,β(y, p1) ≡ (y,H(ςα(y), ςβ(y), p1))

Ô⇒ (y, p1) = (y,H(ςβ(y), ςα(y),H(ςα(y), ςβ(y), p1))) = (y,H(ςβ(y), ςα(y), p2)) ≡ χβ,α(y, p2) ;

and transitivity is, for u ∈ Uαβγ , a consequence of the telescoping identity (3.6) in its full form,

(u, p2) = χα,β(u, p1) ≡ (y,H(ςα(y), ςβ(y), p1))
(u, p3) = χβ,γ(u, p2) ≡ (y,H(ςβ(y), ςγ(y), p2))

}

Ô⇒ (u, p3) = (y,H(ςβ(y), ςγ(y),H(ςα(y), ςβ(y), p1))) = (y,H(ςα(y), ςγ(y), p1)) ≡ χα,γ(u, p1) .
Thus, the set of equivalence classes

Pχ ∶= ( ⊔
α∈A

Pα)/∼χ⋅,⋅

can be formed, with the redundancy of the assignment of fibres to a given point in an intersection of
distinct elements of the open cover U removed completely owing to the bijective character of the χα,β .
We induce on Pχ the quotient topology along the projection

π∼ ∶ P⊔ Ð→ Pχ ∶ (x, p,α)z→ [(x, p,α)] ,
i.e., we declare a subset W ⊂ Pχ open if its preimage under π∼ is open in the disjoint-sum topology
on P⊔. The topology is readily seen to be Hausdorff due to the following fact: Each class [(x, p,α)]
contains at most one element with a given index as

(y, q, α) ∈ [(x, p,α)] Ô⇒ (y, q) = χα,α(x, p) = (x, p) .(3.13)
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Consequently, whenever [(x1, p1, α1)] ≠ [(x2, p2, α2)], we have the disjunction: Either x1 ≠ x2, in which
case the two base points have4 open neighbourhoods UxA ∋ xA, A ∈ {1,2} which separate them, Ux1 ∩
Ux2 = ∅, and hence give us separating open neighbourhoods π∼(UxA ςαA

×πP
P× {αA}) ∋ [(xA, pA, αA)]

in the quotient, or x1 = x2 ∈ Uα1α2 , in which case we may rewrite [(x2, p2, α2)] ≡ [(x1, p2, α2)] =
[(χα2,α1(x1, p2), α1)] = [(x1,H(ςα2,α1(x1), p2), α1)], with p̃2 ≡H(ςα2,α1(x1), p2) ≠ p1 ≡ p̃1 by the above
argument, so that there exist separating open neighbourhoods Vp̃A ∋ p̃A, A ∈ {1,2} in the Hausdorff
space P that yield separating open neighbourhoods π∼(UAα ςαA

×πP
Vp̃A × {α}) ∋ [(xA, pA, αA)] with

UAα = Uα ∩ ς−1
αA

(πP(Vp̃A)). Having established the structure of a Hausdorff topological space on Pχ,
we may, next, identify the anticipated principal C×-fibration over X. In order to be able to invoke
essentially the same arguments as in the aforementioned proof (i.e., employ the local structure on the
local models Pα), we need to refine the original cover U relative to the pullback covers of its elements
induced by any trivialising cover O ≡ {Oi}i∈I for (the base M of) P, coming with the respective local
trivialisations

τi ∶ π−1
P (Oi)

≅ÐÐ→ Oi ×C× ,

that is, we consider the open sets

U(α,iα) ∶= ς−1
α (Oiα) ⊂ Uα , iα ∈ { i ∈ I ∣ ςα(Uα) ∩Oi ≠ ∅ } ≡ Iα ,

obtaining the cover

X = ⋃
α∈A

⋃
iα∈Iα

U(α,iα) .

