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1. WPROWADZENIE

Na poprzednich wyktadach wprowadziliSmy rachunek roézniczkowy Cartana na grupie Liego G,
wiec
e pola wektorowe LI X1(G),
L :9g—X%X(G) : X —TAL(X),

okreslajace globalng trywializacje wiazki stycznej TG = G, aaxg poprzez zadanie global-
nej bazy C*(G,R)-modutu I'(G),

{LAELtA}Ael,D7 D =dimG,

stowarzyszonej z dowolna baza {ta],p algebry Liego T.G =g, oraz
e dualng 1-formy LI Q1 (G) rozpigte (nad R) na bazie dualnej

{ef}Agﬁa LA_IGE:(SAB.
Te ostatnie generuja (nad R a wzgl. iloczynu zewnetrznego A) podprzestrzenie k-form LI,
Q1(G)={weQ"(G) | Yy : Liw=w},
otrzymujemy zatem

1(G)= (67| A1, D) _cQ(G).

AR

Powstaje naturalne pytanie o to, czy takze operator de Rhama dqr =d (pochodnej zewnetrznej)
ogranicza sie do tak zdefiniowanej algebry form lewoniezmienniczych. Odpowiedzi na nie
dostarcza

Stwierdzenie 1. Operator de Rhama ogranicza si¢ do algebry form lewoniezmienniczych na
grupie Liego G, tj. zachodzi

dQ3 (G) cQ1(G).
W szczegolnosei sa spetnione réwnania Maurera—Cartana
doy! = —% foc 00 no

w ktorych wspotezynniki fr* sa stalymi struktury g w bazie {ta], 5.

[thtC]g = fBCA ta.
1
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Dowdd: Pierwsza czes$é tezy wynika wprost z czesci drugiej, zajmiemy sie zatem ta ostatnia,
wykorzystujac dodatkowo to, ze 2-forma d9f jest w pelni okreslona przez wartosci przyjmowane
przez nig na bazie LI modutu T'(G). Biorac pod uwage fundamentalng tozsamosé (Cartana)

k
Z (—1)m+n w(w([Vm, Vrl, Vo, V1, e Vk)) )

m<n=1 ’

k
dW(VQ,Vl, .- avk) = Z (_l)l Vl - d(W(V()vVh T’Vk)) +
1=0

stuszna dla dowolnej k-formy w e QF(M) (na rozmaitosci M) i dowolnych pol wektorowych
V,eT'(TM), 1 €0,k (na tejze), obliczamy

dof(LB,Lc) = LB _Id(LC _Ideé) —LC _Id(LB | d@é) —Hf([LB,Lc])

Lp 1déct = Lo adég - 01 (fpc” Lp) = ~fpc” Lp 2607 = —fpc

Lot 00 AOE (L, Le).

Dodajmy na marginesie, ze istnienie ograniczenia operatora de Rhama do 3 (G) jest natychmia-
stowa konsekwencja przemiennosci tego operatora z operatorem cofniecia,

Z;w =w _— é;dw = dZ;w =dw.

Formy rézniczkowe na rozmaitosci M wymiaru dim M = d tworzg wraz z (ograniczeniami)
dar kompleks (ko)laricuchowy de Rhama

d@=q dM =g dld-D—y dD=0
(Qo(M),d)  QO(M) —Es Q1 (M) = ar Qd(M) —=" 0,

dfiod® =0, ke0,d-1.
Jak wiemy z kursu Geometrii rézniczkowej, grupy homologii tego kompleksu,

H(M,R) = Kerd{) HNV(M,R) = 25 (M, R)/BE N (M,R), keO,d—1,

zwane grupami kohomologii de Rhama rozmaitosci M, w ktorych zapisie

Zé“;’{l (M,R) = Ker dggl)

to grupa (k + 1)-kocykli de Rhama (czyli grupa (k + 1)-form zamknietych), a
BN (M,R) = Tmd ()

to grupa (k + 1)-kobrzegéw de Rhama na M (czyli grupa (k + 1)-form doktadnych), koduja
istotna informacje topologiczna dotyczaca M. To prowadzi nas do zadania naturalnego pytania o
informacje kodowana przez homologie podkompleksu form lewoniezmienniczych

. . i =d d ) =d d{PD=d 4 =0
(21.(G),d5); = dStas (@) = QU(G) —=2— O} (G) —== cm Z L, oP(q) <=7 L g,

zwanga kohomologia Cartana—Eilenberga grupy Liego G,
CaE*(G) = Hir 1.(G,R).

Kohomologia ta odgrywa istotna role w konstrukcji teorii pola z nieliniowo zrealizowana symetria
wprowadzone]j przed laty przez Weinberga i Schwingera w kontekscie efektywnej teorii pola (np.
w ukladach ze spontanicznie naruszona symetria), a rozwinietej przez Salama, Strathdee’ego,
Colemana, Callana, Wessa, Ishama i wielu innych.
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2. KOHOMOLOGIA CARTANA—EILENBERGA A ROZSZERZENIA ALGEBR LIEGO

Azeby odpowiedzie¢ sobie na zadane pytanie, przeformutujemy to ostatnie w terminach czysto
algebraicznych, przeszedlszy do stycznej T.G. Pierwszy krok w tym kierunku stanowi

Definicja 1. Niechaj (g,[-,-]5) bedzie K-algebra Liego wymiaru dimg g = D. g-modul to para
(V,p.) zlozona z przestrzeni K-liniowej V' oraz homomorfizmu algebr Lieg
p.+ g— Endg(V) : X +—px,
tj. odwzorowania spelniajacego warunek
Vx,veg © [Px,py]=pxopy —pyopx =px,v]>

ktore zadaje realizacje algebry Liego g na przestrzeni wektorowej V (zwyczajowo ozna-
czang tym samym symbolem)

p. i gxV—0V:(Xv)r—px()=X>w.
Obecnos$é nawiasu Liego
ad. : g— Endg(g) : X — [X,]g=adx
na g, bedacego w istocie — dla dowolnego X € g — r(’)iniczkowanierrﬂ skos$nego iloczynu mg =
[,-]g * 9xg— g, 0 czym zaswiadcza tozsamos¢ Leibniza (w tej roli objawia si¢ nam tozsamosé
Jacobiego)
Vx,v,zeg ¢+ adx(mg(Y,2)) =mg(adx (Y), Z) + mg(Y,adx(2)),
pozwala stowarzyszy¢ z parg (V, p.) naturalny kompleks (ko)taricuchow i kohomologie, o ktorych
mowi
Definicja 2. Przyjmijmy dotychczasowe oznaczenia i niechaj (V,p.) bedzie g-modulem w sensie
Def.[1} p-kolaricuch na g o wartosSciach w V to odwzorowanie K-liniowe ¢ € Homg(g*?,V),
p

ktore jest catkowicie sko$ne
VX0 Xy X peq, o€, f(XU(l), Xo(2)s---» Xo(py) = sign(o) f(Xl, Xo,..., Xp).
Zbioifl
CP(g:V)=N'g eV
takich odwzorowarni jest grupa przemienng (z operacja binarng zdefiniowang punktowo), zwang
grupa p-kolanicuchéw na g o wartosciach w V, przy czym przyjmujemy konwencje, w

ktorej C°(g;V) = V. Indeksowana przez 0,D > p rodzina grup kotancuchéw tworzy kompleks
(ko)laricuchowy

(o) 0 54 1 S §{P~1 D 6{P=0
(C*(gV),65”) : C(mV) —— Cl(g:;V) cP(g;V) 0

IStruktura algebry (Liego) na Endg(V), do ktérej odnosi sie definicja, jest wspolokreslana przez komutator
endomorfizméw.

2Warto przy tej okazji odnotowaé, ze nawias Liego bywa rézniczkowaniem zasadniczo roznych struktur alge-
bry na danej przestrzeni K-liniowej. Jest tak np. w fizykalnie nader istotnym przypadku przestrzeni R-liniowej
C*(P,R) funkcji gladkich na przestrzeni stanéw P ukladu fizycznego, wyposazonej w dwie struktury R-algebry: z
iloczynem punktowym jako operacja binarna oraz z nawiasem Poissona w tej samej roli. Tenze nawias Poissona jest
rozniczkowaniem R-algebry C*°(P,R) wzgledem obu struktur, przy czym zazwyczaj podkresla si¢ te jego wlasnosé
w odniesieniu do pierwszej z nich, odrézniajac spelniana przezen tozsamosé Leibniza od tozsamosci Jacobiego. W
Swietle naszych obserwacji obie tozsamosci maja ten sam status — sa tozsamosciami Leibniza.

