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1. Wprowadzenie

Na poprzednich wykładach wprowadziliśmy rachunek różniczkowy Cartana na grupie Liego G,
wiȩc

● pola wektorowe LI XL(G) ,
L⋅ ∶ gÐ→ XL(G) ∶ X z→ Te`⋅(X) ,

określaja̧ce globalna̧ trywializacjȩ wia̧zki stycznej TG ≅ GTeAd⋅⋉g poprzez zadanie global-
nej bazy C∞(G,R)-modułu Γ(G),

{LA ≡ LtA}A∈1,D , D ≡ dim G ,

stowarzyszonej z dowolna̧ baza̧ {tA]A∈1,D algebry Liego TeG ≡ g, oraz
● dualna̧ 1-formy LI Ω1

L(G) rozpiȩte (nad R) na bazie dualnej

{θAL }A∈1,D , LA ⌟ θBL = δ BA .

Te ostatnie generuja̧ (nad R a wzgl. iloczynu zewnȩtrznego ∧) podprzestrzenie k-form LI,

ΩkL(G) = { ω ∈ Ωk(G) ∣ ∀g∈G ∶ `∗gω = ω } ,
otrzymujemy zatem

Ω●
L(G) ≡ ⟨θAL ∣A ∈ 1,D⟩∧,R ⊂ Ω●(G) .

Powstaje naturalne pytanie o to, czy także operator de Rhama ddR ≡ d (pochodnej zewnȩtrznej)
ogranicza siȩ do tak zdefiniowanej algebry form lewoniezmienniczych. Odpowiedzi na nie
dostarcza

Stwierdzenie 1. Operator de Rhama ogranicza siȩ do algebry form lewoniezmienniczych na
grupie Liego G, tj. zachodzi

dΩ●
L(G) ⊂ Ω●

L(G) .
W szczególności sa̧ spełnione równania Maurera–Cartana

dθAL = − 1
2
f A
BC θBL ∧ θCL ,

w których współczynniki f A
BC sa̧ stałymi struktury g w bazie {tA]A∈1,D,

[tB , tC]g = f A
BC tA .
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Dowód: Pierwsza czȩść tezy wynika wprost z czȩści drugiej, zajmiemy siȩ zatem ta̧ ostatnia̧,
wykorzystuja̧c dodatkowo to, że 2-forma dθAL jest w pełni określona przez wartości przyjmowane
przez nia̧ na bazie LI modułu Γ(G). Biora̧c pod uwagȩ fundamentalna̧ tożsamość (Cartana)

dω(V0,V1, . . . ,Vk) =
k

∑
l=0

(−1)l Vl ⌟ d(ω(V0,V1, . . .
l̂
,Vk)) +

k

∑
m<n=1

(−1)m+n ω(ω([Vm,Vn],V0,V1, . . .
m̂,n

,Vk)) ,

słuszna̧ dla dowolnej k-formy ω ∈ Ωk(M) (na rozmaitości M) i dowolnych pól wektorowych
Vl ∈ Γ(TM), l ∈ 0, k (na tejże), obliczamy

dθAL (LB , LC) = LB ⌟ d(LC ⌟ dθAL ) −LC ⌟ d(LB ⌟ dθAL ) − θAL ([LB , LC])

= LB ⌟ dδ AC −LC ⌟ dδ AB − θAL (f D
BC LD) = −f D

BC LD ⌟ θAL = −f A
BC

≡ − 1
2
f A
DE θDL ∧ θEL (LB , LC) .

Dodajmy na marginesie, że istnienie ograniczenia operatora de Rhama do Ω●
L(G) jest natychmia-

stowa̧ konsekwencja̧ przemienności tego operatora z operatorem cofniȩcia,

`∗gω = ω Ô⇒ `∗gdω = d`∗gω = dω .

�

Formy różniczkowe na rozmaitości M wymiaru dimM = d tworza̧ wraz z (ograniczeniami)
ddR kompleks (ko)łańcuchowy de Rhama

(Ω●(M),d(●)dR) ∶ Ω0(M)
d
(0)
dR

≡d
ÐÐÐÐ→ Ω1(M)

d
(1)
dR

≡d
ÐÐÐÐ→ ⋯

d
(d−1)
dR

≡d
ÐÐÐÐÐÐ→ Ωd(M)

d
(d)
dR

≡0
ÐÐÐÐÐ→ 0 ,

d
(k+1)
dR ○ d(k)dR = 0 , k ∈ 0, d − 1 .

Jak wiemy z kursu Geometrii różniczkowej, grupy homologii tego kompleksu,

H0(M,R) ≡ Kerd
(0)
dR , Hk+1

dR (M,R) ≡ Zk+1
dR (M,R)/Bk+1

dR (M,R) , k ∈ 0, d − 1 ,

zwane grupami kohomologii de Rhama rozmaitości M , w których zapisie

Zk+1
dR (M,R) ≡ Kerd

(k+1)
dR

to grupa (k + 1)-kocykli de Rhama (czyli grupa (k + 1)-form zamkniȩtych), a

Bk+1
dR (M,R) ≡ Imd

(k)
dR

to grupa (k + 1)-kobrzegów de Rhama na M (czyli grupa (k + 1)-form dokładnych), koduja̧
istotna̧ informacjȩ topologiczna̧ dotycza̧ca̧ M . To prowadzi nas do zadania naturalnego pytania o
informacjȩ kodowana̧ przez homologiȩ podkompleksu form lewoniezmienniczych

(Ω●
L(G),d(●)CaE ≡ d

(●)
dR↾Ω●

L
(G)) ∶ Ω0

L(G)
d
(0)
CaE

≡d
ÐÐÐÐÐ→ Ω1

L(G)
d
(1)
CaE

≡d
ÐÐÐÐÐ→ ⋯

d
(D−1)
CaE

≡d
ÐÐÐÐÐÐÐ→ ΩDL (G)

d
(d)
CaE

≡0
ÐÐÐÐÐÐ→ 0 ,

zwana̧ kohomologia̧ Cartana–Eilenberga grupy Liego G,

CaE●(G) ≡H●
dR,L(G,R) .

Kohomologia ta odgrywa istotna̧ rolȩ w konstrukcji teorii pola z nieliniowo zrealizowana̧ symetria̧
wprowadzonej przed laty przez Weinberga i Schwingera w kontekście efektywnej teorii pola (np.
w układach ze spontanicznie naruszona̧ symetria̧), a rozwiniȩtej przez Salama, Strathdee’ego,
Colemana, Callana, Wessa, Ishama i wielu innych.
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2. Kohomologia Cartana–Eilenberga a rozszerzenia algebr Liego

Ażeby odpowiedzieć sobie na zadane pytanie, przeformułujemy to ostatnie w terminach czysto
algebraicznych, przeszedłszy do stycznej TeG. Pierwszy krok w tym kierunku stanowi

Definicja 1. Niechaj (g, [⋅, ⋅]g) bȩdzie K-algebra̧ Liego wymiaru dimK g ≡ D. g-moduł to para
(V, ρ⋅) złożona z przestrzeni K-liniowej V oraz homomorfizmu algebr Liego1

ρ⋅ ∶ gÐ→ EndK(V ) ∶ X z→ ρX ,

tj. odwzorowania spełniaja̧cego warunek

∀X,Y ∈g ∶ [ρX , ρY ] ≡ ρX ○ ρY − ρY ○ ρX = ρ[X,Y ] ,

które zadaje realizacjȩ algebry Liego g na przestrzeni wektorowej V (zwyczajowo ozna-
czana̧ tym samym symbolem)

ρ⋅ ∶ g × V Ð→ V ∶ (X,v) z→ ρX(v) ≡X ⊳ v .

Obecność nawiasu Liego

ad⋅ ∶ gÐ→ EndK(g) ∶ X z→ [X, ⋅]g ≡ adX

na g, bȩda̧cego w istocie – dla dowolnego X ∈ g – różniczkowaniem2 skośnego iloczynu mg ≡
[⋅, ⋅]g ∶ g × g Ð→ g, o czym zaświadcza tożsamość Leibniza (w tej roli objawia siȩ nam tożsamość
Jacobiego)

∀X,Y,Z∈g ∶ adX(mg(Y,Z)) = mg(adX(Y ), Z) +mg(Y,adX(Z)) ,
pozwala stowarzyszyć z para̧ (V, ρ⋅) naturalny kompleks (ko)łańcuchów i kohomologiȩ, o których
mówi

Definicja 2. Przyjmijmy dotychczasowe oznaczenia i niechaj (V, ρ⋅) bȩdzie g-modułem w sensie
Def. 1. p-kołańcuch na g o wartościach w V to odwzorowanie K-liniowe ϕ

p

∈ HomK(g×p, V ),
które jest całkowicie skośne

∀X1,X2,...,Xp∈g, σ∈Sp ∶ ϕ
p

(Xσ(1),Xσ(2), . . . ,Xσ(p)) = sign(σ)ϕ
p

(X1,X2, . . . ,Xp) .

Zbiór3

Cp(g;V ) ≡ ⋀p g∗ ⊗K V

takich odwzorowań jest grupa̧ przemienna̧ (z operacja̧ binarna̧ zdefiniowana̧ punktowo), zwana̧
grupa̧ p-kołańcuchów na g o wartościach w V , przy czym przyjmujemy konwencjȩ, w
której C0(g;V ) ≡ V . Indeksowana przez 0,D ∋ p rodzina grup kołańcuchów tworzy kompleks
(ko)łańcuchowy

(C●(g;V ), δ(●)g ) ∶ C0(g;V )
δ(0)gÐÐÐ→ C1(g;V )

δ(1)gÐÐÐ→ ⋯
δ(D−1)
gÐÐÐÐÐ→ CD(g;V )

δ(D)g ≡0
ÐÐÐÐÐÐ→ 0

1Struktura algebry (Liego) na EndK(V ), do której odnosi siȩ definicja, jest współokreślana przez komutator
endomorfizmów.

2Warto przy tej okazji odnotować, że nawias Liego bywa różniczkowaniem zasadniczo różnych struktur alge-
bry na danej przestrzeni K-liniowej. Jest tak np. w fizykalnie nader istotnym przypadku przestrzeni R-liniowej
C∞
(P,R) funkcji gładkich na przestrzeni stanów P układu fizycznego, wyposażonej w dwie struktury R-algebry: z

iloczynem punktowym jako operacja̧ binarna̧ oraz z nawiasem Poissona w tej samej roli. Tenże nawias Poissona jest
różniczkowaniem R-algebry C∞

(P,R) wzglȩdem obu struktur, przy czym zazwyczaj podkreśla siȩ tȩ jego własność
w odniesieniu do pierwszej z nich, odróżniaja̧c spełniana̧ przezeń tożsamość Leibniza od tożsamości Jacobiego. W
świetle naszych obserwacji obie tożsamości maja̧ ten sam status – sa̧ tożsamościami Leibniza.