Over elements of the refined cover, we have mappings

τ (α,iα) ∶ Pχ↾U(α,iα)
Ð→ U(α,iα) ×C× ∶ [(x, p,α)]z→ (x,pr2 ○ τiα(p)) ,

which – by (the argument leading up to) (3.13) – are bijections with inverses

τ−1
(α,iα)

∶ U(α,iα) ×C× Ð→ Pχ↾U(α,iα)
∶ (x, z)z→ [(x, τ−1

iα (x, z), α)] ,
and so – tautologically – homeomorphisms. These can subsequently be used to import the smooth
structure from the local models Pα, whereby they are promoted (tautologically, again) to the rank of
diffeomorphisms. As such, they become local trivialisations of the ensuing principal C×-bundle

C× // Pχ

πPχ

��
X

, πPχ([(x, p,α)]) = x .

At this stage, we still need to derive the transition mappings associated with the above trivialisations
and verify their smoothness. To this end, pick up a point x ∈ U(α,iα) ∩ U(β,jβ) ≡ U(α,iα)(β,jβ) and

p ∈ Pςα(x) ⊂ π−1
P (Oiα), so that H(ςα(x), ςβ(x), p) ∈ Pςβ(x) ⊂ π−1

P (Ojβ). We then find

τ (α,iα) ○ τ−1
(β,jβ)

(x, z) = τ (α,iα)([(x, τ−1
jβ

(x, z), β)]) = τ (α,iα)([(χβ,α(x, τ−1
jβ

(x, z)), α)])

= τ (α,iα)([(x,H(ςβ(x), ςα(x), τ−1
jβ

(x, z)), α)]) = (x,pr2 ○ τiα ○H(ςβ(x), ςα(x), τ−1
jβ

(x, z))) ,
with

pr2 ○ τiα ○H(ςβ(x), ςα(x), τ−1
jβ

(x, z)) = pr2(ςα(x), h(jβ ,iα)(ςβ(x), ςα(x)) ⋅ z) = h(jβ ,iα)(ςβ(x), ςα(x)) ⋅ z ,
cf. Eq. (3.4), and so conclude that the transition mappings take the manifestly smooth form

g(α,iα)(β,jβ) = ς
∗
β,αh(jβ ,iα) ∶ U(α,iα)(β,jβ) Ð→ U(1) .

Note that the relevant 1-cocycle condition is ensured by identity (3.9).
Having descended P to a principal C×-bundle over X, we may, next, endow it with a connection.

Let us start with the pullback connection 1-form

Aα ∶= Pς∗αA ≡ pr∗2A
on Pα. Over Uαβ , we find the identity

χ∗α,βAβ ≡ χ∗α,βPς
∗
βA ≡ χ∗α,βpr∗2A = (pr1,pr2 ○ χ ○ (ςα,β × idP))

∗
pr∗2A = (pr2 ○ χ ○ (ςα,β × idP))

∗A

4The base is a manifold, and so it is Hausdorff.
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= (ςα,β × idP)∗χ∗A[2] = (ςα,β × idP)∗A[1] ≡ (ςα,β × idP)∗Pς∗αA = Pς∗αA = Aα ,
cf. Eq. (3.5). The last result means that the Aα descend from the disjoint components P⊔ to induce
a smooth connection 1-form

Aχ ∈ Ω1(Pχ)
on the quotient P, with the property

Aχ↾Uα ≡ Aα .
Thus, altogether, we obtain a principal C×-bundle with a compatible connection

Pχ ≡ (Pχ,X, πPχ ,C×,Aχ) .
We shall now pull back Pχ along $ and compare the resultant bundle over M with the original

bundle P. For that, we shall first formalise the obvious (canonical) connection-preserving isomorphisms:

ια ∶ Pχ↾Uα
≅ÐÐ→ Pα ∶ [(x, p,α)]z→ (x, p) , α ∈ A .