3Zastosowany tu zapis CP(g; V) powinien wywotaé u Czytelnika uspokajajace skojarzenie ze znajoma struktura
grupy p-kolancuchow de Rhama, czyli p-form rézniczkowych na rozmaitosci M, ktéra mozemy zapisaé (nieco sztucz-
nie — dla podkreslenia analogii i zarazem zaznaczenia istotnej réznicy w wyborze grupy przemiennej wspolczyn-
nikéw V') w analogiczne]j postaci QP (M) = AP T'(T* M) ®gR, czy wreez QP (M) = AP T(T*M)®ce (ar,r) C™ (M, R).
We wszystkich tych przypadkach wykorzystujemy kanoniczny izomorfizm Homg (V1,V2) = Vi* @k V2 (wzgl. stosowne
uogolnienie do kategorii modutéw nad pierscieniem).
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o operatorach kobrzegu
o CP(g: V) — O (g V), o oo =0, pe0,D-1
danych wzorami (zapisanymi dla dowolnych X;eg, i€0,p i ¢ e C*(g;V), ke {0,p>0})
k

550)90()(0) = Xo> o,
0 0
p
5P (X0, X1, ., X,p) = Z(—l)lebcp(Xo,Xl,.iA.,Xp)
P 1=0 P
p

+ Z (_1)m+n(p([Xm7Xn]g7X0aX17‘_;7Xp)'
m<n=1 P m,n

Grupa homologii powyzszego kompleksu
H(g;V)=2"(g;V), H"Y(g;V) = 2" (g;V)/B"(g:V), pe0. dimgg-1,
w ktoérej zapisie
7P (g; V) = Ker 6V
to grupa (p+ 1)-kocykli na algebrze g o wartosciach w g-module V, a
B (g; V) = Im 8

to grupa (p + 1)-kobrzegéw na algebrze g o wartosciach w g-module V, nosi miano
(p+1)-tej grupy kohomologii algebry Liego g o wartosciach w g-module V. Suma prosta
. dimgg
H*(g;V)= @ H"(g:V)
p=0

tych grup okresla kohomologie algebry Liego g o wartosSciach w g-module V.

W szczegdlnym przypadku K =R i trywialnego dziatania p. =0 mowimy o (grupach) koho-
mologii Chevalleya—Eilenberga algebry Liego g,

CE*(9) = H{, ) (a;R) .
Uwzgledniwszy wszystkie nasze dotychczasowe ustalenia, bez trudu stwierdzamy

Stwierdzenie 2. Istnieje kanoniczny izomorfizm

CaE*(G) 2 CE*(g) .

Dowdd: Wystarczy zauwazy¢, ze kazda forma LI na grupie Liego G jest w pelni okreslona przez
swa warto§¢ w e, w ktérym to punkcie staje sie elementem AP T:G = AP g* ®r R wladnie. O

W powyzszym stwierdzeniu dokonuje si¢ transkrypcja struktury rézniczkowo-geometrycznej, jaka
jest niezmiennicza wersja kohomologii de Rhama, na jezyk czysto algebraiczny, w ktérym wyraza
sie kohomologia algebry Liego. Transkrypcja ta prowadzi do strukturalnej (algebraicznej) in-
terpretacji kohomologii Cartana—Eilenberga w terminach struktur rozszerzajacych — w sposob,
ktory zilustrujemy ponizej na przykladzie CaE?(G) — wyjsciowy obiekt algebraiczny g. Po jej
wyprowadzeniu pojawia si¢ naturalne pytanie o ,wersje odcatkowana” do poziomu stosownego
srozszerzenia grupy” G. Okazuje sig, ze taka transkrypcja odwrotna jest co do zasady mozliwa
na gruncie Trzeciego Twierdzenia Liego oraz konstrukcji wiazki glownej o grupie strukturalnej
U(1) (wzgl. ich strukturalnych uogoélnien). Nie bedziemy jej rozpatrywac¢ w ogolnosci, w dalszej
za$ czeSci wykladu skupimy sie na nader czesto w rozwazaniach fizykalnych napotykanej grupie
CE?(g). W jej przypadku odcatkowanie — ilekroé¢ jest mozliwe — prowadzi do tzw. rozszerzen
centralnych grupy G, z ktorymi Czytelnik mogt sie spotka¢ w konteksécie podnoszenia symetrii
sztywnych teorii klasycznej do jej przestrzeni Hilberta, a ktére sa opisywane przez krotkie ciagi
doktadne grup Liego

1A, g, 01

4
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zapisywane w terminach wyjsciowej grupy G, bedacej jej rozszerzeniem grupy G (odwzorowywanej
na te pierwsza przez epimorfizm Ilg) oraz grupy przemiennej A (odwzorowywanej w centrum
grupy Z(G)={geG | Viea : g-h-g'-h' =e} przez monomorfizm I,) wystepujacej
w roli wlokna rozszerzenia (KerIlg = ImI). Zrozumienie informacji algebraicznej zakodowanej
w tej grupie wymaga zastgpienia struktur grupowych ich infinitezymalnymi (stycznosciowymi)
odpowiednikami, przy czym (Lie-)grupowa operacja binarna przechodzi w (Lie-)algebraiczna op-
eracje binarng, czyli nawias Liego. Precyzyjnej formalizacji tego schematu dostarcza
Definicja 3. Niechaj (g, [, ]y) bedzie algebra Liego (nad R) i niech (a,[-,-]a =0) bedzie komu-
tatywng algebra Liego (nad R). Rozszerzenie centralne algebry Liego g przez a to trojka
(9,94, mg) zlozona z

e algebry Liego (g, [, ]3);

e homomorfizméw algebr Liego: 74 : a — g oraz mg : g—> ¢

tworzacych krotki ciag doktadny algebr Liego
(1) 0—a>F—>g—0
i takich, ze jq(a) c 3(§), gdzie
3@ ={Xeq | Vyg: [X,YV]g=0}

jest centrum algebry Lieg(ﬁ 9. Rozszerzenie nazywamy rozszczepionym, ilekroé¢ epimorfizm
Ty ma cigcie w LieAlgg, tj. istnieje homomorfizm algebr Liego

c:g—9
o wlasnosci
(2) mgoo =idy.
Mowimy wowczas takze, ze krotki ciag dokladny stowarzyszony z rozszerzeniem rozszczepia sie.
Réwnowaznosé miedzy rozszerzeniami (EA,jaA,Wé), Ae{l,2} algebry Liego g przez
a to izomorfizm algebr Liego
L — 02

domykajacy diagram przemienny

-

0 a

o)
=
o

&
-~
11

a
=
[\v]

¥
©

ktory bedziemy zapisywaé w postaci
/E

0—— ’d\ k g——0
92

dla zaoszczedzenia e-inkaustu.

Ostatnia definicja daje nam do reki wygodne narzedzia do badania algebraicznego sensu ko-
homologii Cartana—Eilenberga. Odczytamy go z dwoch stwierdzen, ktére ustalaja zapowiadana
wezesniej odpowiednio$é miedzy klasami H?(g;a) i rozszerzeniami centralnymi g przez a. Po-
dajemy je wraz z dosé¢ technicznymi dowodami, ktérych warto$é zasadza sie na prostocie i kon-
struktywnodci, ta ostatnia za$ wytycza naturalny szlak ku ,wersji odcatkowanej” — patrz: Uwaga
Zaczynamy od

40dpowiedniosé miedzy 3(§) i Z(G) daje sie latwo uchwycié przy pomocy odwzorowania expa.
)
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Stwierdzenie 3. Przyjmijmy zapis Def. Klasa rownowaznosci rozszerzenia centralnego (g, [-,lg)
algebry Liego g przez a kanonicznie wyznacza klasﬂ w H?(g;a). Klasa ta jest rowna zeru wtedy
i tylko wtedy, gdy krotki ciag doktadny stowarzyszony z rozszerzeniem rozszczepia sie.

Dowdd: Istnienie krotkiego ciaggu dokltadnego implikuje istnienie odwzorowania K-liniowego
o : g — ¢ spelniajacego relacje (podprzestrzeni j4(a) ¢ § ma dopelnienie proste), z czego
wywodzimy istnienie (kanonicznego) izomorfizmu przestrzeni K-liniowych

L faeg s X (551 (X -0 omg(X)),m(X)).

(Podkreslmy: Przeciwdziedzina ¢ nie jest a priori sumg prosta algebr Liego, tylko sumg prosta
przestrzeni K-liniowych.) W rzeczy samej, odwzorowanie to jest dobrze okreslone, jako ze X —o o
mg(X) ekermy =imjq, a Jq jest izomorfizmem na swoj obraz. Odwrotno$é powyzszego odwzoro-
wania przyjmuje jawng postac

St aeg— Tt (AX) — ga(4) +o(X).

