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ABSTRACT

A systematic approach to 2-dimensional quantum field theories with
topological terms in the action is developed using as a mathematical tool
the Deligne cohomology. As an application, it is shown how to bosonize the
action of free fermions of arbitrary spin on a Riemann surface and how to
find the spectrum of the Wess-Zumino-Witten sigma models without recurrence
to modular invariance.

LIST OF TOPICS

- Dirac's monopole : an example of a topological action in quantum
mechanics.

- Line bundles with connections and Deligne cohomologies.

- Cohomology of topological ambiguities in two-dimensional field
theory.

- Bosonized actions for free fermions on a Riemann surface.
- Canonical quantization of the Wess-Zumino-Witten chiral model.

- Spectrum of the Wess-Zumino-Witten model with SU(2) and S0(3)
groups.

1. INTRODUCTION.

These lectures are devoted to one topological aspect of quantum
theory from the plethora of such phenomena which constitute the main topic
of this Institute. It appears in theories which lack globally defined
actions. The simplest and longest known system of this sort describes a
particle in the field of Dirac's magnetic monopolel. In Section 2, we shall
briefly recall how the lack of global action leads to Dirac's quantization
condition for the monopole charge and to other topological effects., This
will be done in the spirit of the so-cadlled geometric quantization2 repre-
senting the quantum mechanical states as sections of a line bundle and will
serve as a natural occasion to introduce cohomological notions known to

* Extended version of lectures delivered at the Summer School on Nonpertur-
bative Quantum Field Theory, Cargese 1987.




mathematicians as Deligne cohomology to which Section 3 is devoted.

In 2-dimensional field theories an example of a system without global
action is provided by the Wess-Zumino-Witten (WZW) model discussed by
Witten in his paper> on non-abelian bosonization. Its study was the main
motivation for our interest in models without global action. Another system
in this category is the free (euclidean) field bosonizing fermions of arbi-
trary spin on a Riemann surface4. In Section 4, we shall discuss path inte-
gral quantization of 9-dimensional field theories without global actions
on a general 2-dimensional surface using the Deligne cohomology as a mathe-
matical tool. We shall see how the relation of path-integral and canonical
quantizations givesrise to natural appearence of line-bundles with connect-
ion over the loop spaces of manifolds of field values and to a "stringy"
generalization of the notion of parallel tramsport. In Section 5, the
general theory is applied to the bosonized version of free fermionic
theories on Riemann surfaces. Section 6 studies with details the WZW model
with fields taking values in a simply connected group G . We show how rich
symmetries of the classical models give rise to the left-right action of
the Kac-Moody group in the space of states of the quantized model repre-
sented by sections of the 1ine bundle over the loop group of G . This
action decomposes into irrgducible representations whose spectrum conjec—
tured by Gepner-Witten in ~ is found explicitly for G = SU(2) . Section 7
treats the complications appearing in the case of non-simply connected
groups on example of S0(3) model. We find again the result coinciding
with the Gepner-Witten spectrum derived originally from the SU(2) omne by
postulating the modular invariance of the partition function of the model
on the torus?.
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2. TOPOLOGICAL ACTIONS IN MECHANICS.

We start by discussing the case of quantum mechanics where the topolo-
gical ambiguities may appear when we attempt to realize Dirac's or Feynman's
quantization programmes6’7 in topologically non-trivial backgrounds. The
geometric aspects of this well known phenomenon will be briefly recalled
here. Classical mechanics is usually formulated with the help of Lagrangians,
but what really enters the classical equations of motion are specific com—
binations of their derivatives only. To be more concrete, consider a par—
ticle moving in magnetic field described by vector potential Z(g) . The

action on the trajectory #(t) is given as
%mj')?zdt +ef§>-d}-c) (1)
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whereas the equations of motion involve only magnetic induction B
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In other words, the action contains integral of l-form n = eA-dx along
the trajectory, whereas the equations of motion involve only 2-form

w = dn =-% ég-d§a\d§ .

It is possible to consider classical systems involving a 2-form
which is closed but not exact. Such is for example the case for classical’
particle moving in the field of magnetic monopolesl’8 and, to make the
problem more interesting, infinitely thin Bohm—Aharonov9 solenoids carrying
magnetic fluxes. Away from the singularities at the monopole locations and

flux lines, the magnetic induction defines 2-form

3 .. xi—xi .
w = % eB.dx AdX = % Iep o AR S PP (3
o, . - = 3
o i,j,k=1 |X‘Xa|

. - .
where M, are charges of monopoles located at points X, - W 1is no more

exact (vector potentials for magnetic monopoles have singularities along
Dirac strings).

Lack of global form n such that w = dn , although no complication
on classical level, obstructs the passage to quantum mechanics, where,
following Feynman, we should sum the probability amplitudes given as expo-
nentials of (i times) the action over all the trajectories. In some cases
however, a global action can still be defined for closed trajectories
modulo an ambiguity in 2nZ removed by exponentiation. This situation
has a nice geometric interpretation : the (topological parts of) the proba-
bility amplitudes are the loop holonomies in a line bundle with a hermitian
connection of curvature w« . For cpen trajectories, the parallel transport
in the bundle leads to "probability amplitudes" which are no more complex
numbers but rather linear maps between the line bundle fibers, but they
can still be used to define complex valued probability amplitudes between '
states represented by sections of the line bundle. That the wave functions
should be bundle valued can also be seen from the fact that an' important sub-
algebra of classical physical quantities can be naturally represented by
differential operators acting in the space of sections of the line bundle
so that the Poisson bracket corresponds to (i times) the commutator, rea-
lizing Dirac's quantization programme. This is one of the main construct-
ions of geometric quantization which provided an effective tool in the
theory of unitary representations of groups (obtained by quantization of
classical group actions carried by orbits of the coadjoint representation
of the grouplo). Later, we shall develop some of the concepts of geometric

quantization in the infinite-dimensional context of two-dimensional field




theories. Here we shall present the elements of the line bundle theory11
in a cohomological language, specially useful in view of the later dis-

cussion.

Suppose that we are given a hermitian line bundle L over a (smooth)
manifold M . If {Oa} is a sufficiently fine open covering of M then

by taking normalized sections S, of L over Oa , we obtain U(1l)-valued

transition functions on non-empty intersections 0 =0 no_  :
%% % %1
Se = 8y a5 ° (g, o ) form 2 2-cocycle, i.e. :
0 011 071
gOLG. =gC¢Ct_1 ’ gaagaa =gaa on Oaaq * (4)
071 170 071 172 02 012

A hermitian connection on L can be locally described by real l-forms
n, on Oa transforming by the gauge transformations
n. =n +<% g -1 dg on 0 . (5)

0 %% %™ %%

The curvature of the connection corresponding to (na) is the real closed

2-form on M equal on each Oa to dn_ .

~ -1

If we choose other sectioms Sq = Xg Sq of L where X, are u(l)-
valued functions on (_  then we obtain equivalent local data (3 ,n) e
a ‘ N
g —g x. x, "
= s
apty %% %1 %o
(6)

~

1 -1
] = + = .
Hy "M T T X Xy
Conversely, the equivalence class [(ga a ,na)] of local presentations
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defines the line bundle with comnection up to isomorphism (projecting to
identity on M) . In particular, L can be taken as the set of elements
(a,%,2) , X € 0Ol , 2z € El , with the identification of (ao,x,z) and

(al,x,guoal(x)z) if x € anal W If {Oa} has the property that all

Oa o are contractible, we may identify the isomorphism classes of the
O... P

line bundles equipped with hermitian connections and classes

q = [(gy 4 »ny)]

01
From the cohomological point of view, the latter are the elements of
the cohomology of a homomorphism of sheaves12 Wh
% d log i (7
U(1)M = > O

where U(l)M is the sheaf of local smooth (1) valued functions on M

and Q& the sheaf of local smooth real 1-forms on M . For a general



complex of sheaves of abelian groups

N 1. p-1
Fo > Fl A .ee ——~—»Fp , (8)

diodi-l = 0 , and open covering {Ou} of M consider groups CE z CP(Fi)
of Cech p-cochains with values in Fi . Elements of Cg are families

P- P P . e e as
c; = (ci,a o ) .0 ...0 € Fi(oa o ) , antisymmetric in indices
.70 P 0 P 0 P

4 +1
ao,...,ap . The Cech coboundary P CE +~CE ,

PP PIl )8 P '
PPy, = r DY (9)
0 %41 qe0 g Oy
%

From the bi-complex of abelian groups

(U4 d L

N p . i \ p
sP (10)
Vv
Pl et
i 1+1

v v
we may derive the diagonal complex

D
—2E, -—Ea By — (1)
where
E, = © cg (12)
(i,p)
i+p=k

and for j+q = k+l

P q _ (_13yJ £9°1 g-1 _1yd-1 qQ
(Dk((ci)i+p=k))j = (-1)" ¢ c; ¥ (-1) dj_lcj_1 . (13)

The cohomology groups of the complex F& cofsgheaves (8),

ker D
kgly. o kK A

More exactly, they are given by the inductive limit of the right hand side
v

of (14) over the finer and finer coveringsof M , as usually in Cech coho-

mology. Notice that our local description of isomorphism classes of line

bundles with hermitian connection on M identifies them with elements of
1,1
m§) .
M

Given a local presentation (ga o ’na) of the bundle and a loop
01




¢ ¢ S1 > M in M , we may express the holonomy P(¢) € U(L) corresponding
to ¢ (given by the parallel transport around ¢ ) in the following way. We
break S1 into a union of intervals b with common points v so that
¢(b) = Oab , see Fig. 1. We also choose for each v an o/ s.t. v € Ouv.
Then _

P(¢)

|

expli Z [ ¢'n 1T g, o 6O)

bb b v bv v

expli T [ o™n 1 1 gl (b(v) (s)
bb b wv,b v'b

vEdb
where on the right hand side the convention is implied which inverts

-1 . . . . . . . .