Their diffeomorphic character (with respect to the above-induced smooth structure on the domain)
is implied by the following observations: In any neighbourhood U(α,iα) ⊂ Uα, the (global) map ια
decomposes as

ια = (idX × τ−1
iα

) ○ (pr1, ςα × idC×) ○ τ (α,iα)
in terms of smooth maps. Its (global) inverse

ι−1
α (x, p) = [(x, p,α)] ,

on the other hand, factorises, over the same neighbourhood U(α,iα), as

ι−1
α = τ−1

(α,iα)
○ (idX × pr2 ○ τiα)

in terms of smooth maps. Clearly, the ια preserve the connections. These properties are inherited by
the pullbacks

ι̂α ≡$∗ια ∶ $∗Pχ↾$−1(Uα) ≡$∗(Pχ↾Uα)
≅ÐÐ→$∗Pα .

Secondly, we need the smooth maps

ς̂α ∶ $−1(Uα)Ð→M [2] ∶ mz→ (m, ςα ○$(m)) , α ∈ A

to define the pullback bundles

ς̂∗αP[1] ≡$−1(Uα) ς̂αA×pr1
(M [2]

pr1
×πP

P) ≡$−1(Uα) idM×πP
P ≡ P↾$−1(Uα) ,

ς̂∗αP[2] ≡$−1(Uα) ς̂αA×pr1
(M [2]

pr2
×πP

P) ≡$−1(Uα) ςα○$×πP
P ≡M $×pr1

(Uα ςα×πP
P) ≡$∗Pα ,

related by the (connection-preserving) pullback isomorphisms

χ̂α ≡ ς̂∗αχ ∶ P↾$−1(Uα) ≡ ς̂∗αP[1]
≅ÐÐ→ ς̂∗αP[2] ≡$∗Pα .

With all requisites in hand, we may finally define the composite connection-preserving isomorphisms

ηα ∶= ι̂−1
α ○ χ̂α ∶ P↾$−1(Uα)

≅ÐÐ→$∗Pχ↾$−1(Uα) .

In the remainder of this part of the proof, we demonstrate that the ηα are restrictions of a globally
smooth connection-preserving $-descendable principal C×-bundle isomorphism

η(P,χ) ∶ P
≅ÐÐ→$∗Pχ .(3.14)

In order to attain our goal, we need to work out the explicit form assumed by the χ̂α under the
above identifications. We have, for any m ∈M such that $(m) ∈ Uα and p ∈ Pm,

χ̂α ∶ p ≡ (m, (m, ςα ○$(m), p))z→ (m, (m, ςα ○$(m),H(m, ςα ○$(m), p)))

≡ (m, ($(m),H(m, ςα ○$(m), p))) ,
whence

ηα(p) = (πP(p), [($ ○ πP(p),H(πP(p), ςα ○$ ○ πP(p), p), α)]) .
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Let, now, m ∈$−1(Uαβ) and p ∈ Pm as before. Using the definition of the quotient Pχ in conjunction
with the telescoping identity (3.6), we then obtain the desired equality

ηβ(p) = (πP(p), [($ ○ πP(p),H(πP(p), ςβ ○$ ○ πP(p), p), β)])

= (πP(p), [($ ○ πP(p),H(ςβ ○$ ○ πP(p), ςα ○$ ○ πP(p),H(πP(p), ςβ ○$ ○ πP(p), p)), α)])

= (πP(p), [($ ○ πP(p),H(πP(p), ςα ○$ ○ πP(p), p), α)]) ≡ ηα(p) ,
which proves the existence of an isomorphism (3.14). It remains to verify that the latter satisfies the
identity expressed by the commutative diagram

P[1]

η(P,χ) [1]

��

χ // P[2]

η(P,χ) [2]

��
($∗Pχ)

[1]
≡ ($ ○ pr1)

∗
Pχ

idpr∗
1
$∗Pχ

// ($ ○ pr1)
∗
Pχ ≡ ($∗Pχ)

[2]

.