Mozemy nastepnie podnies¢ ¢ do rangi izomorfizmu algebr Liego definiujac na podprzestrzeni
wektorowej a @ g nawias Liego w terminach tych z g i g wedle schematu

[(A1,X1), (A2, X2)Jaeg = o([t7' (A1, X1), 07 (A2, X2)]g) = [0(X1),0(X2)]5)
= (5N ([0(X1),0(X2) g - o omg([0(X1),0(X2)]5)), ma([0(X1),0(X2)]5))

= (' ([o(X1), 0(X0)]g — o ([ X1, Xa]g)), [ X1, Xa]g) -
Sensowno$¢ tej definicji jest zapewniona przez wlasnosci odwzorowania p-liniowego
0, : g% —a ¢ (X1, X2) — 75 ([0(X1),0(X2)Jg - o ([ X1, X2]g)) -
Oto bowiem ilekro¢ obliczymy je na parze elementéw g, spelniona jest relacja
O,(X2,X1) = -0,(X1,X2),

jest to zatem 2-kotaricuch na g o wartosciach w a, przy czym ta ostatnia algebra objawia si¢ tutaj
w roli trywialnego g-modutu. Kobrzeg tego kotaricucha znika,

552)90(X17X2,X3) =-0,([X1,X2]g,X3) - 0,([ X3, X1]g, X2) - O6([ X2, X3]g, X1)
=2 ([o([X1, X21g), 0 (X3) I5 + [0([X3, X11g), 0(X2) Jg + [0([X2, X3]g), 0(X1)]g — 0 0 Jacg (X1, X2, X3))
= 72 ([2a © ©5 (X1, X2),0(X3) g + [Ja © O (X3, X1),0(X2) Iz + [Ja © O0 (X2, X3),0(X1)]5

~Jacg(0(X1),0(X2),0(X3)) +0 0 Jacg(X1, X2, X3)) =0,

gdzie to w ostatnim kroku przywotaliémy inkluzje imy, c 3(§). Bez trudu weryfikujemy oczekiwang
wlasno$é indukowanego nawiasu Liego:

Jaceea((A1, X1), (As, X2), (A3, X3)) = (=050, (X1, Xa, X3), Jace (X1, Xa, X3)) = (0,0),

stwierdzajac na tej podstawie, ze rozszerzenie centralne w istocie kanonicznie wyznacza 2-kocykl
na g o wartosciach w a.

W nastepnej kolejnosci zbadamy, jak 2-kocykl 6w zmienia si¢ przy przejsciu do rownowaznego
rozszerzenia centralnego. Mamy w tym wypadku do dyspozycji dwa monomorfizmy algebr Liego:

Sw zapisie 2. grupy kohomologii algebra komutatywna algebra Liego a wystepuje w roli przestrzeni wektorowe;j
— formalnie rzecz ujmujac, utozsamiamy a z jej obrazem w kategorii Vectx wzgledem funktora zapominania.
Taka dwoista rola a jest nieunikniona — wszak z jednej strony kroétki ciag doktadny opisujacy rozszerzenie jest
diagramem w kategorii LiaAlgy, z drugiej zas — kohomologia przyjmuje warto$ci w przestrzeni wektorowej.

6
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j? :a— ga, Ae{l,2} idwa epimorfizmy algebr Liego: ﬂé : g4 — g wraz z odno$nymi
cigciami K-liniowymi o4 : g — ga. Biorac pod uwage przemiennosé diagramu

91
1 h‘ 1
Ja \ Tg
/ \
0——a € ' :294>O,
\
Ja ~V’
g2

g2
/
/ 2
Ty

ooy =idg —idg =0,

wraz z tozsamoscig

wt 0(571 002—01) =2

1
g g®02— T

g
ktora przesadza o istnieniu odwzorowania K-liniowego p. : g — a o wlasnosci
-1 1
€ " 002=01 =740 le,

bez trudu stwierdzamy, dla dowolnych wektoréw Xi, X5 € g,

Ja© (B0, =05, )(X1,X3) = (67 0 J2 0O, = g © O, ) (X1, X2)

= [ 0 02(X1),e7 0 0u(Xa) g, — [01(X1), 01(X2) g, — 70 © e ([ X1, X2]q)

= [Ja 0 1e(X1), 67! 0 02 (Xo) g, + [01(X1), 7! 0 00(X2)]g, — [01(X1). 01 (X2) ],
~Ja © He([X1, X2lg) = [01(X1), 75 © pe(X2) g, = Ja © pe([X1, X2]g)

= _Ji ONS([XMX?]Q) )
a stad juz wprost
@0'2 - @0'1 = 631)/'[/6 ) Czyh [602]9 = [901]9 .

Na zakonczenie dowodzimy ostatniej czesci tezy. Znikanie (klasy) 2-kocyklu ©, w przypadku,
gdy o jest cigciem w kategorii algebr Liego (a nie tylko w kategorii przestrzeni K-liniowych),
jest oczywiste, pozostaje zatem pokazaé, ze kohomologiczna trywialnosé¢ ©, implikuje istnienie
ciecia w kategorii algebr Liego. Warunek trywialnosci 2-kocyklu ©, mozemy zgrabnie przepisaé
w postaci

[0(X1),0(X2)]g = 0u([X1,X2]g),  oui=0—ja0peHomk(g,7).
W $wietle komutatywnosci j4(a) to daje nam relacje
[04(X1),0.(X2)]5 = 0, ([ X1, X2]g) ,

mozemy zatem podnies¢ o,, do rangi homomorfizmu algebr Liego. Jako Ze ponadto spelniona jest
tozsamosé

MgO0, =MgO0 —TMg0 a0 fL=Tgoo =idg,

rozpoznajemy w nim poszukiwane cigcie . O

W nastepnym kroku zajmiemy si¢ przyporzadkowaniem odwrotnym.

Stwierdzenie 4. Przyjmijmy zapis Def. Klasa w H?(g;a) kanonicznie zadaje klase rownowaz-
nosci rozszerzen centralnych (g, [-,-]5) algebry Liego g przez a. Rozszerzenia te rozszczepiaja sig
wtedy i tylko wtedy, gdy klasa ta znika.
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Dowéd: Majac dany dowolny 2-kocykl © € Z2(g;a), wyposazamy przestrzen K-liniowa a®g=:9
w jawnie sko$ne odwzorowanie dwuliniowe

[,]e : % —7 : ((A1,X1), (A2, X)) — (O(X1, X2), [X1, X2]g) -
Bez trudu sprawdzamy, ze mamy do czynienia z nawiasem Liego,
Jacg((A1, X1), (A2, Xo), (A3, X3)) = (=057 O(X1, X2, X3), Jacy (X1, Xo, X3)) = (0,0,

przeto (§,[-,-]e) jest algebra Liego.

Komutatywnosé¢ a przesadza o tym, ze kanoniczna injekcja 7o : a —F : A —> (A,0) jest
monomorfizmem algebr Liego dla tak okreslonej struktury na g. Z kolei kanoniczny K-liniowy
rzut g 2 g — g : (A, X)+— X zyskuje teraz status epimorfizmu algebr Liego, o oczywistej
wlasnosci ker my = im jq, na koniec wigc otrzymujemy krotki ciag doktadny algebr Liego

0— a2 Tj—>7r’J g—0

ktory pozwala nam zidentyfikowa¢ g jako rozszerzenie centralne g przez a.

W obecnosci dwoch kohomologicznych 2-kocykli: ©5 = © +6él) u, i€ Ct(g;a), opisany powyzej
schemat daje dwa nawiasy Liego na g = a @ g, czyli dwa rozszerzenia centralne algebry Liego g
przez a, przy czym ltatwo widaé, ze K-liniowy automorfizm

ent T—0 ¢ (A X)— (A-pu(X).X)
izomorficznie odwzorowuje (g,[-,]lo,) W (8,[]o,),

[ (A1, X1),64(A2, X2)]o, (02(X1, X5), [ X1, Xz]g) = (01(X1, X2) - u([ X1, X2]g), [X1, X2]g)

= 5#([(A17X1)7 (A27X2)]@1) :
Ilekroé¢ © jest 2-kobrzegiem, © = (551)% p e Ci(g;a), mozemy wlozyé g w § przy uzyciu
odwzorowania K-liniowego
o i g—38 : X— (-p(X),X)
w oczywisty sposob bedace K-liniowym cigciem my i podnoszace si¢ do monomorfizmu algebr
Liego,

[0.(X1),0.(X2)]e [(~u(X1), X1), (—1(X2), X2)]e = (O(X1,X2), [ X1, X2]g)

(_N([leXQ]g) ) [leXQ]Q) =0 ([XlaXQ]g) .

Krotki ciag dokladny algebr Liego stowarzyszony z opisanym rozszerzeniem rozszczepia sie.
I odwrotnie, dowolne cigcie my w kategorii algebr Liego jest nieodzownie postaci

ou t g9+ X — (-p(X),X)

dla pewnego 1 € Homg(g,a) o wlasnosci
(0(X1,X2),[X1,X2]g) = [04(X1),0u(X2)]e = 0, ([X1. Xa]g) = (—1 ([X1, X2]g) , [X1, Xa]g)

zatem O = 651) 1, zgodnie z teza dowodzonego stwierdzenia. O

Nasze studium podsumowuje

Twierdzenie 1. Niechaj (g,[-,-];) bedzie algebra Liego. Istnieje kanoniczna bijekcja miedzy
CE?(g) i zbiorem klas réwnowaznosci rozszerzen centralnych g przez R. W obrazie tej bijekcji
klasa trywialna CE? (g) odpowiada klasie rownowaznosci rozszerzenia rozszczepionego.

Przed przystapieniem do egzemplifikacji powyzszych abstrakcyjnych rozwazan i ich umieszczeniem
w kontekscie fizykalnym poddamy nasz ostatni wynik reinterpretacji pozwalajacej na wyrobienie
sobie w odniesieniu do niego przydatnej intuicji (o istotnych konsekwencjach geometrycznych).
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Uwaga 1. Istnienie rozszerzenia centralnego g przez a wyznaczanego przez © implikuje try-
wializacje cofnigcia 2-kocyklu

@IZW;@ : §X2—>a : ((A17X1)7(A27X2))l—>@(X1,X2)
opisana wzorem
(3) CRDS =T T—a: (AX)r— -A.