By o (¢(v)) if v inherits from b negative orientation (i.e. v 1is
v b

the starting point of b ). In cohomological language, ¢ allows to pull

* ~
back any element ¢ GIII]'GF&) to an element ¢ q €]H1(H:11) = U(l) and
S

P(¢) realizes the last isomorphism. Of course, the right hand side of (15)
does not depend of the choice of triangulation of Sl , the assignments

ap .0, oOF the representative (gaoal,na) of q . This is no more true if
we apply the same formula to ¢ : I >M where I is a closed interval
[vi,vf] . Then the right hand side of (15) depends on avi and avf and
transforms under the change of this data as an element of L:(vi) e L¢(vf)
giving the parallel transport along ¢ in bundle L which maps fiber

into fiber L¢(v . Thus eq. (16) describes the parallel transport

L

$(vs) £
in L along both closed and open curves. We should also notice, that
although defined for parametrized curves, it does not change under orien—

tation preserving reparametrizations of them.

The knowledge of the curvature of the connection fixes the holonomy
of the contractible loops. More generally, if ¢ : Z M where I is a
2-dimensional compact oriented manifold with the boundary composed of

loops (32)i , see Fig.2, then
I P(¢r(32) )= exp[i [ ¢*w] (16)
i i z :

where w 1is the curvature form.

Given a real closed 2-form w on M , we may wonder whether
there exists a line bundle with a hermitian connection of curvature w .
This is the case if and only if the integrals of w over 2-dimensional
closed surfaces in M are in 2 nZ (that this is a necessary condition

is easily seen from eq. (16)). In the cohomological language this means




that the element [w] € HZ(M,ZR) defined by ® should be in the image of
2 (A42'nz) . We shall call such w integral. The cohomology group

H (M U(1l)) acts freely on H GFM) sending [(g ,na)] into
%%

[(a g ,n )] for (A « ) being a cocycle defining an element of

OLOCtl aoal 3 (!0 1

H (M U(1)) . The orbits of this action are exactly the sets Q(M,w) of
isomorphism classes of line bundles with hermitian comnection of curvature

®w . Thus Hl(M,U(l)) enumerates the elements of non-empty Q(M,w) .

Coming back to our example of the particle moving in the field of mag-
netic monopoles and flux lines, the integrality of the form ® given by

eq. (3) is equivalent to Dirac's quantization condition of magnetic charge

en €3Z - - an
If this condition is satisfied, the possible choices of line bundle with
curvature ® differ by holonomies of loops surrounding flux lines. For
small loops these holonomies become eie where 1-8 are the magnetic
fluxes carried by the lines. These holonomy dlfferences are seen in the
quantum probability amplitudes (: 6 vacua 13,1 ) although they are ignored
by classical trajectories of the particles which is the essence of the

Bohm-Aharonov effect.

Another 1mportant topological effect appears in the relation between
classical and quantum symmetries. If D is a diffeomorphism of M pre-.
serving ® , it is a symmetry of classical mechanics. It does not have to
give rise to a symmetry of quantum mechanics. One of the obstructions may
be that the pull-back of the line bundle L with connection of curvature
w by D can be non-isomorphic to L . If this is not the case, e.g. if
Hl(M,U(l)) =1, then D can be lifted to an isomorphism D of L (pro-
jecting to D ) preserving the hermitian structure and the connection. For
connected M , the lift is defined up to multiplication by elements of
U(l) . If G is a group acting on M by diffeomorphisms preserving
liftable to L , we obtain an action on L of a central extension G of
G by U(l) . This actionm, in general,gives rise only to projective repre-
sentations of G on the space of quantum mechanical states. The parallel
transports P(¢) transform covariantly under 11ftab1e maps, P(De¢) = DP ()
(the right hand side which is an element of LD(¢( )) D(¢(vf)) does not
depend of the choice of the 1lift D of D) .

For the particle moving in the field of a single monopole of charge
p , the classical mechanics has S0(3) as the symmetry group which lifts
to an action on L only for integer pe . For half-integer pe , it lifts

to the action of SU(2) on L and gives rise to a projective represen-—




tation of S0(3) on the space of quantum states : half-integer magnetic

charges carry half-integer spins15

Similar discussion applies to infinitesimal action of Lie algebras on
M and L .
In certain cases, manifold M can be extended to a complex manifold
Mm and curvature form w to a (2,0) holomorphic form % on Mm . It
may be convenient then to extend line bundle L with hermitian connection
of curvature w on M to a holomorphic line bundle Lm with holomorphic con-
nection with curvature wm and to consider quantum states extending to
holomorphic sections of Lm . Isomorphism classes of holomorphic bundles
with holomorbhic connections may be identified with elements of IHl(Alm)

where Aﬁm is the sheaf homomorphism M

1

or TL1E (18)
M‘” s
with 0 denoting the sheaf of local holomorphic nowhere vanishing funct-

ions on M and Ap the sheaf of local holomorphic (p,0) forms on [T

Groups H (A ) are known as Deligne cohomology (of degree 2), see16. More

explicitly, elements of H (N} ) are given by classes of (g ,Nn_)
Me aye,’
modulo (x Xy 1, l x—ldx ) where g are holomorphic nowhere vanishing
*1 % * %% .
functions on Ou o satisfying (4), U are holomorphic (1,0) forms on
01

Xy satisfying (5) and X, are nowhere vanishing holomorphic functions on
Oa . Parallel transport along path in Wl is defined again by eq. (15)
(the holonomy takes values in E now). Let Qa(Mm,wm) denote the set of

W €]H1(A}¢) with curvature mm . Again, Qa(Mm,mm) # ¢ if and only if wm

is integral and'for'such wm > Hl(M,GN) acts freely and transitively on
¢
(M, u%)

The gain from extending M to Mm may be the richer symmetry group.

3 {0} and w given by the magnetic

For example, in the case of M =R
induction of a monopole sitting at the origin, we may take

. {; € E3\§2 ¢ ]-=,0]} . This allows to represent SO(3,E) in the

space of holomorphic sections of Lm . In Appendix 1, we give an explicit
local representative of the holomorphic monopole line bundle Lm over M
which restricted to r3 < {0} reproduces the monopole bundle with hermitian

connection.

3, TOPOLOGICAL AMBIGUITIES IN 2-DIMENSIONAL FIELD THEORY.

In 2-dimensional field theory, closed 3-forms play similar role as

closed 2-forms in mechanics. To consider classical equations of motion, we




need to know the action locally and 6n1y up to an integral of the derivative
of a 1 form. Such an information is available if we start from a closed
3-form Y and define (a part of) the local action by taking integrals of
local prime 2-forms of y . On the quantum level, however, one needs the
global action to be well defined modulo 27mZ . To achieve this, we shall

employ again the cohomology of sheaf complexes. Consider complex Fﬁ

1
<= d log
1 d 2 :
1), = > > | .
»u( Yy 2 " (1)
and its second cohomology group ]H2 GF?A) . The elements of ]HZGFﬁ) are
equivalence classes of systems (g >N sw_ ) such that g
G0y By aga T oy a5% %
are U(l) valued functions on Oa o (multiplicatively) antisymmetric
17273 '
in indices as 5 M = -7 are real 1-forms on 0 and w_ are
agey e, Ao o

real 2-forms on oa s.t.

-1 -1

g g g g =1 on 0 , (2)
R Koy 3 W0 b W Bt R Wl R %0%1%2%3
1 -1
n -n +n =zg dg on 0 , (3)
oclaz 0.00.2 aoal 1 a0a1a2 C!OCX. 102 0.001(12
w =w =dn . 4)
% % %o%1

The equivalence is defined modulo systems

-1 -1

1 ,
(x X X , T =T+ = X dyx s —dm_ ) (5)
0 0 00, TG0y oy o 1 Tmga, Tage o
where Xq o, = xgla are U(l) valued function on Oa o and m, are
071 170 0’1
real 1-forms on Oa . Aclass w = [(gaoalaz,naoul,wa)] defines uniquely

a closed 3-form y on M equal to dwa on each Oa . We shall call vy
the curvature of w and denote by W(M,y) the subset of ZH20F§) of

elements with curvature equal to vy .

If ¢ : L >M is a map of a comnected compact oriented manifold
without boundary into M , then, pulling back w€ ]Hz(fFAz,{) , we obtain an
element ¢*w E]HzﬂFg) = U(1l) . To realize the last isomorphism explicitly,
let us triangulate I by 2-cells c¢ , l-cells b and vertices v in such

s &(V) € Oa for some assignment
b v
*
)] , then ¢ w is represented by the
g0y Nagaq " %o’
0172 0”1

a way that ¢(c) C’Oa , ¢(b) < Oa
c

ac,ab,uv . If w = [(g

number A(¢) € U(1) ,

* %
A(¢) =expli Z [ ¢w, -17Z ¢ n ] T g (¢(v)) , (6)
c { e b,c { %% v,b,c %y %e
bcac vEab
bcac




compare expression (2.15) for the loop holonomy in the-line bundle case. =~
In (6), f is performed with the orientation of b inherited from c _and
8, a,a;(¢(v)) ‘should be inverted if v inherits the negafiVe orientation
frgmb“g via b . The right hand side of (6) is independent of the choices
of the triangulation of I , of the assignmeﬁt"aé;ab,av ‘and of the repre-
sentative of w (in any covering). It is also invariant under the compo-
sition of ¢ with orientation—preserving diffeomorphisms of I ; We:  shall
callkbA(¢) the amplitude of ¢ and interpret it és>£hé exponential 6f

(i times) the global action of ¢ as it is built of integrals of local

prime forms of the curvature y of w and of correction terms.

As in the case of the holonomy of line bundles, amplitudes A(¢) “are
partially fixed.by curvature y . If B 1is a 3-dimensional compact oriented

manifold with boundary 8B composed of connected components (BB):.L , then
. . *
I A(ch(aB) )= expli [ ¢ v] . (7
i i B

Witten used (7) to define probability amplitudes in the Wess—-Zumino-Witten
chiral sigma model where a part of the action is given by a closed but not.
exact 3-form, see Section 5. More general definition (6) was introduced in
[17]. It makes sense also for maps ¢ : £ - M which do not extend to B
such that I = 3B . Similarly, in the line bundle case, the curvature did

not fix the holonomies of non-contractible loops.