3Zastosowany tu zapis Cp
(g;V ) powinien wywołać u Czytelnika uspokajaja̧ce skojarzenie ze znajoma̧ struktura̧

grupy p-kołańcuchów de Rhama, czyli p-form różniczkowych na rozmaitości M , która̧ możemy zapisać (nieco sztucz-
nie – dla podkreślenia analogii i zarazem zaznaczenia istotnej różnicy w wyborze grupy przemiennej współczyn-
ników V ) w analogicznej postaci Ωp

(M) ≡ ⋀p Γ(T∗M)⊗RR, czy wrȩcz Ωp
(M) ≡ ⋀p Γ(T∗M)⊗C∞(M,R)C∞

(M,R).
We wszystkich tych przypadkach wykorzystujemy kanoniczny izomorfizm HomK(V1, V2) ≅ V

∗
1 ⊗KV2 (wzgl. stosowne

uogólnienie do kategorii modułów nad pierścieniem).
3
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o operatorach kobrzegu

δ
(p)
g ∶ Cp(g;V ) Ð→ Cp+1(g;V ) , δ

(p+1)
g ○ δ(p)g = 0 , p ∈ 0,D − 1

danych wzorami (zapisanymi dla dowolnych Xi ∈ g, i ∈ 0, p i ϕ
k

∈ Ck(g;V ), k ∈ {0, p > 0})

δ
(0)
g ϕ

0

(X0) = X0 ⊳ ϕ
0

,

δ
(p)
g ϕ

p

(X0,X1, . . . ,Xp) =
p

∑
l=0

(−1)lXl ⊳ ϕ
p

(X0,X1, . . .
l̂
,Xp)

+
p

∑
m<n=1

(−1)m+n ϕ
p

([Xm,Xn]g,X0,X1, . . .
m̂,n

,Xp) .

Grupa homologii powyższego kompleksu

H0(g;V ) = Z0(g;V ) , Hp+1(g;V ) ≡ Zp+1(g;V )/Bp+1(g;V ) , p ∈ 0,dimKg − 1 ,

w której zapisie

Zp+1(g;V ) ≡ Ker δ
(p+1)
g

to grupa (p + 1)-kocykli na algebrze g o wartościach w g-module V , a

Bp+1(g;V ) ≡ Im δ
(p)
g

to grupa (p + 1)-kobrzegów na algebrze g o wartościach w g-module V , nosi miano
(p+1)-tej grupy kohomologii algebry Liego g o wartościach w g-module V . Suma prosta

H●(g;V ) =
dimKg

⊕
p=0

Hp(g;V )

tych grup określa kohomologiȩ algebry Liego g o wartościach w g-module V .
W szczególnym przypadku K = R i trywialnego działania ρ⋅ ≡ 0 mówimy o (grupach) koho-

mologii Chevalleya–Eilenberga algebry Liego g,

CE●(g) ≡H●
(ρ⋅=0)(g;R) .

Uwzglȩdniwszy wszystkie nasze dotychczasowe ustalenia, bez trudu stwierdzamy

Stwierdzenie 2. Istnieje kanoniczny izomorfizm

CaE●(G) ≅ CE●(g) .

Dowód: Wystarczy zauważyć, że każda forma LI na grupie Liego G jest w pełni określona przez
swa̧ wartość w e, w którym to punkcie staje siȩ elementem ⋀pT∗eG ≡ ⋀p g∗ ⊗R R właśnie. �

W powyższym stwierdzeniu dokonuje siȩ transkrypcja struktury różniczkowo-geometrycznej, jaka̧
jest niezmiennicza wersja kohomologii de Rhama, na jȩzyk czysto algebraiczny, w którym wyraża
siȩ kohomologia algebry Liego. Transkrypcja ta prowadzi do strukturalnej (algebraicznej) in-
terpretacji kohomologii Cartana–Eilenberga w terminach struktur rozszerzaja̧cych – w sposób,
który zilustrujemy poniżej na przykładzie CaE2(G) – wyjściowy obiekt algebraiczny g. Po jej
wyprowadzeniu pojawia siȩ naturalne pytanie o „wersjȩ odcałkowana̧” do poziomu stosownego
„rozszerzenia grupy” G. Okazuje siȩ, że taka transkrypcja odwrotna jest co do zasady możliwa
na gruncie Trzeciego Twierdzenia Liego oraz konstrukcji wia̧zki głownej o grupie strukturalnej
U(1) (wzgl. ich strukturalnych uogólnień). Nie bedziemy¸ jej rozpatrywać w ogólności, w dalszej
zaś czȩści wykładu skupimy siȩ na nader czȩsto w rozważaniach fizykalnych napotykanej grupie
CE2(g). W jej przypadku odcałkowanie – ilekroć jest możliwe – prowadzi do tzw. rozszerzeń
centralnych grupy G, z którymi Czytelnik mógł siȩ spotkać w kontekście podnoszenia symetrii
sztywnych teorii klasycznej do jej przestrzeni Hilberta, a które sa̧ opisywane przez krótkie cia̧gi
dokładne grup Liego

1Ð→ A
IAÐÐ→ G̃

ΠGÐÐÐ→ GÐ→ 1
4
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zapisywane w terminach wyjściowej grupy G, bȩda̧cej jej rozszerzeniem grupy G̃ (odwzorowywanej
na tȩ pierwsza̧ przez epimorfizm ΠG) oraz grupy przemiennej A (odwzorowywanej w centrum
grupy Z (G̃) = { g ∈ G ∣ ∀h∈G ∶ g ⋅ h ⋅ g−1 ⋅ h−1 = e } przez monomorfizm IA) wystȩpuja̧cej
w roli włókna rozszerzenia (Ker ΠG = Im IA). Zrozumienie informacji algebraicznej zakodowanej
w tej grupie wymaga zasta̧pienia struktur grupowych ich infinitezymalnymi (stycznościowymi)
odpowiednikami, przy czym (Lie-)grupowa operacja binarna przechodzi w (Lie-)algebraiczna̧ op-
eracjȩ binarna̧, czyli nawias Liego. Precyzyjnej formalizacji tego schematu dostarcza
Definicja 3. Niechaj (g, [⋅, ⋅]g) bȩdzie algebra̧ Liego (nad R) i niech (a, [⋅, ⋅]a ≡ 0) bȩdzie komu-
tatywna̧ algebra̧ Liego (nad R). Rozszerzenie centralne algebry Liego g przez a to trójka
(g̃, a, πg) złożona z

● algebry Liego (g̃, [⋅, ⋅]g̃);
● homomorfizmów algebr Liego: a ∶ aÐ→ g̃ oraz πg ∶ g̃Ð→ g

tworza̧cych krótki cia̧g dokładny algebr Liego

0Ð→ a
aÐÐ→ g̃

πgÐÐ→ gÐ→ 0(1)

i takich, że a(a) ⊂ z(g̃), gdzie
z(g̃) = { X ∈ g̃ ∣ ∀Y ∈g̃ ∶ [X,Y ]g̃ = 0 }

jest centrum algebry Liego4 g̃. Rozszerzenie nazywamy rozszczepionym, ilekroć epimorfizm
πg ma ciȩcie w LieAlgR, tj. istnieje homomorfizm algebr Liego

σ ∶ gÐ→ g̃

o własności

πg ○ σ = idg .(2)

Mówimy wówczas także, że krótki cia̧g dokładny stowarzyszony z rozszerzeniem rozszczepia siȩ.
Równoważność miȩdzy rozszerzeniami (g̃A, Aa , πAg ), A ∈ {1,2} algebry Liego g przez

a to izomorfizm algebr Liego

ι ∶ g̃1
≅ÐÐ→ g̃2

domykaja̧cy diagram przemienny

0 // a
1a // g̃1

≅ι

��

π1
g // g // 0

0 // a
2a

// g̃2
π2
g

// g // 0

.

który bȩdziemy zapisywać w postaci

g̃1

≅ι

��

π1
g

$$
0 // â

1a
::

2a $$

ĝ // 0

g̃2

π2
g

::

dla zaoszczȩdzenia e-inkaustu.
Ostatnia definicja daje nam do rȩki wygodne narzȩdzia do badania algebraicznego sensu ko-

homologii Cartana–Eilenberga. Odczytamy go z dwóch stwierdzeń, które ustalaja̧ zapowiadana̧
wcześniej odpowiedniość miȩdzy klasami H2(g;a) i rozszerzeniami centralnymi g przez a. Po-
dajemy je wraz z dość technicznymi dowodami, których wartość zasadza siȩ na prostocie i kon-
struktywności, ta ostatnia zaś wytycza naturalny szlak ku „wersji odcałkowanej” – patrz: Uwaga
1. Zaczynamy od

4Odpowiedniość miȩdzy z(̃g) i Z (G̃) daje siȩ łatwo uchwycić przy pomocy odwzorowania expG̃.
5
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Stwierdzenie 3. Przyjmijmy zapis Def. 3. Klasa równoważności rozszerzenia centralnego (g̃, [⋅, ⋅]g̃)
algebry Liego g przez a kanonicznie wyznacza klasȩ5 w H2(g;a). Klasa ta jest równa zeru wtedy
i tylko wtedy, gdy krótki cia̧g dokładny stowarzyszony z rozszerzeniem rozszczepia siȩ.

Dowód: Istnienie krótkiego cia̧gu dokładnego (1) implikuje istnienie odwzorowania K-liniowego
σ ∶ g Ð→ g̃ spełniaja̧cego relacjȩ (2) (podprzestrzeń a(a) ⊂ g̃ ma dopełnienie proste), z czego
wywodzimy istnienie (kanonicznego) izomorfizmu przestrzeni K-liniowych

ι ∶ g̃
≅ÐÐ→ a⊕ g ∶ X̃ z→ (−1

a (X̃ − σ ○ πg(X̃)), πg(X̃)) .

(Podkreślmy: Przeciwdziedzina ι nie jest a priori suma̧ prosta̧ algebr Liego, tylko suma̧ prosta̧
przestrzeni K-liniowych.) W rzeczy samej, odwzorowanie to jest dobrze określone, jako że X̃ −σ ○
πg(X̃) ∈ kerπg = im a, a a jest izomorfizmem na swój obraz. Odwrotność powyższego odwzoro-
wania przyjmuje jawna̧ postać

ι−1 ∶ a⊕ gÐ→ g̃ ∶ (A,X) z→ a(A) + σ(X) .

Możemy nastȩpnie podnieść ι do rangi izomorfizmu algebr Liego definiuja̧c na podprzestrzeni
wektorowej a⊕ g nawias Liego w terminach tych z g̃ i g wedle schematu

[(A1,X1), (A2,X2)]a⊕g ∶= ι([ι−1(A1,X1), ι−1(A2,X2)]g̃) = ι([σ(X1), σ(X2)]g̃)

= (−1
a ([σ(X1), σ(X2)]g̃ − σ ○ πg([σ(X1), σ(X2)]g̃)), πg([σ(X1), σ(X2)]g̃))

= (−1
a ([σ(X1), σ(X2)]g̃ − σ([X1,X2]g)), [X1,X2]g) .