Tym sposobem nietrywialny 2-kocykl na wyjsciowej algebrze g znajduje swoja (kohomologiczng)
trywializacje na jej rozszerzeniu g. Skojarzenie z trywializacja 2-kocyklu de Rhamaﬁ (czyli 2-
formy zamknietej), takiego jak np. 2-forma Maxwella opisujaca (w formacie jawnie lorentzowsko
wspoOlzmienniczym) natezenie pola elektromagnetycznego, na przestrzeni totalnej wiagzki liniowej
(lub gltéwnej) z powiazaniem o krzywiznie tozsamej z tymze 2-kocyklem, jest w pelni usprawiedli-
wione i wiedzie wprost do systematycznego studium ,caltkowania”’ rozszerzen centralnych algebr
Liego, patrz: praca Tuynmana i Wiegenrincka [TW&T7].

3. PRZYKLAD POGLADOWY

Na pierwszy rzut oka rozszerzenia algebr moga si¢ wydawaé strukturami do$é egzotycznymi i
ezoterycznymi. O ich powszechnosci i naturalnosci w ramach kanonicznego opisu symetrii ciagtych
w mechanice klasycznej i teorii pola w terminach odnosnych tadunkéw Noether oraz w opera-
torowym opisie tychze symetrii w teorii kwantowej przekona uwaznego Czytelnika kazdy rzetelny
kurs z tych dziedzin, w ktérym beda omawiane anomalie algebr ladunkéw i pradéw symetrii w
obecnosci — np. — tadunku topologicznego na obiektach elementarnych teorii fizycznej (natad-
owanych czastkach punktowych, petlach itp.), wzgl. rzutowych realizacji symetrii klasycznych na
przestrzeni Hilberta uktadu fizycznego. Prostej ilustracji takiego fizykalnego scenariusza dostarcza
ponizsza dyskusja szczegdtowa.

Przedmiotem naszego zainteresowania w niniejszym przyktadzie sa realizacje symetrii transla-
cyjnej w prostych uktadach mechanicznych — zar6wno w rezymie klasycznym, jak i kwantowym —
w kontekscie rozszerzen centralnych algebr i grup Liego. Tytutem przygotowania do ich omdwienia
rozwazmy komutatywna algebre Liego o 4 generatorach

t3)= @ (P),
ne{1,2,3}

i nawiasach Liego

[P, P;j]=0, i,7€{1,2,3},
czyli stycznosciows algebre Liego przemiennej grupy Liego translacji (w) R*® = T(3) o operacji
binarnej

m : T(3)xT(3) — T(3) : (2",¢") — (2" +¥'),

odwrotnosci

Inv : T(3) O : (2')— (-2")
i elemencie neutralnym

e=1(0,0,0,0).
Operacja binarna pozwala zdefiniowa¢ dzialanie lewe regularne grupy T(3) na sobie, dane wzorem
¢ : T(3) — Diff*(T(3)) : (z') —m((z"),") = (z" +-) = L(pry,

do ktérego bedziemy sie¢ odwolywaé w dalszej czesci naszych rozwazan.
Jednym z pytan, na ktore poszukamy odpowiedzi, jest wpltyw tadunku niesionego przez obiekt
fundamentalny uktadu mechanicznego na realizacj¢ rzeczonej symetrii translacyjnej w formalizmie

W kontekscie geometrycznym trywializacja 2-kocyklu F e ZﬁR(M,]R) wymaga jeszcze spelnienia warunku
Per(F) c 2nZ (w ktorego zapisie Per(F) jest grupa przemienng tzw. okreséw 2-kocyklu F, czyli wynikéow jego
catkowania po 2-cyklach homologicznych w M).
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kanonicznym. Ujawnienie takiego wplywu wymaga obecnoéci zewnegtrznego pola elektromagnetycz-
nego, ktoérego naturalnym modelem matematycznym (uwzgledniajacym relatywistyczna niezmien-
niczo$¢ maxwellowskiej dynamiki) jest 2-kocykl de Rhama na przestrzeni konfiguracyjnej uktadu
mechanicznego zdefiniowany w terminach natezenia pola elektrycznego oraz indukcji magnetycz-
nej. Jako ze celem naszym jest studium mechaniki nierelatywistycznej na cigciu stalego czasu,
ograniczymy sie do skladowej przestrzenno-przestrzennej tegoz 2-kocyklu, ktora identyfikujemy z
polem indukcji magnetycznej. Niechaj zatem

(wij = —wji) € R(3)
bedzie dowolna niezerowg macierza. Oznaczywszy elementy bazy t(3)* 2 R* dualnej do {P;}ie(1 2,3
jako w*, i€{1,2,3},
() =465, i,j€{1,2,3},
definiujemy 2-kotaricuch na t(3) o wartosciach w trywialnym t(3)-module R wzorem
(4) wi=wjm ATl e C*(4(3);R),
tj. dla dowolnej pary wektorow X4 = X P € t(3), A€ {1,2} mamy
w(X1, X2) = 2w;; X1 X7 .
Bez trudu sprawdzamy zamknigtos¢é w liczac (dla dowolnych Xp = X% P, et(3), Be{0,1,2})

2
(o (Xo, X1, X2)

= —w(XX] [P, Pjluay, X3) +w(Xg X3 [P, Pylysy, X1) - w(X] X3 [P, Pilisy, Xo) =0.
Mamy zatem do czynienia z 2-kocyklem Chevalleya-Eilenberga,
we Z2(t(3);R) .
Zalozmy, ze jest to 2-kobrzeg, tj., ze istnieje 1-kotaricuch 6 € C(¢(3);R) = t(3)* o wlasnosci

(1) 0

w = 5,((3)

ktora ttumaczy sie na warunek

2wij X} X] = w(X1, Xa) = 00 0(X1, Xa) = ~0(X] X3 [P;, P;]) = ~0(0y(3)) =0,

prowadzacy do sprzecznosci z zalozeniem o niezerowosci w. 2-kocykl w definiuje zatem nietry-
wialna klase

[wlis) € CE2(£(3)) ;

wige takze — w zgodzie z teza Stw.[d] - rozszerzenie centralne

Te(3)

(5) OHR&@M—>{(3)—>O.

W tym kontekscie 2-kocykl w bedziemy okresla¢ mianem 2-kocyklu rozszerzenia t(’?%’)w. W
$wietle konstruktywnego dowodu Stw.[4] jako reprezentanta klasy rownowaznosci takich rozszerzen
mozemy przyjacé

({Eé/)w =Re t(3)7 [7]@w) :

Oznaczywszy wektory bazowe w R?S/) » Jjako

ZZZ(LO), ﬁi::(oapi)a i€{1,2,3}7
dostajemy algebre Liego
[Pi;Pj]EZ?,)MZQWijZa [Pi’Z]@w:0®w7 [Z,Z],:ng)w:(){z“’g)w.

Bez trudu ,catkujemy” powyzsze rozszerzenie algebry Liego do rozszerzenia grupy Liego T(3)
przez R opisywanego przez krotki ciag doktadny grup Liego

— 1T
(6) 1—R-ETE), —2LT(3) — 1,
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w ktorego zapisie Ig i Ilpg) sa homomorfizmami grup Liego. W obecnych nader nieskomp-
likowanych okolicznosciach mogliby$my wrecz zgadnaé postaé¢ tego rozszerzenia, my jednak poj-
dziemy inng drogg, ktoéra pozwala powroci¢ do geometrycznego punktu wyjscia naszych rozwazan,
a przy tym okazuje si¢ znajdowa¢ zastosowanie w okolicznosciach duzo mniej oczywistych (np. w
kontekscie tadunkowych rozszerzen (super)algebr Liego supersymetrii — patrz: praca [CAAIPBO0Q]).
Zaczniemy od reinterpretacji powyzszego zagadnienia i otrzymanego wyniku w terminach ra-
chunku rézniczkowego na grupie Liego R*3. Zaczynamy od komutatywnej algebry pol translacyjnie
(lewo-)niezmienniczych na R*3, dla ktérych baza sa pola
LiELpifai 26{1,2,3}
o trywialnych komutatorach
[LiaLj]zoa Z,j€{1,2,3}
Dualna bazg przestrzeni 1-form translacyjnie (lewo-)niezmienniczych na R*3 tworza 1-formy
0i =dz*,  ie{1,2,3}.
Odpowiednikiem 2-kocyklu w jest tutaj 2-kocykl de Rhama
Q = wj; dz® Ada?
jawnie translacyjnie (lewo-)niezmienniczy, lecz nieposidajacy 1-formy pierwotnej o tej samej wtas-
nosci. Istotnie, 1-forma taka musiataby by¢ postaci
0= 61 dl’z s 61 eR

(R-liniowa kombinacja bazowych 1-form translacyjnie (lewo-)niezmienniczych), co jednak dopro-
wadzitoby nas do sprzecznosci