From relation (7), it follows easily that w € W(M,y) exists only if
integrals of y over closed 3-dimensional surfaces in M are in 27 Z
or, in the cohomological language, if [y] € H3(M;]R) is in the image of
H3QM,2 7Z) i.e. if y is integral. It is not difficult to see that this
is also a sufficient condition. Moreover, similarly to the case of line
bundles with connection, HZ(M,U(I)) acts freely on ]szﬁa) sending
[(gaoalaz’naoal’ma)] into [(Adoalazgaoalaz’naoal’wa)] f?r (Adoalaz)
representing an element of H"(M,U(1l)) , the orbits coinciding with sets

W(M,y) for different integral closed 3-forms ¥y .

In the case of line bundle, P(¢) , as given by eq. (2.15), defined
also the parallel transport along open paths. The natural question arises
as to whether (6) possesses a meaning for ¢ : I > M where I is a
2-dimensional surface with boundary (being a union of loops). This leads
us to the consideration of the loop space LM of all smooth maps from
st o M . LM , with the topology of uniform convergence with all derivatives,
possesses a natural structure of a (Fréchet) manifold [18] to which we
shall refer below. An element w EJHZGFa) defines naturally an isomorphism

class Q of line bundles with hermitian connection over LM . We shall




describe a local presentation (G ,E, ) of Q for an open covering
Aot B0

{UA} of LM constructed as follows. Choose an open covering {Oa} of M
and a triangulation of S1 by intervals b meeting at points v . Choose

additionally an assignment L such that the set

{p:st>M|os)cO, o) 0 T=U #0. ®)
o A
b v
qA for various triangulations and assignments o, cover LM . For -
g=u, nu, =U , where U comes from a triangulation of S1 by
AO Al. AOA1 $
intervals bi and vertices i and assignments a; ,ai , 1=0,1,
i i
consider the triangulation of S1 by non-empty intersections b = bo n b1
and vertices v of either triangulation. Put qg = ag . qi = a% . For a
_ _ 0 b 0 b 1
_vertex v of the new triangulation, set o = ag if v = Yo and
v 0
a_ = ag if Vv is an interior point of interval b0 otherwise. Similarly
v 0
define qi = ai or a& . The transition functions of the line bundle
1 1
defined by a system (g ,N ,w_ ) are given by
a0y Oy gy 7
€0 1 1
a’ o’ a
* —
6, , (@ = expliz Jo'n o 1 M L . )
o™1 b5 o a  v,b 20 0 1
]—)-E _ _ CI_O._Q_
vE ob v b b

The connection l-forms EA on UA are defined by their action on vectors

X¢ tangent to LM at loop ¢ . X¢ is a vector field on ¢ (i.e. a

. *
smooth section of ¢ TM) .

*
K E>=Lf¢X|u )+ T X (v)]n () . (10)
o7 A bb ¢J‘ab v,b b %%
v E€db

A somewhat tedious but straightforward check shows that (GA A ’EA)
01

describes locally a line bundle with hermitian connection over LM . If we

change (guoalaz,naoal,wa) by system (5) then (Gaoal,EA) changes by
(KAlK;; ,-% KEldKA) where KA are U(l) valued functions on UA defined by
*
K (¢) =exp[-i L[ om ] x (9(v)) . (11)
A bb % v,b
vEd

Thus eqs. (9) and (10) define a map

2 .2 1,1
L :H (}FM) -»H (}FLM) . (12)

The curvature § of Lw is related to the curvature y of w . More

exactly

11



’-<x¢ X(;,s» -,Il ¢ (x' _1 x _[y)
for _X¢ X;“E TéLM v Thus L maps W(M,Y) 1nto Q(LM ﬂ)

" If line bundle L is obtained by 1dent1f1cat10n of,trlples ;(AD ¢,z) G
and (A1’¢ A<¢)z) fOI' ¢ E AOA

, then the flbers of L over loops P
L , 1- e o s
and ’¢' dlfferlng by an orlentatlon preserv1ng reparametrlzatlon of S1

are canonlcally 1somorph1c :.such a: reparametrlzatlon sends qA' Qntoﬁ;UA__z
where Al corresponds to: image: trlangulatlon of S1 n&;“ : -

: ($) = G,y (9" ) . Slmllarly the f1bers of L over ¢ and ¢' dlffer-
A,OA1 . AOA1 e s
ing by an orlentatlon chang1ng reparametrlzatlon of Slr are naturally dual

one to another..The f1bers of L over constant 1oops ¢O are canonlcally »
1dent1f1ed with’ El by ch0031ng 1oca1 representatlves (A ¢0,z) of thelr

elements with A deflned by a constant assignment of ‘a's .
: Naw”iéf"¢': 2a4'M'; where I is a conmmected, oriented 2-dimensional
'compact-manifoldgwithaboundary composed of loops. (62)i ’(parametrized by
Sl) . A triangulation of I such that ¢(c) c 0 . ¢(b) c 0 i .
: e % Op
¢(v) € Oa for some assignments of a's induces trlangulatlons of the

v : ,
boundary.circles'with:(restricted) assigments of a!s s.t. ¢r(3£)

in the'correponding U 's . For’such' Z , the rlght hand side of (6) is
i s
no more. trlangulatlon and u-a551gnment 1nvar1ant. Instead 1t plcks up a

factor I G (o] ) 1f we change the latter. Thus eq (6) deflnes :
(az,): ,

A A
i
A($) as an ekﬁém} G L F(BZ) , generalizing the notion of the parallel.

transport in L. If we use in eq. (6) an equivalent representatlve of w,

then its right hand side changes by factor H K (¢T(BZ) ) ,Al.e. trans—
1

forms by the 1somorphlsm of bundles L obtalned from equlvalent cocycles.

If D : M > M preserves the curvature form vy of w > 1t may, but
1. If D w =w , then

need not, preserve w except ‘when H (M U(l))
the induced map LD : IM->1IM |, LD(¢) D°¢ lifts to'antlsOmorphlsm b
of line bundle L 4ssociated to w . LD may be canonically defined up

to isomorphisms of | locally represented by U(l) valued functlons K,

..1 - .
of eq. (11) with Xa. 0. Xq Xg q. = 1,7 -7 + %‘X 1 dx =0,
%1%2 %% %% % %1 %% %%

dn =0, i.e. isomorphisms multiplying each fiber L¢ by the holonomy of

¢ in a flat hermitian line bundle over M defined by (X -1 "-w ) . In
%1%2 ‘

particular, if M is simply connected the 1lift LD may be canonically
chosen in ‘a-unique way. In that case acthns of groups of dlffeomorpnrsnsi‘

of M preserving w 1lifts canonically to bundle L . The amplitudes




A(¢) of eq. (6)'transférm'covariantly
A(Do¢) = LD A(p) . (14)

Notice that the right hand side does not depend of the choice of lift LD
since the multiplication in L by holonomies of flat bundles over M

leaves A(¢) invariant due to relation (2.16).

Again, similar considerations apply to infinitesimal actions of vector

fields on M , i.e. Lie algebras of vector fields on M.

If M c M » where e is a complex manifold and Y extends to

holomorphic (3,0) form YG on ME ,» we may consider classes

[(g ,wa)] E]HZ(AﬁE) (the Deligne cohomology of degree 3) where

n
s
%1% %%

A? C is the sheaf complex
M
1
+=d log
*
0 SAl 4,42 (15)
M Me ue

and dwy = YE (denote by Wa(Mw,Ym) the set of such classes).
Wa(Mm,ym)’# @ if and only if YE is integral and HZ(ME,E*) enu-

rates its elements in such case. For w € Wa(Mc, Ym) s (9) and (10) define
a holomorphic bundle LE over LMm with holomorphic connection of curva-
ture Qm , a holomorphic (2,0) form on LME defined by (13) with ¥y
replaced by YE . The isomorphism class of Lm is an element of

Q (LMm QE) which depends only on w . The amplitudes A(¢) defined by
eq. (6) for ¢ : I =+ T are now in E for I without boundary and in

8 Lmr for 9L composed of loops (32). . Holomorphisms D of Mm

o1 (3L),
whlch preserve w , induce maps LD of LME 11ft1ng to isomorphisms of
LG . If D 1s an antlholomorphlsm of ME then D w 1is naturally an ele-
ment of H (AAF) , wWhere AG:
M
< dews e,
OE - Am--—-aAm (16)
M M M
- — - - * —
So is -w represented by (g,-n,~w) . If Dw=-w , LD 1lifts to an

is the complex

antisomorphism of Lm .

4. BOSONIZED ACTIONS ON A GENERAL RIEMANN SURFACE.

As the first application of the abstract theory of the previous
sectioh,.we shall consider the definition 6f (euclidean) probability ampli-
tudes for (euélidean) bosonic fields defined on a general Riemann surface
I and corresponding via bosonization19’4’20 to fermionic fields b,c on

£ with spins 1-A and ) respectively, A E%Z.. I 1is equipped with




a metric g in local complex coordlnates glven by g . dzdz . The metrlc
ZZ

connectlon turns the bundle K -1 of holomorphlc vectors a: g%f over. Lz e

into. a 11ne bundle w1th herm1t1an connectlon of curvature R satlsfylng

. 1q;€1).3“"/

I R Zn(z genur-iz)

Fermlonlc flelds c are sectlona of a line bundle L"fover' I with her- = - -

m1t1an connectlon of curvature AR and frelds b are sectlons of L :
KeL -1 (K ‘is the ‘bundle of holomorphlc covectorsvon Z ) The metr1c g,
and'(isomorphlsm class of) L encode the geometric 1nformat1on needed to
define the free euclidean field theory of flelds b and c (and thelr '
complex conJugates) w1th the action” : I

J b dz v ¢ + c.c. - i e - @y

3 Py T
This is the only information about the fermionic system that we shall use.

Bosonization reexpresses the functional integral of fermionic fields.
bsc and their complex conjugates by a functlonal 1ntegra1 of bosonic =
field ¢ on z w1th [0 EZR/— Z . In order to represent correctly the con-

formal and fermlon number anomalles, the euclldean action of ®. should
have be51des the standard free f1e1d part bri f(&p)(&p) a term

(2A—1)1 IRw . Unfortunately, ‘the' latter term-is ill-defined on a Riemann

surface of genus g > 0 as there are smooth f1e1d conflguratlons w1th no

smooth real valued w . What ' is well defined, however, is the real 3-form
v =+(1-2A)R dyp e » . / (3)

on M= ZUXIR:/%,:Z . The additional term in the action tries to integrate a

globally non-existent 2-form ® s.t. y = dw over the 2-dimensional sur-

face

15 € 98 = (5,0(8) € N, " W
As vy 1is integral,

{‘ Y = 2 (1-21)2n(29-2) € 2n Z , I )X

the global action can still be defined up to an ambiguity in 2n5z', as we
know from Section 3. For that, we shall have to choose W’ € W(M,Y) whlch

we shall do in a special way.