This we do by computing, for any (m1,m2) ∈M [2] with $(m1) =$(m2) ∈ Uα and p ∈ Pm1 , and with
the above identifications in mind,

η(P,χ) [2] ○ χ(m1,m2, p) = η(P,χ) [2](m1,m2,H(m1,m2, p)) = (m1,m2, ηα ○H(m1,m2, p))

= (m1,m2, [($ ○ πP ○H(m1,m2, p),H(πP ○H(m1,m2, p), ςα ○$ ○ πP ○H(m1,m2, p),H(m1,m2, p)), α)])

= (m1,m2, [($(m2),H(m2, ςα ○$(m2),H(m1,m2, p)), α)])

= (m1,m2, [($(m2),H(m1, ςα ○$(m2), p), α)])
(where we have taken identity (3.6) into account once more), and comparing it with

η(P,χ) [1](m1,m2, p) = (m1,m2, ηα(p)) = (m1,m2, [($ ○ πP(p),H(πP(p), ςα ○$ ○ πP(p), p), α)])

= (m1,m2, [($(m1),H(m1, ςα ○$(m1), p), α)]) .
Thus, the equality $(m1) =$(m2) ensures the commutativity of the diagram. We conclude that

η(P,χ) ∈ HomC×−BunDes∇($)((P, χ), $̂∗Pχ) .
We now pass to the morphism component of the inverse of the pullback functor $̂∗ under recon-

struction. Thus, we consider a connection-preserving isomorphism (Φ, idM) ∶ P1
≅ÐÐ→ P2 subject to the

coherence condition expressed by Diag. (3.3), encoded in the functional relation (3.10). We commence
its descent by defining the local pullback (connection-preserving) isomorphisms

Φα ≡ ς∗αΦ ∶ P1α ≡ Uα ςα×πP1
P1

idUα×ΦÐÐÐÐÐ→ Uα ςα×πP2
P2 ≡ P2α .

These compose a connection-preserving isomorphism

⊔
α∈A

Φα ∶ P1⊔
≅ÐÐ→ P2⊔

and satisfy the identity expressed by the commutative diagram

P1α↾Uαβ

Φα

��

χ1α,β // P1β↾Uαβ

Φβ

��
P2α↾Uαβ χ2α,β

// P2β↾Uαβ

.

Indeed, we compute, for x ∈ Uαβ and p ∈ ($ ○ πP1)−1({x}) and using Eq. (3.10),

Φβ ○ χ1α,β(x, p) = Φβ(x, (ςα(x), ςβ(x),H1(ςα(x), ςβ(x), p)))

= (x, (ςα(x), ςβ(x),Φ ○H1(ςα(x), ςβ(x), p))) = (x, (ςα(x), ςβ(x),H2(ςα(x), ςβ(x),Φ(p))))
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≡ χ2α,β(x,Φ(p)) ≡ χ2α,β ○Φα(x, p) .
Consequently, we may define the descended connection-preserving isomorphism

Φχ1,χ2 ∶ Pχ1

1

≅ÐÐ→ Pχ2

2 ∶ [(x, p,α)]z→ [(x,Φ(p), α)] .
The definition makes sense as for any other representative of the argument class we obtain

Φχ1,χ2([(x,H1(ςβ(x), ςα(x), p), β)]) = [(x,Φ ○H1(ςβ(x), ςα(x), p), β)]

= [(x,H2(ςβ(x), ςα(x),Φ(p)), β)] = [(x,Φ(p), α)] ≡ Φχ1,χ2([(x, p,α)]) .
Clearly, we have, for any P as above,

idP
χ,χ = idPχ

and, for any (ΦA, idM) ∈C×−BunDes∇($) (PA,PA+1), A ∈ {1,2}
Φ2 ○Φ1

χ1,χ3 = Φχ2,χ3

2 ○Φχ1,χ2

1 .

Thus, altogether, we end up with a covariant functor

Desc ∶ C×−BunDes∇($)Ð→ C×−Bun∇(X; idX)
with the object component

Desc↾ObC×−BunDes∇($) ∶ (P, χ)z→ Pχ

and the morphism component

Desc↾MorC×−BunDes∇($) ∶ ( (P1, χ1)
(Φ,idM )ÐÐÐÐÐ→ (P2, χ2) )z→ ( Pχ1

1

(Φχ1,χ2 ,idX)
ÐÐÐÐÐÐÐÐ→ Pχ2

2 ) .