0%02dO=0;0,da? Ada’ =0.
Nalezy w tym momencie dobitnie podkresli¢ (rzecz oczywista): 2-forma Q jest dokladna w koho-
mologii de Rhama (trywialnej dla R*®) — ma np. 1-forme pierwotna
I(z) = wyy o' da?
nie jest natomiast doktadna w kohomologii (lewo)niezmienniczej.
W swietle Uwagi [1| mozemy oczekiwaé, ze trywializacja w kohomologii Cartana—Eilenberga

bedzie mozliwa dopiero po cofnieciu 2 na grupe Liego T(3),, o algebrze Liego @w otrzymanej
uprzednio. Postac tej ostatniej kaze nam podejrzewaé, ze jako zbior grupa T(3)  bedzie postac

R x T(3), z kanonicznym rzutem
ey =pry © RxT(3) — T(3)
jako epimorfizmem grup Liego wspotokreslajacym rozszerzenie, przy czym pierwszy czynnik kartez-

janski bedzie podgrupa przemienng (o algebrze Liego R), a poszukiwana operacja binarna
na R x T(3) bedzie wprowadzaé ,poprawke” do odnosnej operacji binarnej (dodawania) zalezng

od drugich sktadowych argumentow. Jak wyznaczy¢ f? Zauwazmy po pierwsze, ze lewo-T(3),, -
niezmiennicza 1-forma pierwotna © dla Hfr(3)Q spelnia tozsamosé

dO =TT} (32 = dIT} 50 SN 6 -0 € 2 (T(3),,R),

a poniewaz T(3), w antycypowanej postaci takze jest Sciagalna, przeto
O =dF + 1359

dla pewnej gtadkiej funkcji F' € C*(T(3),,R), przy czym w Swietle Rown. , ktore identy-
fikuje © jako 1-forme dualng do pola lewoniezmienniczego 9z na przemiennej grupie Liego R (o

kartezjariskiej wspolrzednej globalnej Z) rozszerzajacej T(3),, oczekujemy tozsamosci
dF =-dZ.
"Rzecz jasna, nie ma jedynej grupy Liego odpowiadajacej danej algebrze Liego R. W naszych rozwazaniach

dokonujemy po prostu wyboru najprostszego.

11



Grupy w czasach Zarazy — 5. 1 6. Un tout petit peu de kohomologia i qu’est-ce que z tego wynika

Postulujemy zatem
(:j(Z,x) =—dZ +w;; xidal .

Po drugie ,zmienniczo$¢” znalezionej przez nas 1-formy pierwotnej dla 2 wzgledem lewych trans-
lacji na R*3 przybiera szczegolnie prosta postaé: oto poprawka do ¥ bedaca wynikiem cofniecia ¢
wzdtuz £,y dla statego wektora € = (%) e R*? jest 1-forma zamknieta (to konstatacja niezalezna
od grupy Liego, na ktorej rozpatrujemy kohomologie Cartana—Eilenberga),

dd = Q=00 =0d9 =dey - 29 -9eZ'(T(3),R),
wigc tez doktadng w konsekwencji trywialnosci kohomologii de Rhama T(3),
(€29 -9)(x) =d(wije'a?).

To w polaczeniu z wezesniejszym postulatem dotyczacym postaci © pozwala wyprowadzié mozliwa
postaé operacji binarnej M z warunku niezmienniczosci © wzgledem lewostronnych translacji na
T(3),, indukowanych przez M wtasnie. Istotnie, jesli zapiszemy

ZJ(O’E)(Z, xz) = ﬁi((O,&:i), (Z, xz)) = (@(Z,x,s),:ri + f—:i) ,

uwzgledniajac po drodze homomorficzny charakter Ilp(sy = pry, to z warunku lewoniezmienniczosci

O,
~d®(Z,z,¢) +wy; (2" + ") da’ = 2076)@(Z,x) 2 0(Z,x) = ~dZ +w;jx' da?
odczytujemy (modulo constans)
O(Z,x,€) =7 +w;j ehad,
co prowadzi nas do zapostulowania operacji binarnej na ’f(é/)w w postaci
m : ’T@w x ’Tﬁjw — ’me : ((Z1,2Y), (Zg,xé)) — (Z1 + Z, + Won T 2, 2 +x§)

Pozostaje jeszcze tylko sprawdzié, ze tak okreslona operacja binarna jest taczna. O tym, ze tak
jest w istocie, przekonuje bezposredni rachunek — z jednej strony:

fi(fi(( 21, 2}), (Zg,:né)), (Z3,25)) (21 + Zo + winn 2" 25, 27 + 25, (Z3,25))

m ,..n m m n i i
= (Z1+ Zo+ winn a7 35 + Z3 + Wiy, (27" + 2) 2y, 2 + 2 + 25)
z drugiej zas:

((21,21),m((%2,23). (%5, 25)))

fﬁ((Zlax’i)a (22 + Zg + Wmn 'Tgn xEL?x% +lﬂ(73))

m .n m n n % % i
= (Z1+ Zo+ Z3 + winn @0 0 + Wi 2 (2 + 25), 2] + 2 + 25) .

Rekonstrukcje krotkiego ciagu doktadnego grup Liego @ sodcatkowujacego” wyjsciowy krotki ciag
doktadny algebr Liego uzupetniamy dokonujac identyfikacji monomorfizmu

I : R—T(3), : r+—(1,0).

Na tym etapie mamy juz nie tylko rozszerzenie centralne grupy T(3), ale takze — lewoniezmienniczg

baze wiazki kostycznej T(3),,:
0(Z,z) = -dZ +w;j ' da? , ¢ (Z,x) = da’ 1€{0,1,2,3}.

W uzupelnieniu roztrzasan rézniczkowo-geometrycznych wyznaczamy baze lewoniezmiennicza wiaz-

ki stycznej T(3), (w tym — podniesienia pol lewoniezmienniczych z T(3)), do ktorej ta powyzej
jest dualna:

Lz(Z,x)=2-, Ly (Z,x) =& —wija’ 52, i€{0,1,2,3}.
W bazie tej spelnione sa oczekiwane relacje komutacji
[LﬁiyL'ﬁj]:Z-UijLZ, [Lﬁi,Lz]ZO, [Lz,Lz]ZO.
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Na zakoriczenie niniejszego studium przypadku wskazemy kontekst fizykalny, w ktorym real-
izowany jest powyzszy scenariusz algebro-geometryczny. Punktem wyjscia jest tutaj lagranzjan
(nierelatywistycznej) czastki punktowej o masie m poruszajacej si¢ w metryce 0 = d;; dz* ® da’
w przestrzeni euklidesowej R*3, dany w postaci

L(z,&) =2 6;&" i’ .
Wyprowadzamy z niej formule na ped kinetyczny

, oL g
p=pida’,  pi=55=0;mi’.

W opisie kanonicznym teorii znajdujemy nawiasy Poissona
(7) {z',pjta =6, {z',27}q =0, {pi,pi}a =0, i,je{1,2,3},
ktorych posta¢ wynika wprost z postaci (Darboux) formy presymplektycznej

Q(z,p) = dp; Adz’

modelu, otrzymanej zen np. w formalizmie pierwszego rzedu. Warto tu w szczegdlnosci zwrocié
baczng uwage na komutatywna algebre (Poissona) pedéw kinetycznych:

{pi7pj}Q:07 Z)]€{172a3}
Pola hamiltonowskie na przestrzeni stanéow ukladu fizykalnego T*R*3 sparametryzowanej przez
pary (z*,p;) (dane Cauchy’ego trajektorii klasycznej) stowarzyszone z tymi pedami to

Vp, = 2, Vy, 1Q = —dp; i€{1,2,3}.

Przechodzac do lagranzjanu (nierelatywistycznej) czastki punktowej o masie m i ladunku elek-
trycznym ¢ poruszajacej sie w przestrzeni euklidesowej R*® w metryce 6g i statym polu magne-
j 1

tycznym B = B%0; o potencjale wektorowym A = A'9;, A'(x) = -2 €k i) B¥,

L(z, &) =2 63" i +q6;; A'(z) 47,
znajdujemy — obok wprowadzonego wcze$niej pedu kinetycznego
p =md;; i dat = p;dat,
takze ped kanoniczny

7T:7T1'd$i, T = gg{‘, :(Sij (mxj +qu(.’E))

Forma presymplektyczna to tym razem
QOr(z,p) =dm; Ada’ = dp; Adz’ +F, F = %fijk B'da? Adz® = fij dz’ Ada’ .
Parametryzujac przestrzeni stanéw ukladu fizykalnego tak jak poprzednio, czyli parami (x?,p;)

(zamiast parami kanonicznie sprzezonymi (z',7;)), wyznaczamy bez trudu elementarne pola
hamiltonowskie:

in(x7p):_{;9pi ) Vzi—IQF:_dxi7
Vo (2,p) = 2 - 2q fi; 2 Vp, 1 Qp = —dp;
Pi D Dzt q Jij dp; Di F Di
oraz odnos$ne nawiasy Poissona
(8) {xivpj}QF :6ij7 {$i>xj}QF =0, {piapj}QF ZZinj7 i7j€{17273}'

Zauwazmy, ze w ograniczeniu do podalgebr w odnosnych algebrach Liego—Poissona
(C=(T'RR),{,}a) vs (C°(T'RR),{, }a.)

generowanych przez pedy kinetyczne wlaczenie stalego pola magnetycznego B mozemy zinterpre-
towaé jako omowione wezedniej rozszerzenie (na poziomie liniowym w generatorach)

t(3) — t(3)y, wij = fij s
w ktéorym dodatkowym generatorem jest...ladunek elektryczny czastki,
LZ = ]R(l) = q!