Let us cons1der first a Z-form (— -A)R on I . This is a real closed
integral form so that there exists a 11ne bundle over < w1th hermrtlan
connection of curvature 6— -MR  (the 1somorphlsm,classes of such bundles
form a Zg-dlmen51ona1 torus, “the Jacoblan) we ‘shall construct a natural

map 1 Whlch assrgns to.classes of bundles w1th curvature 6— -A)R elements




1
of W(M,y) : >

1 : .
1 2 Q(Z’(f -A)R) > W(M’Y) . (6)
It is in fact defined by a cup-product operation on the cdhomologies of

sheaf complexes, but we prefer to give a more down-to-ground definition.

Let (ga o ,na) represent ¢q € Q(Z,G% -A)R) on an open covering
0’1
{Oa} of. T . Let {Oé} be an open covering of the circle IR/%—Z such

that there exist smooth functions 0g ¢ Oé SR s.t. @ = (pB((p)+ %z .
. 1 . : 8 ,
Notice that w61—¢%0 € 5 Z . Consider the covering {O(a,B) - 00 x OB} of

M . Order arbitrarily indices o . Set

ia,p) = (1-2)M)R (ps . 7)
n = 2(p, =@, In if a, <o, , (8)
( )2@82«081)

g = (g if a, < aq < 05. (9

(GO’BO)(al,Bl)(aZ,BZ) aoal (0] 1 2

It is easy to show that [(g(aO’BO)(al’Bl)(GZ’BZyn(aO’Bo)(al'Bl)’w(a’s))]

depends only on q = [(ga o ,na)] and defines 1q € W(M,y) .
oL

Given w = 1q and a map (4), we may define the amplitude A(¢$) by
eq. (3.6). The class q may be chosen in a specific way as the isomorphism
class of bundle Knl/2 ® L where Kl/2

bundle with hermitian connection s.t.

ié a spin bundle, i.e. a line
Kl/2 2] K]'/2 is isomorphic to K .
L 1is the line bundle carrying fermionic field c¢ . Indeed, the cﬁrvature
of K]‘/2 is - %-R and that of L 1is =-AR so that the curvature of
Kfl/ze L 1is equal (%--A)R , as required. Let us denote the amplitude of

¢ corresponding to this choice of q by A (¢) . Its definition
K 1/2 L
uses more geometric input that the fermionic theory which we bosonize :

namely the isomorphism class of a spin bundle, i.e. a spin structure. We
can get rid of this extra input by averaging the amplitude over the spin
structures. Let us do this with the weight o(K1/2) which is the parity of
the spin structure, i.e. -1 to the dimension of the space of sections of
Kl/2 anihilated by covariant antiholomorphic derivative dz VE . The com-
plete probability amplitude of the field & - ¢(&) = (&, @(£)) , with the

standard free field term included, is

e 5 =exp[-4ri [ (30)(3p)] = G(Kl/z)A -1/2 @ . (10)

z [K1/2] K oL

It is clear that it uses as geometric input, besides the metric g , only




the isomorphism class of line bundle L with hermitian connection, i.e..
the 1nput of the fermlonlc theory.

Let'us cut the. surface z along the homology ba31s as b., i= 1,...,9,

meeting at one p01nt,reduc1ng the surface to the polygone E ,‘see Flg. 3.*

For (smooth) ‘field 7 O Z-+1Rﬁ— Z iet us choose a smooth ‘version -
¢ : I +R of it (iie. ~@(E) = tp(&) + l:z ) . Denoting by P . the
c 1/28

holonomy in~ K 8 L , it-is easy to see using the definitions (3.6),-
(2.15) and: (7) to (9) that

P Id«o

- . .
A _ (0) = exp[(1-20)i [RQ] T P _ (a.) &
K 1/2 oL zc i=1 K I/ZQL i
: ' (11)
-2f dp

a.
P2 bp) b

This shows that (10) reproduces the bosonic field amplitudes defined by
Alvarez—-Gaumé et al. inzo. From eq. (10), it is clear that e—s(w) is

defined intrinsically, i.e. if D is a diffeomorphism of I then

e-S(¢°D) = e—S'(m) (12)

where, if S corresponds to metric g. and bundle L over I then §8'

*
does to D'g and D*L. In the work of Alvarez-Gaumé et al.20 this required an
explicite check of modular covariance of expressions defined with the use

of a marking of the Riemann surface I .

5. WESS-ZUMINO-WITTEN QUANTUM FIELD THEORY.

Wess-Zumino-Witten (WZW) m.odel3 is another two-dimensional field
theory where part of the action is defined by intégfgls of the local prime
forms of a closed but not exact 3-form vy . Fields take values in a compact
Lie group G and

-k
Y 12w

For concreteness, we shall first consider only the case of G = SU(2) and
its complexification Gm = SL(2,E) with (3,0) holomorphic form Yﬂ given
by the same formula. y and YE are integral if and only if k €Z . As

tr(g-ldg)3 . . (1)

the mapping g - g_l changes the sigh of k , we shall limit ourselves to
k EN . In Appendix 3, we give an explicit local representative

(s, LN ) of class w€ Wa(Gm m) which restricted to G defines

%%1% %%
an element of W(G,y) . Since H (G ,@ ) = 2 (G,U(1)) = 1 , these classes

are unlque .

In the euclidean Wess-Zumino-Witten model on a Riemann surface I ,




the field configuration is amap g : I + G , or more generally g : I - Gm.
Eq. (3.6) allows now to define a part A(g) = Az(g) of the probability
amplitude of field configuration g coming from YE . It is a non-zero
complex number, of modulus one if g takes valués in G . The other part

of the amplitude comes from the standard action of the chiral ‘o-model. The

complete amplitude is

-S..(g) s - -1—
e T = exp[%% [ tr(g 1ag)(g 1ag)]Az(g) . 2
z
and defines global euclidean action Sz(g) up to 2miZ . In (2), we have

chosen the special value of the coupling constant of the chiral model, which
renders the combined model conformal invariant?. Since every mapping g
from I to SU(2) can be extended to a map T :B > SU(2) where B is

a 3-dimensional compact oriented manifold with boundary 93Z then due to

eq. (3.7), we may rewrite (3) as

-5.(g) . . 1.
z Kk -1 -1- ~m1 i~
e - expliE [ tr(ghog) (g Fe) + 137 J xR 13 . (3)
: I B
Let us start with some formal comsiderations. In quantum field theory,
we shall have to calculate functional integrals given formally as

--Sz(g)
[F(gle D.8 (4)
G n

where F(g) are functionals of g , e.g. F(g) = I 8.8 (gj) , and ng
=1 7§73

is the Haar measure on the group G of maps from I into G .

If I = Pml , the functional integral (4) may be given an iﬁterpre—
tation in operator formalism. Consider the space of smooth sections ¢ of
line bundle L over 16 associated to (a representative of) the class in
W(G,y) . Pt = ¢l U {=} =D uUD_ , where D ‘is the disc |z| <1 and
D is the opposite one. Formal examples of sections ¢ are provided by
functional integrals over fields defined on D_ with boundary values fixed:

-8, (g)

b = J F@ e a<granoh'1>nbog (5)
=5, (8)
where e © is defined by (2) with I replaced by D and takes
values in LgraD . We may consider formal scalar product of‘states ]
defined as o
(bys¥,) = ﬁL ¥y (h) ¥, (h) Dslh (6)

If we set 0g(z) = gQ%) then it is easy to see that for g : D +G (in

any trivilizationm)




TS5 (8 -5; (eg). ' - - - D
e Po T me o

Let Fl’FZ ‘be functionals of g : L = rml + G depending only on fields

on. D .+ If we denote .(8F )(g)A=.?1(6g) then formally

=8:(g) :
I(eF ) (8)F, (8) e D.g

J D h( f (6F))(e,) it Do b7 HD g )
D C] g)e * &g D, g
1c st g o, "D

~-5; (g) _
(J Fylge o % s(g I w D) g )
DG ‘0 o

s (g.)
[ D h(f Fige "o gt nhD g)
LG sl D_G 0'3D, D,

-5y (g ) -
(J Fpge Do ©s(g Iy b Hipy )
D G o o

g ¥ ) )

This shows that the left hand side should be positive for Fl = Fz which

is the physical positivity condition for the WZW model on Riemann sphere.
Notice that the formal definition (5) may be rewritten as

-5, (gg.)
Po "5 (gl,p 00, 8 9
(o] o

Y.(h) = [ F(gg, ) e
F e ooh
where g, 1s a fixed map from Do into G such that ghraDo =h.

Independence of the integral of the choice of gh follows from the right
invariance of the Haar measure DD g.If A is a flnlte set, then the

the Haar measure D A8 on AG (i. 8. the set of maps from A to G) pos-

sesses a richer invarlance : for F an analytic function on AGc and
g' € act "
[F(gg')D,g = [F(g)D,g . ‘ (10)
AG AG

If we assume this invariance still to hold formally in infinite dimensional
case then for F analytic functionmals on D, ct » (9) still makes sense for

h € LGm and defines formally a holomorphlc section of bundle L over

LGm . , .

The above formal considerations motivate the choice of space ré(L™)
of the holomorphic sections qf LE as the space of quantum states of the
WZW model. Below we shall show that this space carries a natural represen-

tation of a pair of Kac-Moody algebras su(2) with central charge k




rising by geometric quaﬁtization of the classical symmetries of the 19
theory). We shall decompose this representation into irreducible components

. recovering the spectrum of the latter conjectured by Gepner and Witten in~.