Upon pulling back the descended isomorphisms to the total space of the surjective submersion,

$̂∗(Φχ1,χ2 , idX) ∶ $̂∗Pχ1

1

≅ÐÐ→ $̂∗Pχ2

2 ,

we may, next, ask the natural question as to the commutativity of the diagram

P1

η(P1,χ1)

��

Φ // P2

η(P2,χ2)

��
$∗Pχ1

1 $∗Φχ1,χ2

// $∗Pχ2

2

.

This can be checked in a direct computation,

$∗Φχ1,χ2 ○ η(P1,χ1)(p) =$∗Φχ1,χ2(πP1(p), [($ ○ πP1(p),H1(πP1(p), ςα ○$ ○ πP1(p), p), α)])

= (πP1(p), [($ ○ πP1(p),Φ ○H1(πP1(p), ςα ○$ ○ πP1(p), p), α)])

= (πP1(p), [($ ○ πP1(p),H2(πP1(p), ςα ○$ ○ πP1(p),Φ(p)), α)])

= (πP2 ○Φ(p), [($ ○ πP2 ○Φ(p),H2(πP2 ○Φ(p), ςα ○$ ○ πP2 ○Φ(p),Φ(p)), α)])

≡ η(P2,χ2) ○Φ(p) ,
carried out for an arbitrary p ∈ ($ ○πP1)−1(Uα). All in all, the η(P,χ) compose a natural isomorphism

η⋅ ≡ {η(P,χ)}(P,χ)∈ObC×−BunDes∇($) ∶ IdC×−BunDes∇($)

≅ +3 $̂∗ ○Desc .

We complete the proof by showing that Desc is also a left functorial inverse of $̂∗.
Given a principal C×-bundle P ≡ (P,X, πP,C×,A), we consider the pullback descendable bundle

$̂∗P = (($∗P ≡M $×πP
P,M,pr1,C

×,pr∗2A), id($○pr1)
∗P) ,

and subsequently identify

($∗P)α ≡ Uα ςα×pr1
(M $×πP

P) ≡ Uα ςα×πP
P ≡ P↾Uα ,
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so that

χα,β ≡ idP↾
Uα,β

,

and, accordingly,

($∗P)id
($○pr1)

∗P ≡ P , (pr∗2A)id
($○pr1)

∗P ≡ A ,

or, quite simply,

Desc ○ $̂∗(P) ≡ P .
Thus, we obtain the (trivial) connection-preserving isomorphism

ϑP ≡ idP ∶ IdC×−Bun∇(X;idX)(P)
≅ÐÐ→ Desc ○ $̂∗(P) .

Passing to (iso)morphisms,

(Φ, idX) ∶ P1
≅ÐÐ→ P2 ,

we find, under the above identifications,

($̂∗(Φ, idX))id
($○pr1)

∗P,id($○pr1)
∗P ≡ (Φ, idX) ,

and so

Desc ○ $̂∗(Φ, idX)) ○ ϑP1 ≡ (Φ, idX) ○ idP1 ≡ (Φ, idX) ≡ idP2 ○ (Φ, idX)

≡ ϑP2 ○ IdC×−Bun∇(X;idX)(Φ, idX) .
We conclude that the ϑP make up a natural isomorphism

ϑ⋅ ≡ {ϑP}P∈ObC×−Bun∇(X;idX) ∶ IdC×−Bun∇(X;idX)

≅ +3 Desc ○ $̂∗ .

�

4. Descent through equivariance

Now that we have derived a perfectly hands-on answer to Question 4, we may return to the origi-
nal Question 1 and extract an answer to the latter from a specialisation of the former. Thus, we enquire

Question 1’: Under what circumstances is a principal C×-bundle with a compatible connection
(P,M,πP,C×,A) over the total space M of the surjective submersion πM/G ∶ M Ð→M/G

isomorphic to the pullback along πM/G of a principal C×-bundle with a compatible connection over
the quotient manifold M/G (whenever the latter exists)?