13



Grupy w czasach Zarazy — 5. 1 6. Un tout petit peu de kohomologia i qu’est-ce que z tego wynika

Ten sposéb myélenia o ,tadunkach” niesionych przez czastki okazuje sie¢ by¢ niezwykle naturalny,
uniwersalny i ptodny — patrz: np. praca Gauntletta, Gomisa i Townsenda [GGT90].

Na obecnym etapie pozostaje jeszcze odpowiedzie¢ na pytanie o fizykalng realizacje znalezionego
wczesnie] grupowego wariantu rozszerzenia @ Okazuje sig, ze ten jest zwigzany z pewnym
wyrdznionym schematem kwantowania opisanego modelu fizykalnego, ktorego elementy omowimy
ponizej. Zaczniemy od kanonicznego skwantowania relacji @, tj. wskazania oSrodkowej przestrzeni
Hilberta H i operatorowej realizacji na niej (w terminach operatoréw samosprzezonych) algebry
Heisenberga

(@, 9] =ihd";idy, [z',77] =0, [5:,p;] =0, i,5€{1,2,3}.
Jak powszechnie wiadomo (choéby z kursu Mechaniki kwantowej I), realizacji takiej dostarcza

przestrzeri Hilberta L?(R3,d3x) funkcji (zespolonych) na R? catkowalnych z kwadratem (wzgledem
standardowej miary Lebesgue’a) — realizacja ta przyjmuje znajomg prosta postaé:

)

=2, pi=-ihZ:, ie{1,2,3}.

To kwantowomechaniczny elementarz (cho¢ same operatory Z° i D; okazuja sig by¢ doé¢ narow-
iste). Pytanie brzmi: Jak zrealizowac algebre

(@551 =ihd"jidy, [z',77] =0, [Bi. 55 = 2ihq fijidu,  i,j€{1,2,3}
(9)
otrzymana w wyniku kanonicznego skwantowania relacji w obecnosci tadunku elektrycznego
(i zewnetrznego pola magnetycznego)? I czy ma to cokolwiek wspolnego z rozszerzeniem T(3)7
Konstruktywnej odpowiedzi na pierwsze z tych pytan i zarazem pozytywnej odpowiedzi na drugie
z nich dostarcza schemat kwantowania rozwiniety przez Kostanta i Sourialﬁ ktory okreslamy
mianem kwantowania geometrycznego. Na zakoniczenie niniejszych notatek zaprezentujemy jedynie
jego wynik w rozwazanym modelu fizykalnym, zastepujac przy tym addytywna grupe R rozsze-
rzenia T(3) nad bazag R*3 multyplikatywna grupa okregu U(1) = R/27Z = S, co daje nam (po
dodatkowej, trywialnej transpozycji sktadnikow kartezjariskich) rozszerzenie
(10) m=pry : UT(3), =R xU(1) — R*®
z dzialaniem binarnym

(11) UT(3)w X UT(?’)w — UT(3)w : ((xli7u1)’ (37127 U2)) — (33’1 + Ié, Uy - Uus - e2iwmn 7" L;’)

i indukowanym przezen dziataniem (lewym) UT(3), na sobie

A : UT@3),xUT(3), — UT(3),

((Ez"g)7 (xz7z)) — (xi +5i7z _C.e2iw,,mem a:") = )\(874)(%2).
Tak przygotowani mozemy juz przystapi¢ do konstrukcji operatorowej realizacji algebry @D Tej
dostarczaja po raz kolejny funkcje (zespolone) na T*R3 catkowalne z kwadratem (i odpowied-
nio spolaryzowane — np. w polaryzacji/,reprezentacji” pedowej), na ktorych tym razem zadajemy
operatory

7 (2,p) = ih 2, pi(w,p) = =ih (5= —qeiju B 5-) +pi - g geijea’ BY.
Operatory te otrzymujemy z ogblnego przepisu
h— —ihVy, -V dn+h=h,

w ktérym V, jest polem hamiltonowskim stowarzyszonym z h e C*(T*R*3,R), n e Q'(T*R*?)
za$ jest dowolna 1-forma pierwotna dla 2-kocyklu Qp, ktéra w naszym wypadku zostata wybrana
w postaci

n(z,p) = -2’ dm;(z,p) = -2’ (dp; + %qﬁijk BI dwk) .

8Schemat ten zostal w nader przystepny sposob przedstawiony w monografii Woodhouse’a [Wo092].
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Bez trudu przekonujemy si¢, ze wypisane powyzej operatory rézniczkowe spelniaja pozadane
relacje komutacyjne. Azeby zrozumieé¢, w jaki sposob ich struktura i dziatanie na L?(T*R*?,R)
wiaze si¢ z rozszerzeniem , musimy wroci¢ do modelu klasycznego.

Model klasyczny ma symetrie ciagle: pod wpltywem translacji £. o staty wektor ¢ € R*3 la-
granzjan zmienia si¢ o zupelng pochodna czasowa

L(tcow,(l-02)) = L(z, &) + F(x)
funkcji gladkiej
F(x) = 5 qé€iji etad BY .
Oczekiwanie, izby symetrie te podnosily sie do teorii kwantowej, jest w pelni uzasadnione. Tu

jednak natrafiamy na obstrukcje: o ile operator potozenia jest nieczuly na przesuniecia, operator
pedu podlega transformacji

E(KE(Z)vp) :p\l(xvp) - %qeijk gj Bk,

jesli zatem nie poddamy stosownej korekcie (fazowej) funkeji falowej 1 € L?(T*R*3,R), wartosci
oczekiwane tego operatora i wszelkich operatoré6w pochodnych,

(0@ ), = [, VolTR™0) b(a.p) O 7). p) (. )

nie bedg niezmiennicze wzgledem przesunieé (nalezy zwrocié uwage, ze 2-forma symplektyczna
Qp jest translacyjnie niezmiennicza, ceche te ma zatem takze symplektyczna forma objetosci
Vol(T*R*3; Qp)). Jest przy tym jasne, ze konieczna posta(ﬂ transformacji symetrii funkcji falowej

L2 2 T(3) x LA(T*R*,R) — LA(T*R*3,R) : ((¢%),¥) — e > = L2 (),

(b 0)(,p) = e = k' #" B (0 (), p)

(uwzglednilismy to, ze dzialanie na argumencie funkcji falowej poprzez cofnigcie wzdtuz £. jest
dzialaniem prawym, my za$ dazymy do skonstruowania dzialania lewego). Istotnie, oczekiwana
niezmienniczo$¢ amplitud jest wowczas prosta konsekwencja translacyjnej niezmienniczosci sym-
plektycznej miary objetosci,

(O(ﬁc‘i,ﬁj))apw = _[,-*RXC, Vol(T*]RXB; Qr) (5 > ) (z,p) O(F ,pj)(x,p) (e > ) (x,p)
/1"*]1@3 VOI(T*RX?);QF) ( (), p) e2h cijue’ @! B

O(.’El ) T p)e Sk €ijk € i BF (ﬁ_g(l'),p)

fT*RXS Vol(T* R Q) (¢ (2),p) - O(', By + $aejme” B') (w,p) ¥(£-(2),p)
[ VOl(T R 06) 6(t-c(2),p) - O(F75) (€< (2). p) (- (), )
{(o@@".5)), -

Na obecnym etapie zasadnym wydaje si¢ ustalenie wlasnosci odwzorowania L2/.. Czy mamy do
czynienia z dzialaniem grupy T(3)? W bezposrednim rachunku stwierdzamy

(L2, o L2, ) () (z,p) = e 3rcuncio’ B (L“'em(w)(&sl(x),p)

= e 5 67]’651 o’ B e~ 5 51;1@624—51(17)1]3 1)[}((782 Og,el (x)vp)

= e h Emkels , B -e h E”k(€1+62) = Bt w(g—(61+62)(x)7p)

= e_%eijkeiE%Bk 'L2€61+52(¢)(‘(L"p)’

9Zauwaz'my7 ze operator polozenia pozostaje niezmieniony pod wplywem translacji £..
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zatem L2(. nie jest dzialaniem. Jest natomiast dzialaniem rzutowym, a poniewaz takie dzi-
alania czesto spotykanym w kontekscie kwantowania symetrii klasycznych (w zwiazku ze swoboda
redefinicji fazy funkcji falowej), przeto omowimy je po krotce w pewnej ogdlnosci. Oto wige mamy
do czynienia z realizacja grupy G na przestrzeni K-liniowej V', czyli homomorfizmem

G — GL(V,K)/K* = PGL(V,K)
grupy G w grupe ilorazowa PGL(V,K), okreslang mianem rzutowej grupy gléwnej liniowej
przestrzeni V, ktéry mozemy réwnowaznie opisywaé jako odwzorowanie
R : G — GL(V,K)
o wlasnosci
Yghea 3e(gmyerx @ R(g) o R(h) =c(g,h) > R(g-h).