Sensowność tej definicji jest zapewniona przez własności odwzorowania p-liniowego

Θσ ∶ g×2 Ð→ a ∶ (X1,X2) z→ −1
a ([σ(X1), σ(X2)]g̃ − σ([X1,X2]g)) .

Oto bowiem ilekroć obliczymy je na parze elementów g, spełniona jest relacja

Θσ(X2,X1) = −Θσ(X1,X2) ,

jest to zatem 2-kołańcuch na g o wartościach w a, przy czym ta ostatnia algebra objawia siȩ tutaj
w roli trywialnego g-modułu. Kobrzeg tego kołańcucha znika,

δ
(2)
g Θσ(X1,X2,X3) = −Θσ([X1,X2]g,X3) −Θσ([X3,X1]g,X2) −Θσ([X2,X3]g,X1)

= −−1
a ([σ([X1,X2]g), σ(X3)]g̃ + [σ([X3,X1]g), σ(X2)]g̃ + [σ([X2,X3]g), σ(X1)]g̃ − σ ○ Jacg(X1,X2,X3))

= −1
a ([a ○Θσ(X1,X2), σ(X3)]g̃ + [a ○Θσ(X3,X1), σ(X2)]g̃ + [a ○Θσ(X2,X3), σ(X1)]g̃

−Jacg̃(σ(X1), σ(X2), σ(X3)) + σ ○ Jacg(X1,X2,X3)) = 0 ,

gdzie to w ostatnim kroku przywołaliśmy inkluzjȩ ima ⊂ z(g̃). Bez trudu weryfikujemy oczekiwana̧
własność indukowanego nawiasu Liego:

Jaca⊕g((A1,X1), (A2,X2), (A3,X3)) = (−δ(2)g Θσ(X1,X2,X3),Jacg(X1,X2,X3)) = (0,0) ,

stwierdzaja̧c na tej podstawie, że rozszerzenie centralne w istocie kanonicznie wyznacza 2-kocykl
na g o wartościach w a.

W nastȩpnej kolejności zbadamy, jak 2-kocykl ów zmienia siȩ przy przejściu do równoważnego
rozszerzenia centralnego. Mamy w tym wypadku do dyspozycji dwa monomorfizmy algebr Liego:

5W zapisie 2. grupy kohomologii algebra komutatywna algebra Liego a wystȩpuje w roli przestrzeni wektorowej
– formalnie rzecz ujmuja̧c, utożsamiamy a z jej obrazem w kategorii VectK wzglȩdem funktora zapominania.
Taka dwoista rola a jest nieunikniona – wszak z jednej strony krótki cia̧g dokładny opisuja̧cy rozszerzenie jest
diagramem w kategorii LiaAlgK, z drugiej zaś – kohomologia przyjmuje wartości w przestrzeni wektorowej.
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Aa ∶ a Ð→ g̃A, A ∈ {1,2} i dwa epimorfizmy algebr Liego: πAg ∶ g̃A Ð→ g wraz z odnośnymi
ciȩciami K-liniowymi σA ∶ gÐ→ g̃A. Biora̧c pod uwagȩ przemienność diagramu

g̃1

ε

��

π1
g

!!
0 // a

1a

==

2a !!

g //
σ1

TT

σ2





0

g̃2

π2
g

== ,

wraz z tożsamościa̧

π1
g ○ (ε−1 ○ σ2 − σ1) = π2

g ○ σ2 − π1
g ○ σ1 = idg − idg = 0 ,

która przesa̧dza o istnieniu odwzorowania K-liniowego µε ∶ gÐ→ a o własności

ε−1 ○ σ2 − σ1 = 1a ○ µε ,

bez trudu stwierdzamy, dla dowolnych wektorów X1,X2 ∈ g,

1a ○ (Θσ2 −Θσ1)(X1,X2) = (ε−1 ○ 2a ○Θσ2 − 1a ○Θσ1
)(X1,X2)

= [ε−1 ○ σ2(X1), ε−1 ○ σ2(X2)]g̃1
− [σ1(X1), σ1(X2)]g̃1

− 1a ○ µε([X1,X2]g)

= [1a ○ µε(X1), ε−1 ○ σ2(X2)]g̃1
+ [σ1(X1), ε−1 ○ σ2(X2)]g̃1

− [σ1(X1), σ1(X2)]g̃1

−1a ○ µε([X1,X2]g) = [σ1(X1), 1a ○ µε(X2)]g̃1
− 1a ○ µε([X1,X2]g)

= −1a ○ µε([X1,X2]g) ,

a sta̧d już wprost

Θσ2 −Θσ1 = δ
(1)
g µε , czyli [Θσ2]g = [Θσ1]g .

Na zakończenie dowodzimy ostatniej czȩści tezy. Znikanie (klasy) 2-kocyklu Θσ w przypadku,
gdy σ jest ciȩciem w kategorii algebr Liego (a nie tylko w kategorii przestrzeni K-liniowych),
jest oczywiste, pozostaje zatem pokazać, że kohomologiczna trywialność Θσ implikuje istnienie
ciȩcia w kategorii algebr Liego. Warunek trywialności 2-kocyklu Θσ możemy zgrabnie przepisać
w postaci

[σ(X1), σ(X2)]g̃ = σµ([X1,X2]g) , σµ ∶= σ − a ○ µ ∈ HomK(g, g̃) .

W świetle komutatywności a(a) to daje nam relacjȩ

[σµ(X1), σµ(X2)]g̃ = σµ([X1,X2]g) ,

możemy zatem podnieść σµ do rangi homomorfizmu algebr Liego. Jako że ponadto spełniona jest
tożsamość

πg ○ σµ = πg ○ σ − πg ○ a ○ µ = πg ○ σ = idg ,

rozpoznajemy w nim poszukiwane ciȩcie πg. �

W nastȩpnym kroku zajmiemy siȩ przyporza̧dkowaniem odwrotnym.

Stwierdzenie 4. Przyjmijmy zapis Def. 3. Klasa w H2(g;a) kanonicznie zadaje klasȩ równoważ-
ności rozszerzeń centralnych (g̃, [⋅, ⋅]g̃) algebry Liego g przez a. Rozszerzenia te rozszczepiaja̧ siȩ
wtedy i tylko wtedy, gdy klasa ta znika.
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Dowód: Maja̧c dany dowolny 2-kocykl Θ ∈ Z2(g;a), wyposażamy przestrzeń K-liniowa̧ a⊕ g =∶ g̃
w jawnie skośne odwzorowanie dwuliniowe

[⋅, ⋅]Θ ∶ g̃×2 Ð→ g̃ ∶ ((A1,X1), (A2,X2)) z→ (Θ(X1,X2), [X1,X2]g) .
Bez trudu sprawdzamy, że mamy do czynienia z nawiasem Liego,

Jacg̃((A1,X1), (A2,X2), (A3,X3)) = (−δ(2)g Θ(X1,X2,X3),Jacg(X1,X2,X3)) = (0,0) ,
przeto (g̃, [⋅, ⋅]Θ) jest algebra̧ Liego.

Komutatywność a przesa̧dza o tym, że kanoniczna injekcja a ∶ a Ð→ g̃ ∶ A z→ (A,0) jest
monomorfizmem algebr Liego dla tak określonej struktury na g̃. Z kolei kanoniczny K-liniowy
rzut πg ∶ g̃ Ð→ g ∶ (A,X) z→ X zyskuje teraz status epimorfizmu algebr Liego, o oczywistej
własności kerπg = im a, na koniec wiȩc otrzymujemy krótki cia̧g dokładny algebr Liego

0Ð→ a
aÐÐ→ g̃

πgÐÐ→ gÐ→ 0

który pozwala nam zidentyfikować g̃ jako rozszerzenie centralne g przez a.
W obecności dwóch kohomologicznych 2-kocykli: Θ2 = Θ1+δ(1)g µ, µ ∈ C1(g;a), opisany powyżej

schemat daje dwa nawiasy Liego na g̃ = a ⊕ g, czyli dwa rozszerzenia centralne algebry Liego g
przez a, przy czym łatwo widać, że K-liniowy automorfizm

εµ ∶ g̃Ð→ g̃ ∶ (A,X) z→ (A − µ(X),X)

izomorficznie odwzorowuje (g̃, [⋅, ⋅]Θ1) w (g̃, [⋅, ⋅]Θ2),
[εµ(A1,X1), εµ(A2,X2)]Θ2 = (Θ2(X1,X2), [X1,X2]g) = (Θ1(X1,X2) − µ([X1,X2]g), [X1,X2]g)

≡ εµ([(A1,X1), (A2,X2)]Θ1
) .

Ilekroć Θ jest 2-kobrzegiem, Θ = δ
(1)
g µ, µ ∈ C1

0(g;a), możemy włożyć g w g̃ przy użyciu
odwzorowania K-liniowego

σµ ∶ gÐ→ g̃ ∶ X z→ (−µ(X),X)
w oczywisty sposób bȩda̧ce K-liniowym ciȩciem πg i podnosza̧ce siȩ do monomorfizmu algebr
Liego,

[σµ(X1), σµ(X2)]Θ = [(−µ(X1),X1), (−µ(X2),X2)]Θ = (Θ(X1,X2), [X1,X2]g)

= (−µ ([X1,X2]g) , [X1,X2]g) ≡ σµ ([X1,X2]g) .
Krótki cia̧g dokładny algebr Liego stowarzyszony z opisanym rozszerzeniem rozszczepia siȩ.

I odwrotnie, dowolne ciȩcie πg w kategorii algebr Liego jest nieodzownie postaci

σµ ∶ gÐ→ g̃ ∶ X z→ (−µ(X),X)

dla pewnego µ ∈ HomK(g,a) o własności

(Θ(X1,X2), [X1,X2]g) = [σµ(X1), σµ(X2)]Θ = σµ ([X1,X2]g) = (−µ ([X1,X2]g) , [X1,X2]g) ,

zatem Θ = δ(1)g µ, zgodnie z teza̧ dowodzonego stwierdzenia. �

Nasze studium podsumowuje

Twierdzenie 1. Niechaj (g, [⋅, ⋅]g) bȩdzie algebra̧ Liego. Istnieje kanoniczna bijekcja miȩdzy
CE2(g) i zbiorem klas równoważności rozszerzeń centralnych g przez R. W obrazie tej bijekcji
klasa trywialna CE2(g) odpowiada klasie równoważności rozszerzenia rozszczepionego.