Classical WZW theory possesses an extraordinarily rich symmetry : its
‘¢classical (euclidean) equations of motion are B(g_lﬁg) =0 and if gl(gz)
is any (anti-)holomorphic map with values in GE then the transformation
g + glggzl maps local classiéal solutions into new ones. On the quantum

level, this becomes the Kac-Moody symmetry.

It will be important to study this symmetry on the group level rather ‘
than on the level of Lie algebras. To this end, we shall first introduce
group ﬁbm which is the central extension of loop group LGm by E* . It
appears naturally when we lift the classical symmetries to.the,symmetries

of bundle Lm following the rules of geometric quantization. Herg, we

shall construct directly the final product. As a space, LGE = Lm = Lm ~
zero section. To describe its multiplication law, let us notice a basic
, =S

property of the WZW amplitudes e z , known as Polyakov formula21. 1f L
is a Riemann surface with boundary, g,h : I * Gm s h[‘aZ =1, then

~s;(gh)  -5;(g) ~Sy(h) Iy(g,h)

e = e e e (11)
where

r.(g,h) = %% tr(g_Lﬁg)(hah-l) . (12)
Notice that e is a complex number since the fibers of L™ over

constant loops are canonically isomorphic to El . Thus (11) is an equality

of elements of @'Lg [ o), It is easily proven by comparing the
i

i
t-derivatives of both sides along a homotopy ht fixed at 9L between

h and 1 . All what is needed is the formula for the derivative of the

~S;(8,) -
global action e over t valid in any trivialization if
]
7t 8elap =0
d ik -1 %8 -1
E Sz(gt) = - ﬂgtr B(g F) gt ) gt . (13)

. g
We proove a generalization of (13) admitting any BZEFBZ in Appendix 4.

The multiplication law in LE is defined by

) )'(lze o ) = A, e (14)

(Ale

where g; ° DO - Gm , 1 =1,2 . That the definition is correct and defines

group operation in LGE , follows easily from Polyakov formula (11) and

the basic property of Fz




“‘?) -, (g1g2,33> +T, (gz,s3> Au:.se:fswée&+<z<1§)f;ss

embedded 1nto the fiber. of L over. the constant loop 1,. Thls?_{nj g

way we ob ai,, the exact sequence of groups

1 T +-LGE ->-LGm F1 . e ol g Lend (16)**;1:
Cons1der the antlholomorphlc 1nv01ut10n VJ : g'+ gf dﬂ' Cm . For n
w € w(ct,y T, o P

jw=wo | i (17)

since both sides have the same curvature. The 1nvolut10n LJ f LGc

1lifts: canonlcally (G is- simply connected) to -an antlholomorphlc 1nv01ut10n. :
We shall use: symbole f _for the image of g € L : under it. The 1nvolut10nrl
transforms covarlantly the probablllty amplltudes '

(e . =s.ghH - o o e
e I o ot=e B | (18)

and is;antimultiplicative, i.e.

The set of poiﬁts g of LGm s.t. Af is the set of vectors of
length one in line bundle L over LG . We shall denote it by LG . Due
to (19), the multiplication does not lead out of LG . This way we get a

central extention of LG by U(1)
1+Ua)4&+LG41. (20)

Central exten31ons (16) and (20) depend on k.For k=1, we obtaln the
so-called un1versa1 one . The exten51ons for hlgher k can be obtalned

from the un1versa1 one by d1v131on by Zk .

Space T (L,) of holomorphxc sectlons of L carrles two commutlng
representations £ and % of LGE defined by means of left and right
multiplication. If glggz E'LGm projecting to 87,8, € LGE and if
v € 12(L%) then

-~ PS - . -1 1-_1 ~+ ) .

(z(gl)n(gz)w)(g) = g, v(g, 88 )8y - (21)

+
Denote by L™ Gm L~ the subgroups of LGm composed of boundary values

) +
of holomorphlc maps of D into Gm . LY can be also cons1dered as sub-

AT g - -5y (@) sy (8)
groups of LG composed of elements e o , £ € L , and e Do,
-5, (8) _ ,
i.e. elements dual to e % , g €L . Notice that for constant loops
A - -8 (go) s, (g) -S;{g,) - .
g, forming tf oL, e Do e Do ° gince e = ~ =1 so that they
1ift to the same element of LGE via LY and L7 defining an embedding

of G® into fc® . The Lie algebras of ¥ and L~ are spanned by




l-iojzn , n>0 and 1 icjzn » n < 0 respectively where Uj are the

N

Pauli matrices. Define

d s %-ieajzn
Jiw =5 PE=O e )3 (22)
and l led .2
=j d 2 j
Ty =5 I, e o (23)

Straightforward computation based on eq. (14), see Appendix 5, shows that

il _ . jikk k_Jji | '
[Jn,Jm] E € Jn+m + > md 6n+m,o . (24)

The same relation holds for J's . This shows that our representation of

A A :

et x it in Pa(Lm) becomes on the level of Lie algebra a pair of -

commuting representations of the su(2) Kac-Moody algebra with central

charge equal k 23.

C

Vay A
The representation of LG X LGm , defined somewhat ad hoc, becomes

quite natural if we represent states in Ta(LE) by formal functional inte-

grals (5). Indeed, it is easy to see that formally, for 81:8 eLt

where
(] - -1 T_l
F'(g) = F(g; g8, ) - . (26)
Besides, in the formal scalar product (8),

gt = 2c0e]) L n(gyT = n(og]) . (27)

. + . .
The action of Lt ox L together with rules (27) determine the representa-

A
tion of ﬂhm X LGm . On the algebraic level, eq. (27) becomes the unitarity
rule23
-y . _at .
gy, T =3
n -n n -n

C.iet in .

j’To this end, we shall search for lowest weight (LW) vectors in Pa(Lm) ,

A
We would like to reduce the representation of LG

the building blocks of the LW subrepresentationszz. By definition, the

LW vectors are states ¢ satisfying
-2j, _ -2i,
2(g)r(gy)v = a; a, ¥ (29)

or 81382 €L , gl(o) =\ % a'l s 82(0) =1 & a'l . jl’jz are the
1 2

Jeft, right (iso-)spins of the LW vector ¢ , O ijl,j2 €5Z . On

mstant loops 8

-8, (g_)
W(gy) = ¥ (g e o ° (30)




where v is a holomorphic function on GE . Due,;O'(iS), eqs. (21) and 22
(14) imply that for any 81>8, € Lt

¥(gyel) = [2(e;8, (0 Hnleye, (0 HlCe,el)

- ' -1
(8,8, (0) 1) +¥(g, (0)g, (1) (g, g}

1.
-5 (8,8,)
- + D _“°1°2
= ¥, (8, @)gy (") e o : | 6D
B a, (0] a, O
On the other hand, using comnstant loops 810 = | % a-l » 890 = | % a-l),
we obtain from (29) 1 ' h2
- -2j, -2j :
_1 + ]. _ Jl — J2 .

Relation (32) means that by is the LW vector for the left and right

regular representation of G in holomorphic functions on Gm . Now, the

standard result says that the left and right spins of ¢o have to be equal
and wo “is unique up to a factor. Indeed, (32) implies that
2j, 2j :
+ 1 -2
wo(glogzo) = al az ‘Po(l) . (33)
Since for a # 0
a b ( a o0 ) 1 o0\+% 1 o (Eﬁ 0
= - = (34)
— — -— H
e L4+be ¢ a2 < 1 \b a!
a a — a .
a
infer that j, = j, = j and for = (a b
we infe i1 =3y =1 8 “lc 4
_ 2 ?
wo(go) =.4a ‘po(l) - (35) :
T 1
Summarizing, LW vectors ¢ in r2(LY) , see eq. (29), have to have ;
equal spins j1 = j2 = j and then, for g,,s, € L+',

] +
23 Svo(glgz)

¢(glg;) = const a ~ e . ) (36)

where gl(O)gz(O)T =( i : }.

By the Birkhoff theorem 22, chapter 8, loops of the form glg; s 81289 € L+
form an open dense set in LGE . Hence eq. (36), for each j , may have
only one solution ¢ € Fa(Lm) , up to a multiplicative constant. We shall
see that such a solution exists if and only if j 5_% . The proof of this

fact is a variation of the proof of Prop. 11.3.1 of ref.22.

Let us consider the action of L+ X L+ on LGE given by g glgg; .

We want to describe the orbits of this action. First consider the orbits

0

*
of N x1" in 16 where N' - {g1 € L+| gl(O) =| 4 x|} - As proven

- Wg;




in 22, Section 8.4, these orbits are of the form

+ - + -
I =N el =N el (37
z 0 T
where e_ = € LG R
n -n
0 z
+ _ o+ + -1 ,
Nn = N N enLl en ’ . (38)
and LI = {g € 1t g(o) = 1}

Relation (37) follows from the splitting

+ - -1
N = Nn(N Nele ), - (39)

elementary to prove. Another elementary splitting is

+ -1 _ _+ - ‘
e Lje " =NN (40)
where
: .- . -1
Nn =N N enLlen (41)
: - - x %
and N = {g €L : g(x) = (O *)} . (42)

Since Uh z e LIL is an open (dense) set in LGE containing e

and

~ O
U, = (enLlen )enL = NNel o (43)

we see that the codimension of I_is the dimension of N = 2n-1 , n >0 .
n n -2n , n <0
Another important information we shall need is that
u z ,
( |m|<n m , n>0
U~ ,En c . | (44)
U Z |VUzZ , n<O0
m -n
Im|<n

Phis is an easy comsequence of the discussion in 22 , Chapter 7.3. From

oV =g Ul

y U, vz, =0,U0, UU_, since 2, 1s a complex submanifold of the

tter set of codimension > 1 . By induction, ¢ can be continued to a

then it extends to a holomorphic section over

obal section of LT . To see when (36) defines a global section, it is

1 0
Consider loops fcn = o 1 , ¢c€C ,n=1,2,... . £ €N

%1 is a general element of NI . If ¢ #0 then

23



; n 24
2 0 1 21\ /o < \1 ‘
e = - = 8yop8
cn n -n 1 n len®2cen
c z | 0 1 \ -= z
i c
+ + ,
where 81cn €N and 89cn € L . We shall need to know the asymptotic
-5, (8;..80_ )
behavior of e Do len2cn when ¢ - O , Notice the singularity in
! -a 0 .\
: { L Z2Z -1
+ _ c
81enB2en I -n (46)
L ¢ Z
where ¢ - 0 inside Do . Using formula (A.4.6) for the derivative of
action S (see Appendix 4), we infer that in any local trivialization
f
d ik +1 -1 2(B1enBaca). 471 -1

d t - - 1k
de SDO(glcng2cn) 2n £ tr a(g2cng1cn

dc 2cng1cn

o
7 t
8(glcng2cn) + 0D 47
where 0(1) contains the boundary terms which are regular when c + 0 as