Mozna zadaé¢ pytanie, kiedy tak okreslone odwzorowania wspotdeterminuja dziatanie rozszerzenia
centralnego G przez K>,

1— K (ca i) GxK*=G %G —1
o operacji binarnej
(12) fi : GxG—G : ((g1.k1), (92, k2)) — (91 g2, k1 - k2 - c(g1,92)) -
Jest to mozliwe, gdy odwzorowanie
(13) c: GxG—K* : (g,h) —c(g,h)
spelia warunek
(14) Vg1.02.95¢G 1 ¢(91,92) - (91 92,93) = c(92,93) - c(91,92 93) »

oto bowiem wtedy zapostulowana powyzej operacja binarna @ okazuje si¢ by¢ taczna, a my
mozemy zadaé¢ dziatanie grupy G w postaci odwzorowania

R : G—GL(V,K) : (9,k) — k> R(9),
ktorego homomorficznosé sprawdzamy w bezposrednim rachunku:

R(g1,k1) 0 R(ga,k2) = k1> R(g1)o (k2> R(g2)) = k1> (k2> (R(g1) © R(g2)))

ki-ko o (c(g1,92) > R(g1-g2)) = k1 k2 - c(g1,92) » R(g1 - g2)

= Rofi((g1.k1), (g2, k2)) .

Interpretacja samego warunku wymaga kolejnej

Definicja 4. Niechaj G bedzie grupa, A za$ — grupa przemienna, na ktoérej okreslone jest dzia-
lanie (lewe) G, tj. dany jest homomorfizm grup

A 0 G— Autgrp(4) @ g— Ay,
przy czym jak zwykle bedziemy tez pisa¢, naduzywajac nieco notacji,
A:GxA—A: (ga)—graz=As(a).
Mowimy, ze para (A,A.) jest modulem grupy G. p-kolanicuch na G o wartosciach w A
to odwzorowanie
f:GP—A,

przy czym dla p = 0 przyjmujemy konwencje: GO = {e} (singleton), z ktoérej wynika, ze 0-
kotaricuch na G o wartosciach w A to element A. Zbior CP(G;A) = Map(G*P, A) takich
odwzorowan dziedziczy z A strukture grupy przemiennej (z operacja binarng zdefiniowang punk-
towo) — grupe te okreslamy mianem grupy p-kotaricuchéw na G o wartosciach w A. Indek-
sowana przez N3 p rodzina grup kotanicuchéow tworzy kompleks (ko)laricuchowy
5O s 51 o)
(C*(G;4),68)) = C%(G;4) == CHG; A) —2 . =5 CP(G; 4) —— -
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o operatorach kobrzegu
5P OP(G; A) — CPHY(G; A), sP o =0, peN
danych wzorami (zapisanymi dla dowolnych g; € G, i €0,p i ce Ck(G;A), ke{0,p>0})

5((30)90(90) = Go>yY-—p,
0 0 0

p .
8P 0G0y g1y 1 0p) = 90> P(G1,02,- -1 Gp) + D (1) 0(9g0: 915+ +9j-25Gj1" G5 Gj+1,Gj+2- - -+ 9p)
p p j=1 p

+(_1)P+1 90(90;91; e 7917—1) .
p

Grupa homologii powyzszego kompleksu
H(G;A) = Z2°(G; A), HP"Y(G; A) = 2P (G A)/BP* 1 (G; A), peN,

w ktorej zapisie

ZP(G; A) = Ker 58’“)
to grupa (p+ 1)-kocykli na grupie G o wartosciach w G-module A, a

BP*Y(G; A) = Imég)

to grupa (p+1)-kobrzegow na grupie G o wartosciach w G-module A, nosi miano (p+1)-
tej grupy kohomologii grupy G o wartosciach w G-module A. Suma prosta

H*(G;A) =D HP(G; A)

peN

tych grup okresla kohomologie grupy G o wartosciach w G-module A.
Uwaga 2. Warto zwroci¢ uwage na to, ze H°(G;A) to zbiér niezmiennikéw dziatania A..

Wprowadzona tu kohomologia dostarcza naturalnego uogoélnienia pojecia niezmiennika. Odgrywa
niebagatelna role w dyskusji cechowania symetrii sztywnych w teoriach fizycznych.

Bogatsi o powyzsza definicje bez trudu identyfikujemy warunek narzucony na odwzorowanie
(13): oto zdefiniowanie dziatania rozszerzenia centralnego G zrealizowanej rzutowo grupy G
wymaga, izby odwzorowanie to bylo 2-kocyklem na G o wartosciach w trywialnym G-module
K* (z A. =idgx),

!
(14) — ce Z%(G;KX).
Bedziemy go nazywaé 2-kocyklem dzialania rzutowego R. Zauwazmy przy tym, ze poprawie-
nie wyjsciowego 2-kocyklu ¢ o 2-kobrzeg 58)(1, d € CY(G;K*) nie zmienia jakosciowo sytuacji,
gdyz poprawka moze by¢ zaabsorbowana w redefinicje odwzorowania R wedle schematu
R—Invod> R= Ry,

tj., jesli R spelnia warunek

Vonea : R(g)oR(h) = c(g.h) -3¢ d(g,h) > R(g-h) = e(g,h) -d(h) -d(g-h)™" -d(g) > R(g- 1),
to wowczas Ry spelnia warunek
Vgnec i Ra(g) o Ra(h) =c(g,h) > Ra(g-h).
Ponadto, rzecz jasna,
5 (c-60d) = 6e,

przeto koniec koricow w rozpatrywanym przez nas zagadnieniu znaczenie ma jedynie klasa koho-
mologii 2-kocyklu dziatania rzutowego.

W naszych wczesniejszych rozwazaniach fizykalnych realizacja algebry @D doprowadzilta nas
wprost do definicji dziatania rzutowego L?(. grupy T(3) o wlasnosci

VEl,ezeT(3) : L2£sl ° L2€52 = e_% Cik ai E% Bt > |—2£51+52 .
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Latwo przekonujemy sig, ze pojawiajacy sie tutaj 2-kotancuch na T(3) o wartosciach w trywialnym
T(3)-module U(1) (notacja multyplikatywna dla grupy przemiennej U(1)!) dany wzorem

cr : T(3) x T(3) —> U(1) : (e1,2) —> e 2 Sk i3 B*
jest 2-kocyklem,

5(2)

T(3) Bk . e% €ijk (€1+52)i633. Bk . e*% €ijk Ei (62+63)j Bk . e% €ijk E’i Sé Bk = 1 .

_id o i
CF(51752; 53) = ¢ 2 Cijk €283
Obserwacja ta pozwala zrozumie¢ strukture zapostulowanej przez nas transformacji symetrii funkeji
falowej jako odzwierciedlenie ukrytego za nia dziatania rozszerzenia centralnego

(0,idy(1y) ———  pr,
1—U(l) —— T(3)xU(1)=T3), — T(3) —1
na przestrzeni Hilberta fadunku elektrycznego w stalym polu magnetycznym. Poréwnujac operacje
binarng indukowana na rozszerzeniu T(3), w tych okoliczno$ciach wedle schematu (12)),

P — —_— —_— iq . _i_jpk
fin = T(3)p xT(3), — T(3)y ((617u1)7(€2,u2))'—>(81 +€2,ul~uQ'e‘Th5”’“515§B )7

z operacja binarng na grupie UT(3), otrzymanej przez (réwnowazne) scalkowanie central-
nego rozszerzenia algebry Liego t(3) indukowanego przez 2-kocykl w na t(3), konstatujemy z
serdecznym wzruszeniem, iz

T(3), =UT(@3),,, wij = —57 4 fij = — 3% Q€iju B .

I na tym jednak nie koniec. . . Mozemy wszak zadaé pytanie o (naturalny) mechanizm indukcji dzia-
tania ,kwantowej grupy translacji” TES  ha przestrzeni Hilberta skwantowanego geometrycznie
modelu dynamiki masywnego tadunku elektrycznego w stalym polu magnetycznym. Odpowiedz na
to pytanie nasuwa sie sama w geometrycznym paradygmacie opisu zjawisk fizykalnych, u ktérego
podstaw — tak w mechanice klasycznej, jak i w teorii pola (a nawet w niektorych schematach
kwantowania obu) — lezy w wymiarze formalnym pojecie wigzki wioknistej (lub innej ,wyzszej ge-
ometrii”, jak (n-)wiecheé wiazek), ktore jest omawiane ze szczegétami i w konkretnych zastosowa-
niach na 2. i 3. semestrze wyktadu monograficznego pt. ,Elementy algebry i geometrii wyzszej w
fizyce” Autora. Nie mogac zakladaé znajomosci dyskutowanych tam struktur geometrycznych i
algebraicznych, mozemy jedynie — z braku czasu na rozleglejsza argumentacje — podsunaé¢ Czytel-
nikowi niezbedna intuicje, wywiedziong z kursu Algebry.

Punktem wyjsécia w konstrukcji, ktéra chcemy zaproponowaé, jest potraktowanie rozwazanych
przez nas funkcji falowych 1 : T*R*3 — C jako odwzorowan z przestrzeni stanéow T*R*® uktadu
fizycznego w produkt kartezjanski T*R*3 x C tejze z rozmaitoscia C = R*? szczegolnej postaci

(idT*RX37w) : T*RXB—)T*Rxgxc : (xvp) — ((Z‘,p)ﬂ/}(ﬂf,p)),
czyli takich, ktére sa prawymi odwrotno$ciami rzutu
(15) pr; @ T'R® xC — TR*?.