The answer can be read off from Thm. 7: It is quantified (and the question itself is made precise) by
the equivalence of categories

π̂∗M/G ∶ C×−Bun∇(M/G; idM/G) ≅ÐÐ→ C×−BunDes∇(πM/G) ,
which, however, we want to massage into an equivalent form based on a ‘more natural’ description of the
nerve M(πM/G) of the projection to the orbispace. To this end, note the existence of diffeomorphisms

ε(n) ∶ G×n ×M ≅ÐÐ→M(πM/G)[n] , n ∈ N×

∶ (gn, gn−1, . . . , g1,m)z→ ((m,g1 ⊳m), (g1 ⊳m,g2∶1 ⊳m), . . . , (gn−1∶1 ⊳m,gn∶1 ⊳m)) ,
written in the shorthand notation

gk∶1 ≡ gk ⋅ gk−1 ⋅ ⋯ ⋅ g1 ,

which together with the identity map ε(0) ≡ idM compose a simplicial diffeomorphism

ε(●) ∶ N(●)(G⋉λM) ≅ÐÐ→ N(●)(PairπM/G
(M))

based on the equivalence of Lie groupoids

(ε(0), ε(1)) ∶ G⋉λM
≅ÐÐ→ PairπM/G

(M)
between the action groupoid

G⋉λM ≡ (M,G ×M,s = pr2, t = λ, Id⋅ = (e, ⋅), ○ = (mG ○ pr1,3,pr4), Inv = (InvG ○ pr1, λ))
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and the πM/G-fibred pair groupoid of Def. 1. Invertibility of the latter functor,

(ε(0), ε(1))−1 ≡ (ε(0)−1, ε(1)−1) ,

immediately yields an equivalent solution to our original problem: It suffices to ‘pull back’ the descent
category C×−BunDes∇(πM/G) from N(●)(PairπM/G

(M)) to N(●)(G⋉λM) along the diffeomorphism

ε(●). The intuition is made precise and concretised in

Theorem 8. Adopt the hitherto notation, let % be a 1-form on G ×M satisfying the identity

∆1
(2)% ≡ (pr∗2,3 + (idG × λ)∗ − (mG × idM)∗)% = 0(4.1)

over G×2×M , and let C×−Bun∇(M)G
% be the category of (G, %)-equivariant principal C×-bundles

with a compatible connection over M , composed of

● the object class with elements, termed (G, %)-equivariant principal C×-bundles with a
compatible connection, given by simplicial principal C×-bundles with a compatible connec-
tion P ≡ ((P,M,πP,C×,A), γ) over N(●)(G⋉λM), i.e., pairs made up of a principal C×-bundles

over N(0)(G⋉λM) ≡M ,

C× // P

πP

��
M

,

with a principal C×-connection A ∈ Ω1(P), and of a connection-preserving isomorphism

λ∗P ≡ (G ×M) λ×πP
P

pr1

��

γ // (G ×M) pr2
×πP

P ≡ pr∗2P⊗ I%

pr1

��
G ×M

idG×M

G ×M

,

of principal C×-bundles over N(1)(G⋉λM) ≡ G ×M (I% is the trivial bundle of the said type
equipped with the connection 1-form pr∗2ϑ+%, where ϑ ∈ Ω1(C×) is the (left-)invariant Maurer–

Cartan 1-form on the Lie group C×), subject to the coherence constraint over N(2)(G⋉λM) ≡
G×2 ×M expressed by the commutative diagram

pr∗2,3λ
∗P

pr∗2,3γ // pr∗2,3pr
∗

2P⊗ Ipr∗
2,3
% (mG × idM)∗pr∗2P⊗ I(mG×idM )