Przed przysta̧pieniem do egzemplifikacji powyższych abstrakcyjnych rozważań i ich umieszczeniem
w kontekście fizykalnym poddamy nasz ostatni wynik reinterpretacji pozwalaja̧cej na wyrobienie
sobie w odniesieniu do niego przydatnej intuicji (o istotnych konsekwencjach geometrycznych).
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Uwaga 1. Istnienie rozszerzenia centralnego g przez a wyznaczanego przez Θ implikuje try-
wializacjȩ cofniȩcia 2-kocyklu

Θ̃ ∶= π∗gΘ ∶ g̃×2 Ð→ a ∶ ((A1,X1), (A2,X2)) z→ Θ(X1,X2)
opisana̧ wzorem

Θ̃ = δ(1)g̃ µ̃ , µ̃ ∶= −πa ∶ g̃Ð→ a ∶ (A,X) z→ −A.(3)

Tym sposobem nietrywialny 2-kocykl na wyjściowej algebrze g znajduje swoja̧ (kohomologiczna̧)
trywializacjȩ na jej rozszerzeniu g̃. Skojarzenie z trywializacja̧ 2-kocyklu de Rhama6 (czyli 2-
formy zamkniȩtej), takiego jak np. 2-forma Maxwella opisuja̧ca (w formacie jawnie lorentzowsko
współzmienniczym) natȩżenie pola elektromagnetycznego, na przestrzeni totalnej wia̧zki liniowej
(lub głównej) z powia̧zaniem o krzywiźnie tożsamej z tymże 2-kocyklem, jest w pełni usprawiedli-
wione i wiedzie wprost do systematycznego studium „całkowania” rozszerzeń centralnych algebr
Liego, patrz: praca Tuynmana i Wiegenrincka [TW87].

3. Przykład pogla̧dowy

Na pierwszy rzut oka rozszerzenia algebr moga̧ siȩ wydawać strukturami dość egzotycznymi i
ezoterycznymi. O ich powszechności i naturalności w ramach kanonicznego opisu symetrii cia̧głych
w mechanice klasycznej i teorii pola w terminach odnośnych ładunków Noether oraz w opera-
torowym opisie tychże symetrii w teorii kwantowej przekona uważnego Czytelnika każdy rzetelny
kurs z tych dziedzin, w którym bȩda̧ omawiane anomalie algebr ładunków i pra̧dów symetrii w
obecności – np. – ładunku topologicznego na obiektach elementarnych teorii fizycznej (naład-
owanych cza̧stkach punktowych, pȩtlach itp.), wzgl. rzutowych realizacji symetrii klasycznych na
przestrzeni Hilberta układu fizycznego. Prostej ilustracji takiego fizykalnego scenariusza dostarcza
poniższa dyskusja szczegółowa.

Przedmiotem naszego zainteresowania w niniejszym przykładzie sa̧ realizacje symetrii transla-
cyjnej w prostych układach mechanicznych – zarówno w reżymie klasycznym, jak i kwantowym –
w kontekście rozszerzeń centralnych algebr i grup Liego. Tytułem przygotowania do ich omówienia
rozważmy komutatywna̧ algebrȩ Liego o 4 generatorach

t(3) = ⊕
µ∈{1,2,3}

⟨Pi⟩R

i nawiasach Liego

[Pi, Pj] = 0 , i, j ∈ {1,2,3} ,
czyli stycznościowa̧ algebrȩ Liego przemiennej grupy Liego translacji (w) R×3 ≡ T(3) o operacji
binarnej

m ∶ T(3) ×T(3) Ð→ T(3) ∶ (xi, yi) z→ (xi + yi) ,
odwrotności

Inv ∶ T(3) ↺ ∶ (xi) z→ (−xi)
i elemencie neutralnym

e = (0,0,0,0) .
Operacja binarna pozwala zdefiniować działanie lewe regularne grupy T(3) na sobie, dane wzorem

`⋅ ∶ T(3) Ð→ Diff∞(T(3)) ∶ (xi) z→m((xi), ⋅) ≡ (xi + ⋅) =∶ `(xi) ,

do którego bȩdziemy siȩ odwoływać w dalszej czȩści naszych rozważań.
Jednym z pytań, na które poszukamy odpowiedzi, jest wpływ ładunku niesionego przez obiekt

fundamentalny układu mechanicznego na realizacjȩ rzeczonej symetrii translacyjnej w formalizmie

6W kontekście geometrycznym trywializacja 2-kocyklu F ∈ Z2
dR(M,R) wymaga jeszcze spełnienia warunku

Per(F) ⊂ 2πZ (w którego zapisie Per(F) jest grupa̧ przemienna̧ tzw. okresów 2-kocyklu F, czyli wyników jego
całkowania po 2-cyklach homologicznych w M).
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kanonicznym. Ujawnienie takiego wpływu wymaga obecności zewnȩtrznego pola elektromagnetycz-
nego, którego naturalnym modelem matematycznym (uwzglȩdniaja̧cym relatywistyczna̧ niezmien-
niczość maxwellowskiej dynamiki) jest 2-kocykl de Rhama na przestrzeni konfiguracyjnej układu
mechanicznego zdefiniowany w terminach natȩżenia pola elektrycznego oraz indukcji magnetycz-
nej. Jako że celem naszym jest studium mechaniki nierelatywistycznej na ciȩciu stałego czasu,
ograniczymy siȩ do składowej przestrzenno-przestrzennej tegoż 2-kocyklu, która̧ identyfikujemy z
polem indukcji magnetycznej. Niechaj zatem

(ωij = −ωji) ∈ R(3)
bȩdzie dowolna̧ niezerowa̧ macierza̧. Oznaczywszy elementy bazy t(3)∗ ≅ R×3 dualnej do {Pi}i∈{1,2,3}
jako πi, i ∈ {1,2,3},

πi(Pj) = δij , i, j ∈ {1,2,3} ,
definiujemy 2-kołańcuch na t(3) o wartościach w trywialnym t(3)-module R wzorem

ω ∶= ωij πi ∧ πj ∈ C2(t(3);R) ,(4)

tj. dla dowolnej pary wektorów XA =Xi
A Pi ∈ t(3), A ∈ {1,2} mamy

ω(X1,X2) = 2ωijX
i
1X

j
2 .

Bez trudu sprawdzamy zamkniȩtość ω licza̧c (dla dowolnych XB =Xi
B Pi ∈ t(3), B ∈ {0,1,2} )

δ
(2)
t(3)ω(X0,X1,X2)

= −ω(Xi
0X

j
1 [Pi, Pj]t(3),X3) + ω(Xi

0X
j
2 [Pi, Pj]t(3),X1) − ω(Xi

1X
j
2 [Pi, Pj]t(3),X0) = 0 .

Mamy zatem do czynienia z 2-kocyklem Chevalleya–Eilenberga,

ω ∈ Z2(t(3);R) .
Załóżmy, że jest to 2-kobrzeg, tj., że istnieje 1-kołańcuch θ ∈ C1(t(3);R) ≡ t(3)∗ o własności

ω = δ(1)
t(3)θ ,

która tłumaczy siȩ na warunek

2ωijX
i
1X

j
2 = ω(X1,X2) != δ(1)

t(3)θ(X1,X2) = −θ(Xi
1X

j
2 [Pi, Pj]) = −θ(0t(3)) ≡ 0 ,

prowadza̧cy do sprzeczności z założeniem o niezerowości ω. 2-kocykl ω definiuje zatem nietry-
wialna̧ klasȩ

[ω]t(3) ∈ CE2(t(3)) ,
wiȩc także – w zgodzie z teza̧ Stw. 4 – rozszerzenie centralne

0Ð→ R
RÐÐ→ t̃(3)ω

πt(3)ÐÐÐÐ→ t(3) Ð→ 0 .(5)

W tym kontekście 2-kocykl ω bȩdziemy określać mianem 2-kocyklu rozszerzenia t̃(3)ω. W
świetle konstruktywnego dowodu Stw. 4 jako reprezentanta klasy równoważności takich rozszerzeń
możemy przyja̧ć

(t̃(3)ω = R⊕ t(3), [⋅, ⋅]
t̃(3)ω

) .

Oznaczywszy wektory bazowe w t̃(3)ω jako

Z ∶= (1,0) , P̃ i ∶= (0, Pi) , i ∈ {1,2,3} ,
dostajemy algebrȩ Liego

[P̃ i, P̃ j]t̃(3)ω = 2ωij Z , [P̃ i, Z]
t̃(3)ω

= 0
t̃(3)ω

, [Z,Z]
t̃(3)ω

= 0
t̃(3)ω

.

Bez trudu „całkujemy” powyższe rozszerzenie algebry Liego do rozszerzenia grupy Liego T(3)
przez R opisywanego przez krótki cia̧g dokładny grup Liego

1Ð→ R IRÐÐ→ T̃(3)ω
ΠT(3)ÐÐÐÐ→ T(3) Ð→ 1 ,(6)
10
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w którego zapisie IR i ΠT(3) sa̧ homomorfizmami grup Liego. W obecnych nader nieskomp-
likowanych okolicznościach moglibyśmy wrȩcz zgadna̧ć postać tego rozszerzenia, my jednak pój-
dziemy inna̧ droga̧, która pozwala powrócić do geometrycznego punktu wyjścia naszych rozważań,
a przy tym okazuje siȩ znajdować zastosowanie w okolicznościach dużo mniej oczywistych (np. w
kontekście ładunkowych rozszerzeń (super)algebr Liego supersymetrii – patrz: praca [CdAIPB00]).

Zaczniemy od reinterpretacji powyższego zagadnienia i otrzymanego wyniku w terminach ra-
chunku różniczkowego na grupie Liego R×3. Zaczynamy od komutatywnej algebry pól translacyjnie
(lewo-)niezmienniczych na R×3, dla których baza̧ sa̧ pola

Li ≡ LPi ≡ ∂i , i ∈ {1,2,3}
o trywialnych komutatorach

[Li, Lj] = 0 , i, j ∈ {1,2,3} .
Dualna̧ bazȩ przestrzeni 1-form translacyjnie (lewo-)niezmienniczych na R×3 tworza̧ 1-formy

θiL = dxi , i ∈ {1,2,3} .
Odpowiednikiem 2-kocyklu ω jest tutaj 2-kocykl de Rhama

Ω = ωij dxi ∧ dxj ,

jawnie translacyjnie (lewo-)niezmienniczy, lecz nieposidaja̧cy 1-formy pierwotnej o tej samej włas-
ności. Istotnie, 1-forma taka musiałaby być postaci

Θ = Θi dx
i , Θi ∈ R

(R-liniowa kombinacja bazowych 1-form translacyjnie (lewo-)niezmienniczych), co jednak dopro-
wadziłoby nas do sprzeczności

0 ≠ Ω
!= dΘ = ∂jΘi dx

j ∧ dxi = 0 .

Należy w tym momencie dobitnie podkreślić (rzecz oczywista̧): 2-forma Ω jest dokładna w koho-
mologii de Rhama (trywialnej dla R×3) – ma np. 1-formȩ pierwotna̧

ϑ(x) = ωij xi dxj ,
nie jest natomiast dokładna w kohomologii (lewo)niezmienniczej.