W jezyku wiazek wtoknistych to ostatnie odwzorowanie nosi miano rzutu na baze T*R*® wiazki
(trywialnej) T*R*3 x C, dla ktérego (id«gxs,?) jest (globanym) cigciem. Tak okreslona wigzka
(pre)kwantowﬂ T*R*3 x C jest wprost ze swej natury wiazka jednowymiarowych przestrzeni C-
liniowych nad baza T*R*® — w naszym przypadku kazde jej wlékno pri'({(z,p)}) nad punktem
(z,p) € T*R*® bazy jest po prostu przestrzeniag V = C (w ogélnym przypadku mamy do czynienia
z przestrzeniag C-liniowg niekanonicznie izomorficzng z C). Wybor bazy w tej (i w kazdej innej)
jednowymiarowej przestrzeni C-liniowej jest rownoznaczny ze wskazaniem izomorfizmu

g:C—V,

a zbior Isoc(C, V') wszystkich takich izomorfizmow, wige tez zbior wszystkich baz, jest naturalnie
utozsamialny z grupg GL(1,C) = C*. Mozna tez, rzecz jasna, rozwaza¢ podklase Isog((C, V) baz

1OKonstrukcja7 ktéra tu wprowadzamy ,tylnymi drzwiami”, jest zupelnie ogélna i nie zawsze prowadzi do pro-
duktowej przestrzeni totalnej jak ta tutaj: T*R*3 x C. Ta uwaga ma na celu zdjecie z naszych dalszych rozwazan
potencjalne odium trywialnosci, a zarazem sztuczno$ci i nadmiarowosci.
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powigzanych ze soba transformacjami utozsamialnymi z dowolng podgrupg H ¢ GL(1,C), np.
bazy Isog(l)((C,V) z orbity dzialania podgrupy U(1) c¢ C* = GL(1,C). Nalezy podkresli¢, ze
kazda taka H-orbite mozna utozsamié¢ z H mniekanonicznie dopiero po wybraniu dowolnego jej
punktu. Majac taki dowolny element [, € Isog((C,V), jesteSmy w stanie odtworzyé wyjéciowa
przestrzeni C-liniowg V' jako (3,(C). Z punktu widzenia geometryzacji dyskutowanych poje¢ i
operacji algebraicznych duzo bardziej naturalne wydaje sie pytanie o mozliwosé odtworzenia V'
bez wyrézniania jakiejkolwiek bazy, czyli wprost ze zbioru Isog((c, V) x C. Usunigcie |H|-krotnej
nadwyzki elementéw musi przy tym uwzgledniaé¢ status ontologiczny wszystkich zaangazowanych
obiektow. W sukurs przychodzi nam podkreslana wyzej struktura H-torsora na Isog((C, V), ktora
podpowiada schemat ,wyprojektowania” |[H|-krotnej nadwyzki poprzez przejscie do przestrzeni
orbit diagonalnego dziatania H na Isog (C,V) x C danego wzorem
H x (Isog((C,V) x (C) — Isog((QV) xC : (h, (ﬁ,z)) — (ﬁ o h,h_l(z)),
w ktorym H traktujemy pedantycznie jako podgrupe GL(1,C). W wyniku tej operacji otrzymu-
jemy zbior (orbit)
(Iso2 (C, V) x C)/H 3 [(8,2)]-,

ktorego elementy to klasy abstrakcji [(f,2)]. wzgledem relacji rownowaznosci

(B1,21) ~ (B2, 22) = Jnert ¢ (B2,22) = (Broh,h(21))

i ktory jest w sposob kanoniczny izomorficzny z V', a to poprzez odwzorowanie
[ev] 5 (1502 (C,V) x C)/H—V 5 [(8,2)]. — B(2),

ktorego dobra okreslono$é (tj. niezaleznosé od wyboru reprezentanta klasy (53,z)].) wynika z
tacznosci superpozycji odwzorowan,

View @ Bo h(h_l(z)) =fo (ho h_l)(z) =6(z).

Istnienie izomorfizmu [ev] pozwala zaindukowaé na (Isog (C,V) x C)/H naturalna strukture C-
liniowg.

Powyzsza dyskusja dotyczy w szczegdlnosci U(1)-torsora Isog(l)((C,V) = U(1) (zlozonego z
przemnozen liczb zespolonych przez fazy z U(1), co stanowi podstawe utozsamienia z U(1)) —
mamy zatem

(16) [ev] : (U(l) X (C)/U(l) = C: [(u,2)].—u-z.
Dokonawszy geometryzacji tej konstrukcji nad baza T*R*3, tj. ,wyprojektowawszy” dziatanie
U(1) x (T*RX?’ x U(1) x (C) — TR xU(1) xC : (g, ((x7p)7u,z)) — ((gc,p),u-g,g_1 ~z),
odnajdujemy wiazke stowarzyszona
(17) (T*RX?’ x U(1) x (C)/U(l) — T*R*3 . [((m,p),u,z)]~ — (x,p)
z wiazka glowna

TR xU(1) — TR = ((z,p),u) — (2,p)

poprzez naturalne dziatanie U(1) na C (przez mnozenie). Wigzka (rozmaitosé) jest kano-
nicznie izomorficzna (dyfeomorficzna) z wiazka (pre)kwantowa (7)),

Bun[ev] : (T'R* xU(1) x C)/U(1) — TR xC : [((2,p),u,2)] — ((z,p),u-z),
por. . Tym, co sprawia, ze nie jest to jedynie matematyczne kuriozum, jest zanurzenie
T(3), =R xU(1) = TR xU(L) + (2,u) — ((z,p),u),

ktore implikuje istnienie dzialania kwantowej grupy translacji” T(3), na T*R*® x U(1) x C
bedacego lewym dzialaniem regularnym tej grupy na sktadniku kartezjanskim pr173(]RX3 x R*3 x
U(1) xC) = R*3 x U(1),

Bun). : T(3), x (T'R®xU(1)xC) — T'R*®xU(1) x C
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_ia . igipgk
((57 C)v ((Iap)aua Z)) — ((.’E + 5,p),u ! C € zh k€ @’ B 72) )
przemiennego z wyprojektowywanym dzialaniem U(1), wiec zstepujacego do przestrzeni orbit

(T*R** x U(1) x C)/U(1) w postaci
[Bun)]. : T_(gjh X (T*RXS x U(1) x (C)/U(l) . (T*RXB < U(1) x (C)/U(l)

(2,0, [((@,p),u,2)].) — [((@+&,p),u- e shewme" e’ BY )]

i tym samym dajacego nam mozliwo$é¢ zaindukowania na wigzce (pre)kwantowej T*R*3 x C na-
turalnego dziatania

AP T(3), x (TR % C) — TR % C
wedle schematu opisanego przez diagram przemienny

T(3), x (T*R*® x U(1) x C)/U(1) B (T*R*3 x U(1) x C)/U(1)

id’f(‘sjh xBun[ev]™ Bun[ev]
T(3), x (T*R** x C) TR xC

A
Otrzymujemy tym sposobem dzialanie

4 €ijk Ei :Ej Bk 'Z)

A}(!I‘s,z)((x7p)7z) = ((:E + E,p),e_ﬁ

o oczywistej sktadowej w bazie
Mooyt TRP O ¢ (2,p) — (¢e(2),p)

(wszak dziatanie T(3), jest rozszerzeniem dzialania T(3)) i zaleznej od punktu w bazie sktadowej
we wloknie

F)\?E,C)(x’p) . pr[l({(a:,p)}) O Z,_,e—z‘i yre' @ BY

7 tych dwoch mozemy juz w standardowy sposob zlozyé lewe dziatanie , kwantowej grupy translacji’
T(3),, na funkcjach falowych:

)

L2A" : T(3), x L*(T'R®®) — L*(T'R™) = ((£,0),%) — FAL ()10 Al o1 ()«
Na konicu naszej dtugiej i chwilami nieoczywistej drogi czeka na nas nagroda — dobra nowina:
L2 = L2A, ) !

Udalo si¢ nam zatem zrozumieé postaé¢ rzutowego dziatania grupy translacji T(3) na przestrzeni
Hilberta, wymuszona przez wybor geometrycznego schematu kwantowania, jako ograniczenie na-
turalnego dziatania rozszerzenia tejze grupy F[‘—@Sh na przestrzeni (catkowalnych z kwadratem)
cie¢ trywialnej wiazki wektorowej T*R*3 x C nad klasyczna przestrzenia stanow.

Wiecej ciekawych szczegdtow i przykladow Czytelnik znajdzie w monografii de Azcarraga i Izquierdo
pt. “Lie groups, Lie algebras, cohomology and some applications in physics” [dAI95].

Zadanie na ¢wiczenia 1 (na przysztos¢). Udowodnié i zinterpretowaé Drugi Lemat Whiteheada
dla dowolnej skonczenie wymiarowej potprostej algebry Liego g:

CE*(g) =0.
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