∗% ⊗ I(pr∗
2,3

−(mG×idM )
∗)%

(idG × λ)∗pr∗2P⊗ I∆1
(2)
% (idG × λ)∗λ∗P⊗ I

(pr∗
2,3

−(mG×idM )
∗)%

(idG×λ)
∗γ⊗id

oo (mG × idM)∗λ∗P⊗ I(pr∗
2,3

−(mG×idM )
∗)%

(mG×idM )
∗γ⊗id

OO

;

(4.2)

● for any pair PK ≡ ((PK ,M,πPK ,C×,AK), γK), K ∈ {1,2} of objects, a morphism class

HomC×−Bun∇(M)G
%
(P1,P2)

with elements, termed (connection-preserving) (G, %)-equivariant (principal C×-bundle)
morphisms, given by connection-preserving isomorphisms

(Φ, idM) ∶

P1

πP1

��

Φ // P2

πP2

��
M

idM
M
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of principal C×-bundles over M , subject to the coherence constraint over G ×M expressed by
the commutative diagram

λ∗P1

λ∗Φ

��

γ1 // pr∗2P1 ⊗ I%

pr∗2Φ⊗id

��
λ∗P2 γ2

// pr∗2P2 ⊗ I%

.(4.3)

The equivalence (ε(0), ε(1)) induces an equivalence of categories

C×−Bun∇(M)G
0 ≅ C×−BunDes∇(πM/G) .

Proof. First of all, note that % = 0 automatically satisfies condition (4.1), and so it makes sense to
consider this possibility, which leads us to look for principal C×-bundles endowed with connection-
preserving isomorphisms

λ∗P

pr1

��

γ // pr∗2P

pr1

��
G ×M

idG×M

G ×M

subject to the coherence condition

pr∗2,3λ
∗P

pr∗2,3γ // pr∗2,3pr∗2P (mG × idM)∗pr∗2P

(idG × λ)∗pr∗2P (idG × λ)∗λ∗P
(idG×λ)

∗γ

oo (mG × idM)∗λ∗P

(mG×idM )
∗γ

OO

,

and, for any pair thereof, connection-preserving isomorphisms between them subject to the coherence
condition

λ∗P1

λ∗Φ

��

γ1 // pr∗2P1

pr∗2Φ

��
λ∗P2 γ2

// pr∗2P2

among pullbacks of objects of the descent category along the diffeomorphism ε(1) and – respectively –
pullbacks of morphisms of that category along the diffeomorphism ε(0). But under the former pullback,
Diag. (3.1) is readily seen to transform into

ε(1)∗d
(1)∗
1 P ≡ pr∗2P

pr1

��

ε(1)∗χ // λ∗P ≡ ε(1)∗d(1)∗0 P

pr1

��
G ×M

idG×M

G ×M

,
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whereas the pullback of Diag. (3.2) along ε(2) takes the form

ε(2)∗d
(2)∗
2

d
(1)∗
1

P ≡ pr∗2,3pr∗2P

ε(2)∗d
(2)∗
2

χ≡pr∗2,3ε
(1)∗χ

// ε(2)∗d(2)∗
2

d
(1)∗
0

P ≡ pr∗2,3λ
∗P ε(2)∗d

(2)∗
0

d
(1)∗
1

P ≡ (idG × λ)∗ε(1)∗pr∗2P

ε(2)∗d
(2)∗
0

χ≡(idG×λ)∗ε(1)∗χ

��
ε(2)∗d

(2)∗
1

d
(1)∗
1

P ≡ (mG × idM )
∗pr∗2P

ε(2)∗d
(2)∗
1

γ≡(mG×idM )
∗ε(1)∗γ

// ε(2)∗d(2)∗
1

d
(1)∗
0

P ≡ (mG × idM )
∗λ∗P ε(2)∗d

(2)∗
0

d
(1)∗
0

P ≡ (idG × λ)∗λ∗P

,

so that we are led to the invertible postulate

ε(1)∗χ = γ−1.