W świetle Uwagi 1 możemy oczekiwać, że trywializacja w kohomologii Cartana–Eilenberga
bȩdzie możliwa dopiero po cofniȩciu Ω na grupȩ Liego T̃(3)ω o algebrze Liego t̃(3)ω otrzymanej
uprzednio. Postać tej ostatniej każe nam podejrzewać, że jako zbiór grupa T̃(3)ω bȩdzie postaci7

R ×T(3), z kanonicznym rzutem

ΠT(3) ≡ pr2 ∶ R ×T(3) Ð→ T(3)
jako epimorfizmem grup Liego współokreślaja̧cym rozszerzenie, przy czym pierwszy czynnik kartez-
jański bȩdzie podgrupa̧ przemienna̧ (o algebrze Liego R), a poszukiwana operacja binarna m̃
na R × T(3) bȩdzie wprowadzać „poprawkȩ” do odnośnej operacji binarnej (dodawania) zależna̧
od drugich składowych argumentów. Jak wyznaczyć m̃? Zauważmy po pierwsze, że lewo-T̃(3)ω-
niezmiennicza 1-forma pierwotna Θ̃ dla Π∗

T(3)Ω spełnia tożsamość

dΘ̃ = Π∗
T(3)Ω = dΠ∗

T(3)ϑ Ô⇒ Θ̃ −Π∗
T(3)ϑ ∈ Z1(T̃(3)ω,R) ,

a ponieważ T̃(3)ω w antycypowanej postaci także jest ścia̧galna, przeto

Θ̃ = dF +Π∗
T(3)ϑ

dla pewnej gładkiej funkcji F ∈ C∞(T̃(3)ω,R), przy czym w świetle Równ. (3), które identy-
fikuje Θ̃ jako 1-formȩ dualna̧ do pola lewoniezmienniczego ∂Z na przemiennej grupie Liego R (o
kartezjańskiej współrzȩdnej globalnej Z) rozszerzaja̧cej T̃(3)ω, oczekujemy tożsamości

dF ≡ −dZ .
7Rzecz jasna, nie ma jedynej grupy Liego odpowiadaja̧cej danej algebrze Liego R. W naszych rozważaniach

dokonujemy po prostu wyboru najprostszego.
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Postulujemy zatem

Θ̃(Z,x) = −dZ + ωij xi dxj .
Po drugie „zmienniczość” znalezionej przez nas 1-formy pierwotnej dla Ω wzglȩdem lewych trans-
lacji na R×3 przybiera szczególnie prosta̧ postać: oto poprawka do ϑ bȩda̧ca wynikiem cofniȩcia ϑ
wzdłuż `(εi) dla stałego wektora ε ≡ (εi) ∈ R×3 jest 1-forma̧ zamkniȩta̧ (to konstatacja niezależna
od grupy Liego, na której rozpatrujemy kohomologiȩ Cartana–Eilenberga),

dϑ = Ω = `∗εΩ = `∗εdϑ = d`∗εϑ Ô⇒ `∗εϑ − ϑ ∈ Z1(T(3),R) ,
wiȩc też dokładna̧ w konsekwencji trywialności kohomologii de Rhama T(3),

(`∗εϑ − ϑ)(x) = d(ωij εi xj) .

To w poła̧czeniu z wcześniejszym postulatem dotycza̧cym postaci Θ̃ pozwala wyprowadzić możliwa̧
postać operacji binarnej m̃ z warunku niezmienniczości Θ̃ wzglȩdem lewostronnych translacji na
T̃(3)ω indukowanych przez m̃ właśnie. Istotnie, jeśli zapiszemy

̃̀(0,ε)(Z,xi) ≡ m̃((0, εi), (Z,xi)) =∶ (Φ(Z,x, ε), xi + εi) ,
uwzglȩdniaja̧c po drodze homomorficzny charakter ΠT(3) ≡ pr2, to z warunku lewoniezmienniczości
Θ̃,

−dΦ(Z,x, ε) + ωij (xi + εi)dxj = `∗(0,ε)Θ̃(Z,x) != Θ̃(Z,x) = −dZ + ωij xi dxj ,
odczytujemy (modulo constans)

Φ(Z,x, ε) = Z + ωij εi xj ,

co prowadzi nas do zapostulowania operacji binarnej na T̃(3)ω w postaci

m̃ ∶ T̃(3)ω × T̃(3)ω Ð→ T̃(3)ω ∶ ((Z1, x
i
1), (Z2, x

j
2)) z→ (Z1 +Z2 + ωmn xm1 xn2 , x

i
1 + xi2) .

Pozostaje jeszcze tylko sprawdzić, że tak określona operacja binarna jest ła̧czna. O tym, że tak
jest w istocie, przekonuje bezpośredni rachunek – z jednej strony:

m̃(m̃((Z1, x
i
1), (Z2, x

j
2)), (Z3, x

ρ
3)) = m̃((Z1 +Z2 + ωmn xm1 xn2 , x

i
1 + xi2), (Z3, x

ρ
3))

= (Z1 +Z2 + ωmn xm1 xn2 +Z3 + ωmn (xm1 + xm2 )xn3 , xi1 + xi2 + xi3) ,
z drugiej zaś:

m̃((Z1, x
i
1), m̃((Z2, x

j
2), (Z3, x

ρ
3))) = m̃((Z1, x

i
1), (Z2 +Z3 + ωmn xm2 xn3 , x

j
2 + x

j
3))

= (Z1 +Z2 +Z3 + ωmn xm2 xn3 + ωmn xm1 (xn2 + xn3 ), xi1 + xi2 + xi3) .
Rekonstrukcjȩ krótkiego cia̧gu dokładnego grup Liego (6) „odcałkowuja̧cego” wyjściowy krótki cia̧g
dokładny algebr Liego (5) uzupełniamy dokonuja̧c identyfikacji monomorfizmu

IR ∶ RÐ→ T̃(3)ω ∶ r z→ (r,0) .
Na tym etapie mamy już nie tylko rozszerzenie centralne grupy T(3), ale także – lewoniezmiennicza̧
bazȩ wia̧zki kostycznej T̃(3)ω:

Θ̃(Z,x) = −dZ + ωij xi dxj , θ̃iL(Z,x) = dxi , i ∈ {0,1,2,3} .
Wuzupełnieniu roztrza̧sań różniczkowo-geometrycznych wyznaczamy bazȩ lewoniezmiennicza̧ wia̧z-
ki stycznej T̃(3)ω (w tym – podniesienia pól lewoniezmienniczych z T(3)), do której ta powyżej
jest dualna̧:

LZ(Z,x) = ∂
∂Z

, LP̃ i
(Z,x) = ∂

∂xi − ωij xj ∂
∂Z

, i ∈ {0,1,2,3} .
W bazie tej spełnione sa̧ oczekiwane relacje komutacji

[LP̃ i
, LP̃ j

] = 2ωij LZ , [LP̃ i
, LZ] = 0 , [LZ , LZ] = 0 .

12
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Na zakończenie niniejszego studium przypadku wskażemy kontekst fizykalny, w którym real-
izowany jest powyższy scenariusz algebro-geometryczny. Punktem wyjścia jest tutaj lagranżjan
(nierelatywistycznej) cza̧stki punktowej o masie m poruszaja̧cej siȩ w metryce δE = δij dxi ⊗ dxj

w przestrzeni euklidesowej R×3, dany w postaci

L(x, ẋ) = m
2
δij ẋ

i ẋj .

Wyprowadzamy z niej formułȩ na pȩd kinetyczny

p = pi dxi , pi = ∂L
∂ẋi = δijmẋj .

W opisie kanonicznym teorii znajdujemy nawiasy Poissona

{xi, pj}Ω = δij , {xi, xj}Ω = 0 , {pi, pj}Ω = 0 , i, j ∈ {1,2,3} ,(7)

których postać wynika wprost z postaci (Darboux) formy presymplektycznej

Ω(x, p) = dpi ∧ dxi

modelu, otrzymanej zeń np. w formalizmie pierwszego rzȩdu. Warto tu w szczególności zwrócić
baczna̧ uwagȩ na komutatywna̧ algebrȩ (Poissona) pȩdów kinetycznych:

{pi, pj}Ω = 0 , i, j ∈ {1,2,3} .
Pola hamiltonowskie na przestrzeni stanów układu fizykalnego T∗R×3 sparametryzowanej przez
pary (xµ, pj) (dane Cauchy’ego trajektorii klasycznej) stowarzyszone z tymi pȩdami to

Vpi = ∂
∂xi , Vpi ⌟Ω = −dpi , i ∈ {1,2,3} .

Przechodza̧c do lagranżjanu (nierelatywistycznej) cza̧stki punktowej o masie m i ładunku elek-
trycznym q poruszaja̧cej siȩ w przestrzeni euklidesowej R×3 w metryce δE i stałym polu magne-
tycznym B = Bi ∂i o potencjale wektorowym A = Ai ∂i, Ai(x) = − 1

2
ε i
jk xj Bk,

L(x, ẋ) = m
2
δij ẋ

i ẋj + q δij Ai(x) ẋj ,
znajdujemy – obok wprowadzonego wcześniej pȩdu kinetycznego

p =mδij ẋ
j dxi ≡ pi dxi ,

także pȩd kanoniczny

π = πi dxi , πi = ∂L
∂ẋi = δij (mẋj + qAj(x)) .

Forma presymplektyczna to tym razem

ΩF(x, p) = dπi ∧ dxi = dpi ∧ dxi + qF , F ≡ 1
2
εijkB

i dxj ∧ dxk =∶ fij dxi ∧ dxj .

Parametryzuja̧c przestrzeń stanów układu fizykalnego tak jak poprzednio, czyli parami (xi, pi)
(zamiast parami kanonicznie sprzȩżonymi (xi, πi)), wyznaczamy bez trudu elementarne pola
hamiltonowskie:

Vxi(x, p) = − ∂
∂pi

, Vxi ⌟ΩF = −dxi ,

Vpi(x, p) = ∂
∂xi − 2q fij

∂
∂pj

, Vpi ⌟ΩF = −dpi
oraz odnośne nawiasy Poissona

{xi, pj}ΩF
= δij , {xi, xj}ΩF

= 0 , {pi, pj}ΩF
= 2q fij , i, j ∈ {1,2,3} .(8)

Zauważmy, że w ograniczeniu do podalgebr w odnośnych algebrach Liego–Poissona

(C∞(T∗R×3,R),{⋅, ⋅}Ω) vs (C∞(T∗R×3,R),{⋅, ⋅}ΩF
)

generowanych przez pȩdy kinetyczne wła̧czenie stałego pola magnetycznego B możemy zinterpre-
tować jako omówione wcześniej rozszerzenie (na poziomie liniowym w generatorach)

t(3) ωÐÐÐ→ t̃(3)F , ωij ≡ fij ,
w którym dodatkowym generatorem jest. . . ładunek elektryczny cza̧stki,

LZ = R(1) ≡ q !
13
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Ten sposób myślenia o „ładunkach” niesionych przez cza̧stki okazuje siȩ być niezwykle naturalny,
uniwersalny i płodny – patrz: np. praca Gauntletta, Gomisa i Townsenda [GGT90].