+ .
81.87. 1S regular on aDo

+71 -1 < +
fact that 8(g2cng len a(glcnchn)) =0

we obtain
4 oy ok
dc SDO(glcn82cn) T o2m
_kn
c
Thus
-5, (g g+ )
D, len®2en kn
e =

In order to study the

on U1 , we decompose each

. Integrating by parts in (47) and using the

<g1cg;c is a classical solution),
-1
71 -1
(g, 8. )

2cn®len” < +
BI tr oc a(glcrLchn) + 0
Do
+ 0(1) (48)
oy . (49)

holomorphicity of LW state ¢ satisfying (36)

+ +
element of Ul as glfcl €185 > where 81 € N1

and g, e1t. According to (43), this is a unique decomposition. Now for

c#0
V(g £ jeq8)) = const.
= const.
where a 1s defined by

(818101820185) (©)= 8, (0)

Clearly (see (49)), the right hand side of (50) is analytic at c =

and only if j.i~§ . Thus in this and only this case

_ + t
25 ~Sp (81811850187
a e (o]
23 ~Sp (glclg;cl) +
P gy'e o ‘g (50)
0 —l’.\\ a *
o -
) x %/
0
0 if

Vv , as given by (36)



extends by continuity to a unique holbmorphic section of Lm . From (36)

it is obvious that ¢ restricted to Z, satisfies (29). We still have

to check this for the extension of ¢ to the whole loop group. Any element
g € LGE ~ Zo may be written as gleng; for 8128 € L+ (orbits of

" x17 on LGG are of the form I U E_n) . Hence g may be approximated
by elements glfcnengg € Eo . Thus (29) follows by continuity. Notice that
for |n| > 2,

. L 4 .
b(ge 8,) = iis ¥(g £ e,8,) (51)
-'.
. -kS, (8. 85, )
= const. lim angl'e Do len®2en ‘g, = 0, (52)
c>o
so that LW state ¢ vanishes on |UI En . If the spin of the state is
nj>2
less than -% then ¢ vanishes also on I, and I_, .
The spectrum of the LW vectors found here : left-right spins equal

taking values O, % ,1...,%- with multiplicity one, coincides with the

spectrum conjectured by Gepner and Witten in5 . From the general Peter-—
Weyl type theory for the representations of the Kac-Moody groupsz4 it fol-

C O .
X LG~ restricted to the subspace of

lows that the representation of e
the so-called strongly regular states decomposes into the direct sum of

LW representations built on the vectors just described. We do not know if
the strongly regular states are dense in Pa(Lm) . (This is however plau-

sible as there are no highest weight vectors in Fa(Lm)) .

The formal candidates for our LW states are provided by functional

integrals of type (5) :
8.2j -5, (8) 1
p:(h) = [ N(g(a) ° ) e © &(gl,phID, g (53)
I D G oD, )
)
8 2j

where N(g(0)  7) stands for a normal ordering of the symmetric tensor
power of matrix g(0) . Such normal powers are produced from point-splitted
expressions by a limiting procedure with an appropriate multiplicative
renormalization. How this works in details is described by the operator
product expansions or fusion rules [21,5] which we discuss, from the pre-

sent point of view, in [25].

6. S0(3) WESS-ZUMINO-WITTEN MODEL.

In the previous Section, we have studied the canoncially quantized .
WZW model with a simply connected compact group G taken to be SU(2) .
Here, we shall examine the new topological aspect appearing if G 1is not

simply connected : the presence of twisted sectors in the space of states,




To make the discussion free of group-theory complications, we shall take

G to be S0(3) and will denote by T its simply connected cover SU(2)
and by Gm its complexification equal SL(2,L)/ Zz . 3—-form Y (YE) on
G (Gm) given by (5.1) is integral if and only if k is an even integer
(the volume of G is half that of T ) . As before, we may take k
positive. A representative of a single w € Wa(Gm,ym) whose restriction
to G defines a single element of W(G,Y) (H (G G*) =1 HZ(G,U(I))) is
given in Appendlx 3. The loop space LGm has two components, LOGE of

contractible loops and LtGE of twisted loops, which 1ift to curves in

G whose ends differ by -1 . Line bundle LGTL ot = Lg may be identified
)
with Tml Z, where T@ is the line bundle over ek (recall that
o T
ZQC:G c LG < L ) . Thus Ia(LO) may be identified with the subspace

Fas N
even(L ) . Since the action of Lﬁm X LEE on Fa(Lm) commutes with -1 ,

we obtain its representatlon in T2 (L ) whose LW states correspond to

even LW states in I (L ) , i.e. to integer spins j1 = j2 <35 appearing -

with multiplicity one.

We still have to study me ¢ Lm
LG ¢

actions of LEE on Lm (again b fixed completely by the rules of geo-

. We shall define left and right

metric quantizations of the classical symmetries qf the theory) This
actions gives rise to a representation of iéﬁ X i@m in T2 (L ) . Classi-
fying the LW vectors for this representation, we shall recover the spec-
trum of the model derived originally by Gepner and Witten from the one for
the SU(2) case by use of the modular transformation properties of the
characters of the s$u(2) Kac—-Moody algebras.

zl/2 1 ' T

0 i C T _
€ LtG . Clearly, LtG = LoG ey *

= | iz
Let ey = |, 1272

We shall represent elements of L% by probality amplitudes of the WZIW
~ .1

model. Let D! = {z € D llz] < 2} . = {z €D \lzl = S° . Let
g : D - G(E be such that g[s =ey/p - Let L € L . Then
€1/2
S 1(g) SD'( ) S I(g) / .
e 7% (e 7=‘87 is dual to e ~© ) may be naturally considered as

an element of LZ[BD and every element in Lg can be described this way.

Iif gy * D] -~ Gm , then g = gh where hran' =1.
©

> e1lapy - ngD;

5o (87) |(g) _
We want to compare fe ~% and 2e . Two cases may arise. If h
lifts to h : D! +-EE , ﬁTBD' = 1 , then there exists a homotopy ht s.t.
h = 1, h1 =h and htraDT = 1 . Polyakov's formula (5.11) applies and
cives ®
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SDé(gh) _ SDé(h)-rb'(g’h) SD;(g)
Le =e i %e . (D

If h lifts to § : D! % st ﬁraD =1, and ﬁrs = -1 then there
oo 2

exists a homotopy ht s h0 =1, h1 =h , s.t. htraD =1 and

2mit . . : :
h PS 1/2( 1%y . In this case, using formula (A.4.6) (Appendix 4) we

see that

%t—[s 1 )=y (8 )*T (8,0,)]

_, oh_ _ .
I tr h 1 t g 1dg lﬂk ) (2)
T g 3t 2
2
(Notice that forms W, and LI given in Appendix 3 do not contribute
071
to (2)). Thus in this case
5, (gh) y()-T, (g,h)  S.,(8)
‘e DS - (_1)k/2 D D, e D& . (3)
Similarly,
S,y (hg) L ()T (h,g) Shye (8)
ge D = ((- 1)k/2)e ge Do )
where (—l)k(2 appears if h 1lifts to 'ﬁ with KPBD =1 and ﬁTé = -1 .
~ @ 2
Before describing the action of LE“ on LE , let us rewrite the one
on TE in ‘a different form. If 8 ¢ D0 e»Em » 8 ¢ D e»ﬁm and E&,E
are their extensions to PE then
-5, (g) s (g) s.(8) -5, (g)) =Sy (@)
(e Do i)-(xze D: ) = Ay e Do 1", Do
_ Sz(g) _SD (glg)-FD (gl,g)
= A, A,e e O o)
172
s (g)-5;(g,8)-T (g9,8) S (g8)
= A A, € o e
172
-5 (8,)+T, (8,,8) S (g8)
= A A, e I*°17 7D, LT Do = (5
‘172 .
Similarly,
s, (g) -5 (g,) -5 (g,)+T, (g,8;) Sp (gg;)
e 2oy e Doy caae B Dol DL L (p)
2 1 172
Egs. (5) and (6) may serve as a gu1de-11ne in the definition of the action
of L@m on L . Let 8189 : D0 4'E¢ R gl,gz be their exten51ons to
> = ‘ . C = .
D, UD! s.t. gl,gz[‘s2 =1 and g : D, >*G , grsz =ey/p Let

L' = D0 UD! . We shall define
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~Sp_ (&1) Spile) -Sz.C§1)+rD;C§1,g)EeSD;C§Ig) 28

)-(ge "= ) = 2je - (D
‘SZ( (§2)+rD' (gsgz)les D;(g’gz)

(Ale
eSD&(g) S, (82?)=

Yr(A,e “o

2 . (8)

¢ Age
A straightforward Ysrification shows that this defines commuting left and
right actions of ﬂEm on LE . Notice how in particular =1 acts on’ LE .

If §1 prolongs -1 on D to D] "Elrsz =1, then, using (4) and -

(3), we obtain

-5, (-1)

SD.(g) ~ 'SZ.(§1)+FD| @1,8) SD'(glg)
e o (e o =e © ©

Le
( 1)k/2;82'(§1)+sD;(§1)+PD' (El,g)-PD.(gl,g)l SD,(g)
- @ © e

-5 (-1)

5|(g)
Do ™"y.e Do : 9)

S l(g)
= ~DF 2 D= L (e

The actions of i%i on/\LE carry over to Pa(Lg) inducing a representa-
tion £ x 4 of ﬁa¢ x L&E on the sector of twisted states :

(A BN (@) = §,-0(e; e )E] - (10)
This representation splits again -into irreducible LW representations
built over LW states satisfying condition (5.29). We shall find all LW
states in Fa(Lg) . Notice, that due to (9), LW states can involve only
integer spins if k/2 is even and only half-integer ones if k/2 is odd.