The ultimate confirmation comes from inspection of the pullback of Diag. (3.3) along ε(1),

ε(1)∗d
(1)∗
1 P1 ≡ pr∗2P1

ε(1)∗d
(1)∗
1 Φ≡pr∗2Φ

��

ε(1)∗χ1 // ε(1)∗d(1)∗0 P1 ≡ λ∗P1

ε(1)∗d
(1)∗
0 Φ≡λ∗Φ

��
ε(1)∗d

(1)∗
1 P2 ≡ pr∗2P2

ε(1)∗χ2

// ε(1)∗d(1)∗0 P2 ≡ λ∗P2

,

which completes the proof. �

Putting the two main results of the present exposition together, we arrive at the final answer to the
question from the Introduction:

Corollary 9. Under the previous assumptions, and in the hitherto notation, there exists a canonical
equivalence of categories

C×−Bun∇(M)G
0 ≅ C×−Bun∇(M/G; idM/G) .

Appendix A. Never lose your nerve

Some useful phraseology, lest the Avid Reader should lose it. . .

Definition 10. Let C be a category with the set of objects Ob(C). A simplicial object (X●, d
(●)
⋅ , s(●)⋅ )

in C is a collection of objects Xn ∈ Ob(C), n ∈ N, together with distinguished morphisms: the face

maps d
(n)
i ∈ HomC(Xn,Xn−1) and the degeneracy maps s

(n)
i ∈ HomC(Xn,Xn+1), defined for all

0 ≤ i ≤ n and satisfying the simplicial identities:

d
(n−1)
i ○ d(n)j = d

(n−1)
j−1 ○ d(n)i , i < j ,

s
(n+1)
i ○ s(n)j = s

(n+1)
j+1 ○ s(n)i , i ≤ j ,

d
(n+1)
i ○ s(n)j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
(n−1)
j−1 ○ d(n)i if i < j ,

idXn if i = j or i = j + 1 ,

s
(n−1)
j ○ d(n)i−1 if i > j + 1 .

A simplicial object in the category Set (resp. Top, (s)Man etc.) is termed a simplicial set (resp.
space, (super)manifold etc.).

◇

A fundamental class of examples is provided by nerves of categories (cf. Ref. [Seg68]).

Definition 11. Let C be a small category with the set of objects Ob(C), the set of morphisms
Mor(C) and structure maps s ∶ Mor(C) Ð→ Ob(C) (the source map) and t ∶ Mor(C) Ð→ Ob(C)
(the target map), respectively5. The nerve of C is the simplicial set N●(C) with the following data:
N0(C) = Ob(C) and, for n ≥ 1,

Nn(C) = { (f1, f2, . . . , fn) ∈ Mor(C)×n ∣ t(fi) = s(fi+1) } ,

5One should not confuse the source map s with a degeneracy map s
(n)
i .
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i.e., Nn(C) is the set of all n-tuples of composable morphisms (note that in this ordering convention fi
and fi+1 are composable if fi+1○fi makes sense). The degeneracy maps are: s0(a) = ida for a ∈ Ob(C),
and, for n ≥ 1,

s
(n)
i (f1, f2, . . . , fn) = (f1, f2, . . . , fi, idt(fi), fi+1, . . . , fn) .

The face maps are: d0(f) = t(f) and d1(f) = s(f) for f ∈ Mor(C), and, for n ≥ 2,

d
(n)
i (f1, f2, . . . , fn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(f2, f3, . . . , fn) for i = 0 ,

(f1, f2, . . . , fi+1 ○ fi, . . . , fn) for 0 < i < n ,
(f1, f2, . . . , fn−1) for i = n .

,

◇

A natural context for physical applications of nerves and higher-geometric structures over them is
provided by the study of (super-)σ-models of dynamics of extended distributions of (super-)charge in
ambient geometries in the presence of defects (and so, in particular, symmetries, including the gauged
ones, and more general dualities of the underlying field theories), cf., e.g., Refs. [GSW10, GSW13,
Sus22].
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