Na obecnym etapie pozostaje jeszcze odpowiedzieć na pytanie o fizykalna̧ realizacjȩ znalezionego
wcześniej grupowego wariantu rozszerzenia (6). Okazuje siȩ, że ten jest zwia̧zany z pewnym
wyróżnionym schematem kwantowania opisanego modelu fizykalnego, którego elementy omówimy
poniżej. Zaczniemy od kanonicznego skwantowania relacji (7), tj. wskazania ośrodkowej przestrzeni
Hilberta H i operatorowej realizacji na niej (w terminach operatorów samosprzȩżonych) algebry
Heisenberga

[x̂i, p̂j] = i h̵ δij idH , [x̂i, x̂j] = 0 , [p̂i, p̂j] = 0 , i, j ∈ {1,2,3} .
Jak powszechnie wiadomo (choćby z kursu Mechaniki kwantowej I), realizacji takiej dostarcza
przestrzeń Hilberta L2(R3,d3x) funkcji (zespolonych) na R3 całkowalnych z kwadratem (wzglȩdem
standardowej miary Lebesgue’a) – realizacja ta przyjmuje znajoma̧ prosta̧ postać:

x̂i ≡ xi , p̂i = −i h̵ ∂
∂xi , i ∈ {1,2,3} .

To kwantowomechaniczny elementarz (choć same operatory x̂i i p̂j okazuja̧ siȩ być dość narow-
iste). Pytanie brzmi: Jak zrealizować algebrȩ

[x̂i, p̂j] = i h̵ δij idH , [x̂i, x̂j] = 0 , [p̂i, p̂j] = 2i h̵ q fij idH , i, j ∈ {1,2,3}
(9)

otrzymana̧ w wyniku kanonicznego skwantowania relacji (8) w obecności ładunku elektrycznego
(i zewnȩtrznego pola magnetycznego)? I czy ma to cokolwiek wspólnego z rozszerzeniem T̃(3)?
Konstruktywnej odpowiedzi na pierwsze z tych pytań i zarazem pozytywnej odpowiedzi na drugie
z nich dostarcza schemat kwantowania rozwiniȩty przez Kostanta i Souriau8, który określamy
mianem kwantowania geometrycznego. Na zakończenie niniejszych notatek zaprezentujemy jedynie
jego wynik w rozważanym modelu fizykalnym, zastȩpuja̧c przy tym addytywna̧ grupȩ R rozsze-
rzenia T̃(3) nad baza̧ R×3 multyplikatywna̧ grupa̧ okrȩgu U(1) ≅ R/2πZ ≅ S1, co daje nam (po
dodatkowej, trywialnej transpozycji składników kartezjańskich) rozszerzenie

π ≡ pr1 ∶ ŨT(3)ω ∶= R×3 ×U(1) Ð→ R×3(10)

z działaniem binarnym

ŨT(3)ω × ŨT(3)ω Ð→ ŨT(3)ω ∶ ((xi1, u1), (xi2, u2)) z→ (xi1 + xi2, u1 ⋅ u2 ⋅ e2iωmn x
m
1 xn

2 )(11)

i indukowanym przezeń działaniem (lewym) ŨT(3)ω na sobie

λω⋅ ∶ ŨT(3)ω × ŨT(3)ω Ð→ ŨT(3)ω

∶ ((εi, ζ), (xi, z)) z→ (xi + εi, z ⋅ ζ ⋅ e2iωmn ε
m xn

) ≡ λ(ε,ζ)(x, z) .
Tak przygotowani możemy już przysta̧pić do konstrukcji operatorowej realizacji algebry (9). Tej
dostarczaja̧ po raz kolejny funkcje (zespolone) na T∗R3 całkowalne z kwadratem (i odpowied-
nio spolaryzowane – np. w polaryzacji/„reprezentacji” pȩdowej), na których tym razem zadajemy
operatory

x̂i(x, p) = ih̵ ∂
∂pi

, p̂i(x, p) = −ih̵ ( ∂
∂xi − q εijkBk ∂

∂pj
) + pi − 1

2
q εijk x

j Bk .

Operatory te otrzymujemy z ogólnego przepisu

hz→ −ih̵Vh − Vh ⌟ η + h ≡ ĥ ,
w którym Vh jest polem hamiltonowskim stowarzyszonym z h ∈ C∞(T∗R×3,R), η ∈ Ω1(T∗R×3)
zaś jest dowolna̧ 1-forma̧ pierwotna̧ dla 2-kocyklu ΩF, która w naszym wypadku została wybrana
w postaci

η(x, p) = −xi dπi(x, p) = −xi (dpi + 1
2
q εijkB

j dxk) .

8Schemat ten został w nader przystȩpny sposób przedstawiony w monografii Woodhouse’a [Woo92].
14



Grupy w czasach Zarazy – 5. i 6. Un tout petit peu de kohomologia i qu’est-ce que z tego wynika

Bez trudu przekonujemy siȩ, że wypisane powyżej operatory różniczkowe spełniaja̧ poża̧dane
relacje komutacyjne. Ażeby zrozumieć, w jaki sposób ich struktura i działanie na L2(T∗R×3,R)
wia̧że siȩ z rozszerzeniem (10), musimy wrócić do modelu klasycznego.

Model klasyczny ma symetrie cia̧głe: pod wpływem translacji `ε o stały wektor ε ∈ R×3 la-
granżjan zmienia siȩ o zupełna̧ pochodna̧ czasowa̧

L(`ε ○ x, (`ε ○ x)
⋅) = L(x, ẋ) + Ḟ (x)

funkcji gładkiej

F (x) = 1
2
q εijk ε

i xj Bk .

Oczekiwanie, iżby symetrie te podnosiły siȩ do teorii kwantowej, jest w pełni uzasadnione. Tu
jednak natrafiamy na obstrukcjȩ: o ile operator położenia jest nieczuły na przesuniȩcia, operator
pȩdu podlega transformacji

p̂i(`ε(x), p) = p̂i(x, p) − 1
2
q εijk ε

j Bk ,

jeśli zatem nie poddamy stosownej korekcie (fazowej) funkcji falowej ψ ∈ L2(T∗R×3,R), wartości
oczekiwane tego operatora i wszelkich operatorów pochodnych,

⟨O(x̂i, p̂j)⟩ψ ≡ ∫
T∗R×3

Vol(T∗R×3; ΩF)ψ(x, p)O(x̂i, p̂j)(x, p)ψ(x, p)

nie bȩda̧ niezmiennicze wzglȩdem przesuniȩć (należy zwrócić uwagȩ, że 2-forma symplektyczna
ΩF jest translacyjnie niezmiennicza, cechȩ tȩ ma zatem także symplektyczna forma objȩtości
Vol(T∗R×3; ΩF)). Jest przy tym jasne, że konieczna postać9 transformacji symetrii funkcji falowej

L2`⋅ ∶ T(3) ×L2(T∗R×3,R) Ð→ L2(T∗R×3,R) ∶ ((εi), ψ) z→ ε ⊳ ψ ≡ L2`ε(ψ) ,

(ε ⊳ ψ)(x, p) = e−
iq
2h̵ εijk ε

i xj Bk ⋅ ψ(`−ε(x), p)
(uwzglȩdniliśmy to, że działanie na argumencie funkcji falowej poprzez cofniȩcie wzdłuż `ε jest
działaniem prawym, my zaś da̧żymy do skonstruowania działania lewego). Istotnie, oczekiwana
niezmienniczość amplitud jest wówczas prosta̧ konsekwencja̧ translacyjnej niezmienniczości sym-
plektycznej miary objȩtości,

⟨O(x̂i, p̂j)⟩ε⊳ψ = ∫
T∗R×3

Vol(T∗R×3; ΩF) (ε ⊳ ψ)(x, p)O(x̂i, p̂j)(x, p) (ε ⊳ ψ)(x, p)

= ∫
T∗R×3

Vol(T∗R×3; ΩF)ψ(`−ε(x), p) ⋅ e
iq
2h̵ εijk ε

i xj Bk

⋅O(x̂i, p̂j)(x, p) e−
iq
2h̵ εijk ε

i xj Bk

⋅ ψ(`−ε(x), p)

= ∫
T∗R×3

Vol(T∗R×3; ΩF)ψ(`−ε(x), p) ⋅ O(x̂i, p̂j + 1
2
q εjkl ε

kBl)(x, p)ψ(`−ε(x), p)

= ∫
T∗R×3

Vol(T∗R×3; ΩF)ψ(`−ε(x), p) ⋅ O(x̂i, p̂j)(`−ε(x), p)ψ(`−ε(x), p)

= ⟨O(x̂i, p̂j)⟩ψ .

Na obecnym etapie zasadnym wydaje siȩ ustalenie własności odwzorowania L2`⋅. Czy mamy do
czynienia z działaniem grupy T(3)? W bezpośrednim rachunku stwierdzamy

(L2`ε1 ○ L2`ε2)(ψ)(x, p) = e−
iq
2h̵ εijk ε

i
1 x

j Bk

⋅ (L2`ε2(ψ))(`−ε1(x), p)

= e−
iq
2h̵ εijk ε

i
1 x

j Bk

⋅ e−
iq
2h̵ εijk ε

i
2 `−ε1(x)

j Bk

⋅ ψ(`−ε2 ○ `−ε1(x), p)

= e−
iq
2h̵ εijk ε

i
1 ε

j
2B

k

⋅ e−
iq
2h̵ εijk (ε1+ε2)i xj Bk

⋅ ψ(`−(ε1+ε2)(x), p)

≡ e−
iq
2h̵ εijk ε

i
1 ε

j
2B

k

⋅ L2`ε1+ε2(ψ)(x, p) ,

9Zauważmy, że operator położenia pozostaje niezmieniony pod wpływem translacji `ε.
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zatem L2`⋅ nie jest działaniem. Jest natomiast działaniem rzutowym, a ponieważ takie dzi-
ałania czȩsto spotykanym w kontekście kwantowania symetrii klasycznych (w zwia̧zku ze swoboda̧
redefinicji fazy funkcji falowej), przeto omówimy je po krótce w pewnej ogólności. Oto wiȩc mamy
do czynienia z realizacja̧ grupy G na przestrzeni K-liniowej V , czyli homomorfizmem

GÐ→ GL(V,K)/K× ≡ PGL(V,K)
grupy G w grupȩ ilorazowa̧ PGL(V,K), określana̧ mianem rzutowej grupy głównej liniowej
przestrzeni V , który możemy równoważnie opisywać jako odwzorowanie

R ∶ GÐ→ GL(V,K)
o własności

∀g,h∈G ∃c(g,h)∈K× ∶ R(g) ○R(h) = c(g, h) ⊳ R(g ⋅ h) .
Można zadać pytanie, kiedy tak określone odwzorowania współdeterminuja̧ działanie rozszerzenia
centralnego G przez K×,

1Ð→ K× (eG,idK×)ÐÐÐÐÐÐÐ→ G ×K× ≡ G̃
pr1ÐÐÐ→ GÐ→ 1

o operacji binarnej

µ̃ ∶ G̃ × G̃Ð→ G̃ ∶ ((g1, k1), (g2, k2)) z→ (g1 ⋅ g2, k1 ⋅ k2 ⋅ c(g1, g2)) .(12)