In fact, the possible spins are more restricted.

As the LW condition of (5.29) fixes the states along orbits

N+g(N+)+ in LtGE , we have to study the geometry of the latter. Under

the mapping LtGm 3 g gey /)y € LOGE , they become orbits N+gM- in LOGE
- *

where M = {g €L : g(0) = * 2 )} . Their classification requires an

easy refinement of the classification of orbits N+gL- in LEE given in

the previous sections. Namely, orbits N+gM_ have the form

tl o N'e M and 2 = Ne M (11)
n n n n
0 -z" 22 0
where ¢_ = Z, ,e_ = Z, and n is integer (as is
n -n 2 n -n 2
\ z 0 '\ O z
easy to see Zl U 22 =% /Z., , where I_ are the orbits discussed in
n n n 2 n
. . +1 _ + _|/1 O +1 _ o+ +1 -1
Section 5 ).Let No = {g €N |g(0) = (* 1)} , Nn =N N enNo S
N+2 = N+ n e N+le-1 . Then 21 = N+1€ M  and 22 = N+2e M  and these
n o n n n n n n

identities lead to unique decompositions of the elements of the orbits.

Moreover, we have splittings :




e N+le-1 = N"’IN-1 , s~N+le—1 = N+2N—2
no n n n no n n n

where N-1 =N Ne N"'le-'1 and N_2 =N N
n no n n

denseorbit. Since

+ - - -
el cenew =nvlen |
n no no o n n n
v? = e st = N %e M,
n n o n n n

the codimension of Z; is equal dim N

<m<-
\ n<me-n

above are elementary.

. 1 Nt + + + . C
j, on the open dense orbit z 1/2 1/2(1\1 )’ of N XN in LG,
~ C N
. 1
Let €172 * D! ~ G° be such that 81/2r3D 1/2 s 81/2[ =€/ - For
a LW state ¢y , represent
P
Wy yp) = te Do M2 ; @)
+ a; 0 a, 0
for L € Le . Then for 81289 €EN , gl(O) =| 4 a—l . 32(0) =| a—l
1/2 1 : 2
V(g & ,080) = a2J1 ;232 (2(g1)(8,)¥) (g1, ;,81)
171/2%2 1 1 2 171/2%2
25, 2j S. ¢ (€ 4,)
_oTL =2 DL L/27, ., +
=a " a " g (e ) g,
_ 2J1 _232 _SE'(g1)+PD‘(g1’El/2) Dv(glﬁl/z) f
= a a e o (Le )
1 2
. s ~ oy r~F ~f
) aZJl,EZJZ . Ss1(g;) SZ,(g2)+PD;(gl,51/2)+FD;(g1€1/2,gz)
1 ‘ :

~  t
zesnacglel/zgz)

(12)
+1 -1 1 .
EnNo €, Zo 1s an open
(13)
(14)

2n , n >0 .
{-Zn , n<0 and the codimen-
0 :

0

. 2 . =2 _J2n-1 , =n> .
sion of En equfls dim Nn = { “n+l , m< . Besides
1 2 2
U (zm U zm) uz ,n>0,
1 1 |m|<n
U_SNIDc (o (15)
non 1, .2
) (Zm u Zm) , n<0,
Ln(men
and
( 1 2
U (zm U zm) , n>0 |,
9 2 |m|<n
Un ~ Zn c (16)
1 2 1
U (Zm U Zm) U Zn , n<0 ,

which establishes the hierarchy of the orbits. Proofs of the facts listed

Let us use relation (5.29) to compute a LW state with spins j1 and

(18)
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where Ei extends g; to Z' 'so that E{P =1, i=1,2 . For (18) 30
2
to determine Y on the dense open orbit Ele;}z it is necessary and suf-

ficient that the right hand side does not change when gli+ gl( a 0_1) ’
- ' 0 a

g21+ tgz( a _f{ ) . As the action of -1 on the sections was already
0 a '

studied, we can consider only the + sign case. Using equation (5.13), we

obtain after an easy algebra

d ~ ~ ~ ~t
FrCHCCPCARMICE Sp0 @)1 B15E) /)4 Ty (&1 /2082)]
. dg
- - ik -1 "°1 -1 _ _k
=T 27 a£ tr 8 g c1/2%1/2 a " (19)
(o]
On the other hand,
25, 2]
d 1-92 .. .1
3z loga; a, " = 2(Jl+32) - (20)

so that the right hand side of (18) is a-independent if and only if
. s k
.]1+32 = ‘i . (21)

For a pair of spins satisfying this condition, integer for even ~% and
half- 1nteger for odd % » eq. (18) defines a holomorphic section of Lm

over up to a constant factor. Remains to be seen if we can extend

1/2
this sectlon to a holomorphic section over entire L G . Obstructions can

arise only when extending the section to orbits of codlmension 1, i.e. to

2 -1 2 -1
By eq. (14), any element of Ugez}z may be uniquely written as
gi(é ?) ez}z 8'* where g, € sz > 8 € N* . It belongs to
2231}2 < Uzel}2 if and only if b =0, for b # O being an element of
1 -1
z e1/2 . Indeed,
1 b 1 o 5712y ¢ |
( )ei}z - ( -1 ./ f1/2 - Eg11;‘:1/287;1; : 22
0 1 b 1 0O -b

Now, ¢(gig1b€1/2g§bgéT) = w(gb) is given by the right hand side of (18)
with giglbc+ 8y > géga gy Writing it in a somewhat more convenient
way, we obtain

. _ ~ _ fv-’- ~ ~ +I‘ ~ ~ ha-'-
211 _2 2 . SZ'(glb) Szv(gzb)"'rn;(glbse]_/z) Do'n(glel/Z’ga)

lp(gb) = a az
Sp; (Elb’;llzggb) +
gy (Re 7= )-8,y ‘ (23)
[a, © i ) a, O
t = o! = .
where gl(O) k* ) and gZ(O) -1 Hence

0 -b * a




231 _2 i, 2j
a; = a; O(b ) when b=>0.To study the asymptotics of the expo-
nential expressxon on the rlght hand side of (23), we apply formula (A.4.6)

to infer that

} _ _ ~ ~ - ~F '
Sps By 10870551 @155 BT Bryr Sy s B3y 70850

. : N'._]. ) a
_ ik B2b —nt A1 981p o~ -1
=T 7 a% tr [ =55 98y,%81, o5 1/2g2bd(gzb 1/2)]
(o] .
+0() = £+ 0(D) o (24)
so that
k-2j, B .

Wg) =0 D) | ' (25

and w(gb) is analytic at b = O since j2 §5§ .

Similarly, every element of Uiei}z may be uniquely written as

N 't wh ' € N7 and glenNt LI bll
gl -l . el/2g2 where gl 1 an g2 . It belongs to

2 1 if and only if ¢ =0, for ¢ # O being an element of Zle—l .

2181/2 ’ ~ o 1/2
Since

1 o 1 2 < o\?
-1 ) ®%1y2 "2 1 B1c51/285c * (26)
lcz ~ 1 o 1 12 ¢

. + oty - . . . . L

w(glglcellzgzcgz ) = w(gc) is given by the right hand side of (23) with
( a, 0 \
_1 b4

- *
c O a, 0 231 _232 2?1 / .
. gl(o) = . Thus a a = O(c °2) . On the other

2 1 x ol 1 2

2

hand, the left equality of (24) still holds (with ¢~ b) and produces a

c+b and a,,a, defined by relations gi(O)

regular contribution. Hence
2j2 '
¥(g) = 0(c %) (27)

and ¥ is analytic at c = 0 . By induction based on the Hartogs theorem, ¥
extends now to a global holomorphic section, for which (5.29) follows by
continuity.

Summarizing, in the twisted sector the LW states correspond with

. 4 s . P . s k . . . k
multiplicity 1, to spins J1539 » i1ty =5 5 15y integer for 5 even
and half-integers if 0 is odd. This coincides with the Gepner-Witten
results.

For both SU(2) and S0(3) case, the spectrum of the LW states

found here gives immediately modular invariant partition functioms of the







APPENDIX 2.

The group of orientation preserving reparametrizations of S1 ,

Di.ff+S1 , acts on the loop space LM by ¢+ ¢°T-1 s T € Diff+S1 . The
canonical isomorphism of the fibers of the line bundle L over loops ¢
and ¢°T71 may be used to lift this action to the action of Diff+S1 on

L preserving the hermitian structure and the connection given by (3.10).
Here we shall show that the connection projects from L to the line bundle

L/Diff+S1 over LM/Diff+S1 . One has to check that if (t_) is a curve

t
in Diff+51 > Ty = id , then its 1lift &(t) = 'r(t)zo to L, ZO €L, is

horizontal.
Let in local presentation

L= (uA’¢’z) . | | (1)

o

where UA is given by (3.8), ¢ € UA cIM and z € € . Then

o1
£(t) (UAt,¢ T, ) (2)

where if A corresponds to the triangulation of S1 by intervals b and
vertices v and to assignment 50, then At is related to the trian-
gulation by Tt(b) and Tt(V) with the unchanged assignment of a's .
Changing the trivialization by the transition function GA A given by
(3.9), we obtain t

- o _1 o -1
L(t) = (UA,¢ T, ,GAtA((p T, )z) . (3

We have to show that the covariant derivative

D = -} -1,-1 i 0 -1 -1 . =
3T «o) = [GAtA(cb ) It GAtA(cb T) 1<xt,EA>]2(t) o (4)
where
5 -1 A . ‘
X. =3¢ ~(¢°Tt ), . (5)

see (3.10). It is enough to show (4) for t = 0 . For simplicity, let us
assume that Tt(v) > v for each vertex v of the triangulation of §

(in the natural order on the circle). The general case proceeds the same
way. Denote by b; and b; two intervals b bordering on v , b: later

than b; , see Fig. 4. From eq. (3.9), we compute

T4 (V)
-1 . t ~1.%
G, ,(¢ot, ") = expli T (get_ ) n_ _ ]
AtA t v Iv ' t 'abv ab:
-1
guvab_a-b+(¢ T (v)) |
. I vy v . (6)

v Ba o a4+ (9(v)
v v




On the other hand, by definition (3.10),

f BTO J . 81:
<X ,E>==-1] bw - I = (v)¢n
o’ A b b at Oy v,b vub
BT vEadb
= 3 < -—— (v),¢ (na ab+-n“v°b')> . (7)
v v
Thus
-14d4 -1 .
GAtA(¢) dt GAOA(¢°T0 ) - 1<K .Ep>
3‘1’
1 -1
t > g ap=opr T By “7 %, fa v'b_ by,
v v v
-n +n )>=0 (8)
B e
v v
by (3.3).
APPENDIX 3.