Jest to możliwe, gdy odwzorowanie

c ∶ G ×GÐ→ K× ∶ (g, h) z→ c(g, h)(13)

spełnia warunek

∀g1,g2,g3∈G ∶ c(g1, g2) ⋅ c(g1 ⋅ g2, g3) = c(g2, g3) ⋅ c(g1, g2 ⋅ g3) ,(14)

oto bowiem wtedy zapostulowana powyżej operacja binarna µ̃ okazuje siȩ być ła̧czna, a my
możemy zadać działanie grupy G̃ w postaci odwzorowania

R̃ ∶ G̃Ð→ GL(V,K) ∶ (g, k) z→ k ⊳ R(g) ,
którego homomorficzność sprawdzamy w bezpośrednim rachunku:

R̃(g1, k1) ○ R̃(g2, k2) = k1 ⊳ R(g1) ○ (k2 ⊳ R(g2)) = k1 ⊳ (k2 ⊳ (R(g1) ○R(g2)))

= k1 ⋅ k2 ⊳ (c(g1, g2) ⊳ R(g1 ⋅ g2)) = k1 ⋅ k2 ⋅ c(g1, g2) ⊳ R(g1 ⋅ g2)

≡ R̃ ○ µ̃((g1, k1), (g2, k2)) .
Interpretacja samego warunku wymaga kolejnej

Definicja 4. Niechaj G bȩdzie grupa̧, A zaś – grupa̧ przemienna̧, na której określone jest dzia-
łanie (lewe) G, tj. dany jest homomorfizm grup

Λ⋅ ∶ GÐ→ AutGrp(A) ∶ g Ð→ Λg ,

przy czym jak zwykle bȩdziemy też pisać, nadużywaja̧c nieco notacji,

Λ ∶ G ×AÐ→ A ∶ (g, a) z→ g ⊳ a ≡ Λg(a) .
Mówimy, że para (A,Λ⋅) jest modułem grupy G. p-kołańcuch na G o wartościach w A
to odwzorowanie

f ∶ G×p Ð→ A,

przy czym dla p = 0 przyjmujemy konwencjȩ: G×0 ≡ {●} (singleton), z której wynika, że 0-
kołańcuch na G o wartościach w A to element A. Zbiór Cp(G;A) ≡ Map(G×p,A) takich
odwzorowań dziedziczy z A strukturȩ grupy przemiennej (z operacja̧ binarna̧ zdefiniowana̧ punk-
towo) – grupȩ tȩ określamy mianem grupy p-kołańcuchów na G o wartościach w A. Indek-
sowana przez N ∋ p rodzina grup kołańcuchów tworzy kompleks (ko)łańcuchowy

(C●(G;A), δ(●)G ) ∶ C0(G;A)
δ
(0)
GÐÐÐ→ C1(G;A)

δ
(1)
GÐÐÐ→ ⋯

δ
(p−1)
GÐÐÐÐ→ Cp(G;A)

δ
(p)
GÐÐÐ→ ⋯
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o operatorach kobrzegu

δ
(p)
G ∶ Cp(G;A) Ð→ Cp+1(G;A) , δ

(p+1)
G ○ δ(p)G = 0 , p ∈ N

danych wzorami (zapisanymi dla dowolnych gi ∈ G, i ∈ 0, p i c
k
∈ Ck(G;A), k ∈ {0, p > 0})

δ
(0)
G ϕ

0

(g0) = g0 ⊳ ϕ
0

− ϕ
0

,

δ
(p)
G ϕ

p

(g0, g1, . . . , gp) = g0 ⊳ ϕ
p

(g1, g2, . . . , gp) +
p

∑
j=1

(−1)j ϕ
p

(g0, g1, . . . , gj−2, gj−1 ⋅ gj , gj+1, gj+2, . . . , gp)

+(−1)p+1 ϕ
p

(g0, g1, . . . , gp−1) .

Grupa homologii powyższego kompleksu

H0(G;A) ≡ Z0(G;A) , Hp+1(G;A) ≡ Zp+1(G;A)/Bp+1(G;A) , p ∈ N ,
w której zapisie

Zp+1(G;A) ≡ Ker δ
(p+1)
G

to grupa (p + 1)-kocykli na grupie G o wartościach w G-module A, a

Bp+1(G;A) ≡ Im δ
(p)
G

to grupa (p+1)-kobrzegów na grupie G o wartościach w G-module A, nosi miano (p+1)-
tej grupy kohomologii grupy G o wartościach w G-module A. Suma prosta

H●(G;A) = ⊕
p∈N

Hp(G;A)

tych grup określa kohomologiȩ grupy G o wartościach w G-module A.

Uwaga 2. Warto zwrócić uwagȩ na to, że H0(G;A) to zbiór niezmienników działania Λ⋅.
Wprowadzona tu kohomologia dostarcza naturalnego uogólnienia pojȩcia niezmiennika. Odgrywa
niebagatelna̧ rolȩ w dyskusji cechowania symetrii sztywnych w teoriach fizycznych.

Bogatsi o powyższa̧ definicjȩ bez trudu identyfikujemy warunek (14) narzucony na odwzorowanie
(13): oto zdefiniowanie działania rozszerzenia centralnego G̃ zrealizowanej rzutowo grupy G
wymaga, iżby odwzorowanie to było 2-kocyklem na G o wartościach w trywialnym G-module
K× (z Λ⋅ ≡ idK×),

(14) ⇐⇒ c
!∈ Z2(G;K×) .

Bȩdziemy go nazywać 2-kocyklem działania rzutowego R. Zauważmy przy tym, że poprawie-
nie wyjściowego 2-kocyklu c o 2-kobrzeg δ

(1)
G d, d ∈ C1(G;K×) nie zmienia jakościowo sytuacji,

gdyż poprawka może być zaabsorbowana w redefinicjȩ odwzorowania R wedle schematu

R z→ Inv ○ d ⊳ R ≡ Rd ,
tj., jeśli R spełnia warunek

∀g,h∈G ∶ R(g) ○R(h) = c(g, h) ⋅ δ(1)G d(g, h) ⊳ R(g ⋅ h) ≡ c(g, h) ⋅ d(h) ⋅ d(g ⋅ h)−1 ⋅ d(g) ⊳ R(g ⋅ h) ,
to wówczas Rd spełnia warunek

∀g,h∈G ∶ Rd(g) ○Rd(h) = c(g, h) ⊳ Rd(g ⋅ h) .
Ponadto, rzecz jasna,

δ
(2)
G (c ⋅ δ(1)G d) = δ(2)G c ,

przeto koniec końców w rozpatrywanym przez nas zagadnieniu znaczenie ma jedynie klasa koho-
mologii 2-kocyklu działania rzutowego.

W naszych wcześniejszych rozważaniach fizykalnych realizacja algebry (9) doprowadziła nas
wprost do definicji działania rzutowego L2`⋅ grupy T(3) o własności

∀ε1,ε2∈T(3) ∶ L2`ε1 ○ L2`ε2 = e−
iq
2h̵ εijk ε

i
1 ε

j
2B

k

⊳ L2`ε1+ε2 .
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Łatwo przekonujemy siȩ, że pojawiaja̧cy siȩ tutaj 2-kołańcuch na T(3) o wartościach w trywialnym
T(3)-module U(1) (notacja multyplikatywna dla grupy przemiennej U(1)!) dany wzorem

cF ∶ T(3) ×T(3) Ð→ U(1) ∶ (ε1, ε2) z→ e−
iq
2h̵ εijk ε

i
1 ε

j
2B

k

jest 2-kocyklem,

δ
(2)
T(3)cF(ε1, ε2, ε3) = e−

iq
2h̵ εijk ε

i
2 ε

j
3B

k

⋅ e
iq
2h̵ εijk (ε1+ε2)i εj3B

k

⋅ e−
iq
2h̵ εijk ε

i
1 (ε2+ε3)j Bk

⋅ e
iq
2h̵ εijk ε

i
1 ε

j
2B

k

≡ 1 .

Obserwacja ta pozwala zrozumieć strukturȩ zapostulowanej przez nas transformacji symetrii funkcji
falowej jako odzwierciedlenie ukrytego za nia̧ działania rozszerzenia centralnego

1Ð→ U(1)
(0,idU(1))ÐÐÐÐÐÐÐ→ T(3) ×U(1) ≡ T̃(3)h̵

pr1ÐÐÐ→ T(3) Ð→ 1

na przestrzeni Hilberta ładunku elektrycznego w stałym polu magnetycznym. Porównuja̧c operacjȩ
binarna̧ indukowana̧ na rozszerzeniu T̃(3)h̵ w tych okolicznościach wedle schematu (12),

µ̃h̵ ∶ T̃(3)h̵ × T̃(3)h̵ Ð→ T̃(3)h̵ ∶ ((ε1, u1), (ε2, u2)) z→ (ε1 + ε2, u1 ⋅ u2 ⋅ e−
iq
2h̵ εijk ε

i
1 ε

j
2B

k

) ,

z operacja̧ binarna̧ (11) na grupie ŨT(3)ω otrzymanej przez (równoważne) scałkowanie central-
nego rozszerzenia algebry Liego t(3) indukowanego przez 2-kocykl ω na t(3), konstatujemy z
serdecznym wzruszeniem, iż

T̃(3)h̵ ≡ ŨT(3)ω , ωij ≡ − 1
2h̵
q fij = − 1

4h̵
q εijkB

k .

I na tym jednak nie koniec. . .Możemy wszak zadać pytanie o (naturalny) mechanizm indukcji dzia-
łania „kwantowej grupy translacji” T̃(3)h̵ na przestrzeni Hilberta skwantowanego geometrycznie
modelu dynamiki masywnego ładunku elektrycznego w stałym polu magnetycznym. Odpowiedź na
to pytanie nasuwa siȩ sama w geometrycznym paradygmacie opisu zjawisk fizykalnych, u którego
podstaw – tak w mechanice klasycznej, jak i w teorii pola (a nawet w niektórych schematach
kwantowania obu) – leży w wymiarze formalnym pojȩcie wia̧zki włóknistej (lub innej „wyższej ge-
ometrii”, jak (n-)wiecheć wia̧zek), które jest omawiane ze szczegółami i w konkretnych zastosowa-
niach na 2. i 3. semestrze wykładu monograficznego pt. „Elementy algebry i geometrii wyższej w
fizyce” Autora. Nie moga̧c zakładać znajomości dyskutowanych tam struktur geometrycznych i
algebraicznych, możemy jedynie – z braku czasu na rozleglejsza̧ argumentacjȩ – podsuna̧ć Czytel-
nikowi niezbȩdna̧ intuicjȩ, wywiedziona̧ z kursu Algebry.

Punktem wyjścia w konstrukcji, która̧ chcemy zaproponować, jest potraktowanie rozważanych
przez nas funkcji falowych ψ ∶ T∗R×3 Ð→ C jako odwzorowań z przestrzeni stanów T∗R×3 układu
fizycznego w produkt kartezjański T∗R×3 ×C tejże z rozmaitościa̧ C ≅ R×2 szczególnej postaci

(idT∗R×3 , ψ) ∶ T∗R×3 Ð→ T∗R×3 ×C ∶ (x, p) z→ ((x, p), ψ(x, p)) ,
czyli takich, które sa̧ prawymi odwrotnościami rzutu

pr1 ∶ T∗R×3 ×CÐ→ T∗R×3 .(15)

W jȩzyku wia̧zek włóknistych to ostatnie odwzorowanie nosi miano rzutu na bazȩ T∗R×3 wia̧zki
(trywialnej) T∗R×3 ×C, dla którego (idT∗R×3 , ψ) jest (globanym) ciȩciem. Tak określona wia̧zka
(pre)kwantowa10 T∗R×3 ×C jest wprost ze swej natury wia̧zka̧ jednowymiarowych przestrzeni C-
liniowych nad baza̧ T∗R×3 – w naszym przypadku każde jej włókno pr−1

1 ({(x, p)}) nad punktem
(x, p) ∈ T∗R×3 bazy jest po prostu przestrzenia̧ V ≡ C (w ogólnym przypadku mamy do czynienia
z przestrzenia̧ C-liniowa̧ niekanonicznie izomorficzna̧ z C). Wybór bazy w tej (i w każdej innej)
jednowymiarowej przestrzeni C-liniowej jest równoznaczny ze wskazaniem izomorfizmu

β ∶ C ≅ÐÐ→ V ,

a zbiór IsoC(C, V ) wszystkich takich izomorfizmów, wiȩc też zbiór wszystkich baz, jest naturalnie
utożsamialny z grupa̧ GL(1,C) ≡ C×. Można też, rzecz jasna, rozważać podklasȩ IsoH

C (C, V ) baz

10Konstrukcja, która̧ tu wprowadzamy „tylnymi drzwiami”, jest zupełnie ogólna i nie zawsze prowadzi do pro-
duktowej przestrzeni totalnej jak ta tutaj: T∗R×3 ×C. Ta uwaga ma na celu zdjȩcie z naszych dalszych rozważań
potencjalne odium trywialności, a zarazem sztuczności i nadmiarowości.
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powia̧zanych ze soba̧ transformacjami utożsamialnymi z dowolna̧ podgrupa̧ H ⊂ GL(1,C), np.
bazy Iso

U(1)
C (C, V ) z orbity działania podgrupy U(1) ⊂ C× ≡ GL(1,C). Należy podkreślić, że

każda̧ taka̧ H-orbitȩ można utożsamić z H niekanonicznie dopiero po wybraniu dowolnego jej
punktu. Maja̧c taki dowolny element β∗ ∈ IsoH

C (C, V ), jesteśmy w stanie odtworzyć wyjściowa̧
przestrzeń C-liniowa̧ V jako β∗(C). Z punktu widzenia geometryzacji dyskutowanych pojȩć i
operacji algebraicznych dużo bardziej naturalne wydaje siȩ pytanie o możliwość odtworzenia V
bez wyróżniania jakiejkolwiek bazy, czyli wprost ze zbioru IsoH

C (C, V ) × C. Usuniȩcie ∣H∣-krotnej
nadwyżki elementów musi przy tym uwzglȩdniać status ontologiczny wszystkich zaangażowanych
obiektów. W sukurs przychodzi nam podkreślana wyżej struktura H-torsora na IsoH

C (C, V ), która
podpowiada schemat „wyprojektowania” ∣H∣-krotnej nadwyżki poprzez przejście do przestrzeni
orbit diagonalnego działania H na IsoH

C (C, V ) ×C danego wzorem

H × (IsoH
C (C, V ) ×C) Ð→ IsoH

C (C, V ) ×C ∶ (h, (β, z)) z→ (β ○ h,h−1(z)) ,
w którym H traktujemy pedantycznie jako podgrupȩ GL(1,C). W wyniku tej operacji otrzymu-
jemy zbiór (orbit)

(IsoH
C (C, V ) ×C)/H ∋ [(β, z)]∼ ,

którego elementy to klasy abstrakcji [(β, z)]∼ wzglȩdem relacji równoważności

(β1, z1) ∼ (β2, z2) ⇐⇒ ∃h∈H ∶ (β2, z2) = (β1 ○ h,h−1(z1))
i który jest w sposób kanoniczny izomorficzny z V , a to poprzez odwzorowanie

[ev] ∶ (IsoH
C (C, V ) ×C)/H ≅ÐÐ→ V ∶ [(β, z)]∼ z→ β(z) ,

którego dobra określoność (tj. niezależność od wyboru reprezentanta klasy (β, z)]∼) wynika z
ła̧czności superpozycji odwzorowań,

∀h∈H ∶ β ○ h(h−1(z)) = β ○ (h ○ h−1)(z) = β(z) .

Istnienie izomorfizmu [ev] pozwala zaindukować na (IsoH
C (C, V ) ×C)/H naturalna̧ strukturȩ C-

liniowa̧.
Powyższa dyskusja dotyczy w szczególności U(1)-torsora Iso

U(1)
C (C, V ) ≡ U(1) (złożonego z

przemnożeń liczb zespolonych przez fazy z U(1), co stanowi podstawȩ utożsamienia z U(1)) –
mamy zatem

[ev] ∶ (U(1) ×C)/U(1) ≅ÐÐ→ C ∶ [(u, z)]∼ z→ u ⋅ z .(16)

Dokonawszy geometryzacji tej konstrukcji nad baza̧ T∗R×3, tj. „wyprojektowawszy” działanie

U(1) × (T∗R×3 ×U(1) ×C) Ð→ T∗R×3 ×U(1) ×C ∶ (g, ((x, p), u, z)) z→ ((x, p), u ⋅ g, g−1 ⋅ z) ,
odnajdujemy wia̧zkȩ stowarzyszona̧

(T∗R×3 ×U(1) ×C)/U(1) Ð→ T∗R×3 ∶ [((x, p), u, z)]∼ z→ (x, p)(17)

z wia̧zka̧ główna̧

T∗R×3 ×U(1) Ð→ T∗R×3 ∶ ((x, p), u) z→ (x, p)
poprzez naturalne działanie U(1) na C (przez mnożenie). Wia̧zka (17) (rozmaitość) jest kano-
nicznie izomorficzna (dyfeomorficzna) z wia̧zka̧ (pre)kwantowa̧ (15),

Bun[ev] ∶ (T∗R×3 ×U(1) ×C)/U(1) Ð→ T∗R×3 ×C ∶ [((x, p), u, z)]∼ z→ ((x, p), u ⋅ z) ,
por. (16). Tym, co sprawia, że nie jest to jedynie matematyczne kuriozum, jest zanurzenie

T̃(3)h̵ ≡ R×3 ×U(1) ↪ T∗R×3 ×U(1) ∶ (x,u) z→ ((x, p), u) ,

które implikuje istnienie działania „kwantowej grupy translacji” T̃(3)h̵ na T∗R×3 × U(1) × C
bȩda̧cego lewym działaniem regularnym tej grupy na składniku kartezjańskim pr1,3(R×3 × R×3 ×
U(1) ×C) = R×3 ×U(1),

Bunλ⋅ ∶ T̃(3)h̵ × (T∗R×3 ×U(1) ×C) Ð→ T∗R×3 ×U(1) ×C
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∶ ((ε, ζ), ((x, p), u, z)) z→ ((x + ε, p), u ⋅ ζ ⋅ e−
iq
2h̵ εijk ε

i xj Bk

, z) ,

przemiennego z wyprojektowywanym działaniem U(1), wiȩc zstȩpuja̧cego do przestrzeni orbit
(T∗R×3 ×U(1) ×C)/U(1) w postaci

[Bunλ]⋅ ∶ T̃(3)h̵ × (T∗R×3 ×U(1) ×C)/U(1) Ð→ (T∗R×3 ×U(1) ×C)/U(1)

∶ ((ε, ζ), [((x, p), u, z)]∼) z→ [((x + ε, p), u ⋅ ζ ⋅ e−
iq
2h̵ εijk ε

i xj Bk

, z)]∼
i tym samym daja̧cego nam możliwość zaindukowania na wia̧zce (pre)kwantowej T∗R×3 ×C na-
turalnego działania

λh̵⋅ ∶ T̃(3)h̵ × (T∗R×3 ×C) Ð→ T∗R×3 ×C

wedle schematu opisanego przez diagram przemienny

T̃(3)h̵ × (T∗R×3 ×U(1) ×C)/U(1)
[Bunλ]⋅ // (T∗R×3 ×U(1) ×C)/U(1)

Bun[ev]

��
T̃(3)h̵ × (T∗R×3 ×C)

λh̵
⋅

//

id
T̃(3)h̵×Bun[ev]−1

OO

T∗R×3 ×C

.

Otrzymujemy tym sposobem działanie

λh̵(ε,z)((x, p), z) = ((x + ε, p), e−
iq
2h̵ εijk ε

i xj Bk

⋅ z)

o oczywistej składowej w bazie

λh̵(ε,ζ) ∶ T∗R×3 ↺ ∶ (x, p) z→ (`ε(x), p)

(wszak działanie T̃(3)h̵ jest rozszerzeniem działania T(3)) i zależnej od punktu w bazie składowej
we włóknie

Fλh̵(ε,ζ)(x, p) ∶ pr−1
1 ({(x, p)}) ↺ ∶ z z→ e−

iq
2h̵ εijk ε

i xj Bk

⋅ z .

Z tych dwóch możemy już w standardowy sposób złożyć lewe działanie „kwantowej grupy translacji”
T̃(3)h̵ na funkcjach falowych:

L2λh̵⋅ ∶ T̃(3)h̵ ×L
2(T∗R×3) Ð→ L2(T∗R×3) ∶ ((ε, ζ), ψ) z→ Fλh̵(ε,ζ)(⋅) ⋅ ψ ○ λ

h̵
(ε,ζ)−1(⋅) .

Na końcu naszej długiej i chwilami nieoczywistej drogi czeka na nas nagroda – dobra nowina:

L2`ε ≡ L2λh̵(ε,1) !

Udało siȩ nam zatem zrozumieć postać rzutowego działania grupy translacji T(3) na przestrzeni
Hilberta, wymuszona̧ przez wybór geometrycznego schematu kwantowania, jako ograniczenie na-
turalnego działania rozszerzenia tejże grupy T̃(3)h̵ na przestrzeni (całkowalnych z kwadratem)
ciȩć trywialnej wia̧zki wektorowej T∗R×3 ×C nad klasyczna̧ przestrzenia̧ stanów.

Wiȩcej ciekawych szczegółów i przykładów Czytelnik znajdzie w monografii de Azcárraga i Izquierdo
pt. “Lie groups, Lie algebras, cohomology and some applications in physics” [dAI95].

Zadanie na ćwiczenia 1 (na przyszłość). Udowodnić i zinterpretować Drugi Lemat Whiteheada
dla dowolnej skończenie wymiarowej półprostej algebry Liego g:

CE2(g) = 0 .
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