In order to describe a representative of
w € W(SL(2,T) , T%? tr(g_ldg)3 = ym) let us parametrice
3

. 2 2
sL(2,t) = {z°+1 5_21 2,04 | Zo’zie c , z *tz" = 1} . (1)

> -+
We shall use the (stereographic) coordinates §£,; on the subsets
z ¢ ]-»,-1] and z_ € [1,«[ respectively, g,EE E3 ’ +2 *24 ]=,-1],

o
>2 22
'13»7 -z 321 ’ (2)
1+% ° T
Zgi 21;.
2 "% T, (3)
1+ £ r+1
An easy computation gives
OB L gglagfag® - - B 2o actag?ac® . %)
T 1+ &%) (g7+1)

Cover SL(2,E) by
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. .
—E - 1 35
0, ={g" <1}, "'1‘{“eﬁ’°}"
55
0 { ¢ ]--,01} , (5)
° 3
£
01={ReF];—|-<O} R 0_2={l'52|<1}
£
where }El = /%;f . Let
L gke? i5k.i, 3,k
w= [ —a=dt I eT%raedat | . (6)

0 w(tz 32+1) i j,k
and o' be given by the same formula with Z -+ E . Notice that they are

well defined for EZ,ZQ £ ]-»,-1] and that dw = y = -dw' there. Define

for integer k

W, =W, W =W, wy=w, 6=, 0 =-e,
N0 2,002,170 N3570 » Mo =0 >
k51 £3dE,=8,dE,
1,252 (lgl -1 2,2 =No,2 ?
) 273
n =35 ( +1) ’ (7)
1,2 2 |E| §2+52
273
&3,-1,0" 1> 820,11 5 810,21 >
) 1€2+£3 k
£0,1,2 e :
2 °3 I'g]
Y,
g2
It is easy to check that (g oM s, ) determines the unique element
G0 &y " a0y :

of Wa(SL(Z,E),YE) and, by restriction to SU(2) (i.e. to E and ¢
real), the unique element of W(SU(2),y) . Notice the relation between (7)
and the local data of the monopole bundle of Appendix 1.

For even k , define another representative of w € Wa(SL(Z,E),YE)

by putting

D=, Ty =o',

'(:)'_1 = w+ "—‘1_':.—'5 I eleEIdEJdgk = TL)‘]. s
il
mQ

oLk B B

—2,—1 4 -> 2 2 -2,0 i

B




L B 4

— | N
n ¢ +1) R (TR S
-2,1 > 2.2 -
R T R~ 0,2
N
’
k/2
R
L gy |
-1,0,2 77 = .
2,,.2
E;2.'.53 >
¢ ! . N <>
The multiplication by -1 in SL(2,T) corresponds to g > - 55 ,
->
Z > - ;% - A straightforward check shows that .(E,?f,ﬂ;) is invariant under

this transformation so that it defines the unique element in

wa(SL(z,m)/zz,ym) and in W(SO(3),y) .

APPENDIX 4.

We shall compute here g S (gt) for a t-dependent map 8, ° L > Gc
and I any orlented 2- dlmensmnal _compact surface m.th boundary. First,
we shall differentiate the A (gt) part of the amplitude, see (5. 2), as

given by tormula (3. 6)

: * *
_EE log Az(gt) - %t_[-iz Jeuw, +i T Jogeng 41
. cc c b,e b bc
- ~becoc . o
-z 8y o, a ( (v)) dt &q b a (gt(v)) : (1) ;
v,b,c “vbe c . e
v €3b
bcac

~

Denote by X any vector field tangent to I x G s.t.
Xt(gt(ﬁ) = dt gt(E) For a form x on ¢ denote by X its pull-back

to I x G by the projection on the second factor. We have

Let Et $ I+ L X Gm be obtained from g, by putting 'Et(g) = ,(g,gt(g)) .

d 1 d ke £~ | ,
wlex=w/ e x=Js box (2)
t




where

L,X =%, 1ax+a & |50
X

o

to X

is the Lie derivative of % with respect

£ ° Hence
log A(g) = -iZ [ L & +iz [ BoL
dt 08 Apl8y . & Yo TT gt > o, o
cc X ¢ b,chb X bc
t t
o ~=1 ~
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v,b,c t %t a o a0 e
X ~ |~ ~X e e '
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v,b,c t " Otvmbmc
~k ~ o~
=-i [ g (X 1% -icx I gt(Xt J (@, =dn, N
'z b,c b c b c
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. ~ ~ R ~K o~ P e~ ~ ~
i [TR IV -1z TR IG B -dn, N
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i JRE T
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bcarb © ° %
~ ~ —1
+1i I X (g (V)),n_ . -n +n - 8 dg
v,b,c ab c W% ¢ 0Lb 1 a clbmc avmbac
i KX GE ), >
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v € db
[ X=%:})
=1Igt(XJY)-1Z J'gt(le
z bcdZ b *b
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v,b v b .
v €3b,bcal
where we have used the defining properties of (gaoalaz,naoai,wa) . Now
: . og )
T 2R T 1 -1 °t,, -1 2
-1 { g K, i7) = -7 J tre 5 (g, dgy)
. og
_ ik -1 t -1
= J e, 5yl dey)
. Bg . og
_ ik ty, -1 _ ik -1 ty,. -1 <%
Tr dgtr(gt RA R { tr 3(g." 5% )(gti %g,)
. og
1k -, =1 °t,, -1
] tr e, e (e %) - (4)




The contribution of the sigma model action Sz(gt) (see (5.2)) gives
d -1 -1 =

T %m dt { tr(g, 9g ) (g, 3g,)

3

_ ik -1 %8¢, -1 -1+
= % g tr(g, 57 ) (8, 8.0 (s, " dg,)

. _Bg 1
- %% I tr(gtla%EE))(gtl og, )

z
e 3k g log ) (gt By 6! Tg,)
4 8y 98708 T3¢ /'8 %8¢
z 3g
_ ik 1o yaol 3Bty -
4w { tr(gt Bthgt a(at )
g
- - ik -1 _°t
== ,gtr a(gt )(gt og,)
. og
ik ¢ =, -1 t
* £ tr B(gt )(gt 3g,) - (5)
Eqs. (3), (4) and (5) together yield
1 98
d _____ t -1 <
o Sp(ey) = J tr B(gt =) (8, %8,)
Bg
lk j _ t . ~K ~
tr(g, - 50 (8, lgry- 1 [T&I1I6)H
lmz t t °t chtht'ab
-i P <Xt(gt(v))’na . > . (6)
v,b v b
vEab,bc 3k
Of course (6) implies (5.13) but it provides also the boundary terms
- 3
occurring when 3;5 does not vanish on 23X .

Notice that due to (3.10), eq. (6) may be rewritten as
. ag
_ ik -1 %8
EE exp[-s (g)] = {5, £ tr a(gt )(gt og,)
-1 9g -
S5 g (g i) (e dey)) expl-Sy(e,)] &)
3L

D . . . .
where T is the covariant derivative.




APPENDIX 3.

In order to prove (5.24), it is enough to check the commutation rela-

A
tions in the Lie algebra of LGm as 2 4and M are two commuting repre-

sentations of et . The only non-trivial relation is the commutator
L ieo.2® 1 jeo,z
2 j : 2 L

S £e I d -5, (e )

.g;t:oe d—reo 0 1 )

with n <0 and m > 0 . This is equal to

-1 -1 '
d [ eSDm(gl ). . SDO(g2 ). eSDm(gl)} SDo(gz) (2)
dez‘a=o
where
1 ieg.z 1 ieo, 2"
2 j 2 L
31 = e J ’ gz = e . (3)
o -% ico.f n
Setting g, = e J » where f extends z  on D to Do , We may

rewrite expression (2) :

1o (v -1 -1 ~ e
) Sy )*+Sy(E) -5y (B)) -8y (g ) 5 (8)) -5y (g))
2) =— e e ° e O e O e O

1}

1~ ~1 -1 ~
7| . expll; (g 81Ty (817-8, ) Tp (81:8))

~1 -1 ~
Sp,81 82 ) Sp (818
e c e

T explry (B hEp)-Ty (&) aep 7T (Bpagy)
de  te=0 o o o
~] -1~
-l -1 ~ Sp (8, 8, 88,)

- PDO(gl 32 aglgz)]e ° (4)

where we have used (5.11) and (5.14). The expression in brackets equals

ike2 = m 2
- f tr(o,0,)(3£)(3z") + 0(e”)
D J

8t
20
skl e mds o2
4 z
aD
o
_ 2k AR 2
e’ S m 8 6n+m,o+ 0(e”) . (5)

On the other hand,




1 ie? redtks £,@ 40

~1 -1~ k 2
gl gz 8182 = e k (1+0(€ )) .

2
Now it follows from (5.11) and (5.13) (S(eo(E )) = 0(54)) that if

ntm > 0 then

1,273 n+m
~1 =1 5 1€ Ee o) 2 )
d ) Sp, 81 8 8182) ¢ e Sp, (e .
d52'e=o de2 €=0 »
and if n+m < O then |
. . |
IR R 1 1.2 jtk_ nm |
a_) Sp (81 & €18)) g Spz 1 ZeT oz ) |
__5. e = ——5 e . (7)
de” €=0 de” e=o0
Gathering (5), (6) and (7), we obtain for n+m 340
(-s .
i Do QL iezzejzko 2"
‘ S 2 k k
A iy
W =457 et Pa +Ems it @)
b ]

de” ‘e=o

what was to be shown. '
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