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Asymptotic behavior of 8 ensembles.

K. K. Kozlowski 1.

Abstract

In these lecture notes we present large-deviation baséditpes that allow one to
prove the topological expansionsgrensembles

1 A not so short introduction

1.1 Integrals

Integral representations play an important role in phyaied mathematics. On the very fundamental level they
can be seen adiieient tools allowing one to construct explicit solutionsamerous problems be itftierential
or finite difference equiations, enumeration and other combinatosiaés or compact resummations of sums, so
as to name a few. For instance, the hypergeometric fun¢tieimeh solve the dferential equation

d?u

z(l—z)-E +(c—(a+b+1)z)-3—l;—ab-u=0 (1.2)

have been shown to admit various types of one-fold integ@masentations such as the Gauss one

I'(c)

1
b- c-b- -a
0

u@ =

which is valid forR(c) > R(b) > 0 andlarg(1- 2)| < = or the Mellin-Barnes one

I'c) (T@+9rb+9r(-s), ¢ ds
(b)), (c+9 =2 2in (1.3)
iR

u2 =

which is valid forlarg(-2)| < x, a,b ¢ —N with a path of integration that separates N from {—a— N} U{-b—N}.
In itself, taking the example of the hypergeometric funatian integral representation, apart from providing
a closed well-defined representation cannot be considerdlleafinal answer. Without tools for analysing it,
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ie extracting all the desired information on the object beiegresented, they would be merely another hardly
useful formal object. Still, the development of complex lgsiz gave birth to the saddle-point method and to
techniques of analysis based on contour deformationstheise techniques that turned one-dimensional integral
representations into extremely powerful tools. In the ad#she hypergeometric function, they allow one for an
easy access to

¢ determining the regions of analyticity in its parametns, c and in its principal variable;
e determining the smatlt expansions;

¢ determining the value of the hypergeometric function atgpeoints egfor z= 1 (1.2) simply reduces to
the Euler integral, whereas computing the explicit valu¢hefassociated series demands a much tougher
analysis);

e extracting asymptotic behavioursin- oo or in the auxiliary parameteis b, c.

It is to be expected that when a problem becomes too complex,dbtaining some closed expression for its
solution might demand to recourse to higher dimensionalgiatis. Although, in principle, this might seem fine
and acceptable, this is not such an ideal situation in thahemne hand the structure of domains of integration
may be extremely complicated as soon as one moves into tighensions then 1, and, on the other hand, there
is no per semethod of steepest descent for integrals over many vasiafilele, in some cases, one can save the
day by applying, repeatedly, the one dimensional steesseat method.

This is however, by far, not a generic case. A typical examlere such a procedure would fail corresponds
to a multiple integral in which the number of integratibins the large parameter. These integrals, and especially
their largeN behaviour, play important roles in physics. They can beghbof as baby models for finite lattice
approximations of path integrals. Furthermore, they aneeirally in the study of models of classical statistical
physics and especially in the calculation of their pamitfanctions. They are also intimately related with matrix
models, the latter having a large domain of applicationsintiag of various types of graphs that can be drawn
on a Riemann Surface, analysis of statistics of noise inasigrocessing, 0-dimensional quantum field theories,
statistics of eigenvalues of heavy nuclei... so as to namwa f

These integrals step so much out of the "well-understoodéree for "classical" single or many-fold integrals
that, as | shall argue further in these notes, they deserbe toall "semi-classical” integrals. Techniques for
their analysis are still not fully developed and solely agrtspecific cases or families could have been treated
so far. Nonetheless, these examples already led to theogeweht of a new kind of mathematics. In particular,
there has been observed to exist an intimate connectiorebatthese and sequences of probability measures on
certain Polish spaces. The study of such sequences througiled large deviation principles brought, on the
one hand, a certain impetus to the theory of probabilitiet @nthe other numerous deep results on the objects
being represented by these multiple integrals.

The purpose of these lecture notes is to discuss particktanges of theses "semi-classical" integrals and
introduce techniques that allow one to extract information their largeN behaviour, withN being the number
of integrals.

We shall begin by introducing a few examples of such integaald outlining the type of questions and prob-
lems one would like to resolve in such a context.

1.2 Classical statistical mechanics

Consider a system dfl classical particles on the line in an external confining piigd N3~V (1) interacting
through a two-body interactiow/(4, ). Then, the "spacial" part of the model’'s partition funatiat temperature



T = g~ takes the form

AN [V VV] f 1_[ W(/la Ap) 1_[ —NV(/Ia) dN (14)

RN ab=1
The potentiaV is supposed to be confining meaning that

V() — +oo, (1.5)

this suficiently fast so as to ensure the convergence of the intefyrd). (The two-body interaction may or may
not present singularities. However, typically for redtighodels they present a divergence on the diagdeal,
W(A,u) —» +o0 whend — u. The latter merely translate a sort of impenetrability dbod between the various
particles. As follows from numerous considerations ofistiaal mechanics, the partition function -or slight
modifications thereof- allow one to access to many obsesgaddsociated with the system under investigation. In
fact, from the perspective of studying observables of thdehat is convenient to introduce a generating function
of observables

dNa
Gl = f o hia) SW(dady) | | oNV(a) . ' (1.6)
4 1:[ ab— 1_[ A

For instance, the average positiofy of a particle is obtained through

190 .
(XN = Na—gN[(lh]m:O with h(/l) =A. (17)
a

Clearly, for fixedN the multiple integral representation fag[W, V], without even mentioning more involved
objects such agn[h], can only be considered as a formal object. Indeed, unhes®tternal potentia/ and

the two-body interactioW are chosen both to take an utterly specific form, the integaahot be computed in

a closed form. However, from the perspective of statisticathanics, one is usually interested in the behaviour
of these guantities in the case of a large nunief interacting particles. In this respect, one can address t
following questions

e What is the largeN behaviour ofZy? In particular, does it admit a largé-asymptotic expansion

INZy = —-N2-F2[V,W] + N-Fg[V\W] + --- (1.8)

e Once can think of

: dNa
dPW,V 1 — W(/la Ap) —NV(/la) 1.9
v =] ]‘[ TN (1.9)
N
as a probability measure on the configuration space. ThdiAn) = 2 h(1y) is a sum of random

a=1
variables. Does it converge to some random variable? Wiaatyigicall distribution in this case.

e A somehow related (but stronger) questions relates to tistegce of the largéN limit directly for the
generating functiogn[h]?



In these notes we are going to introduce an analogue of tltbespdint technique that allow one to treat two
cases of interest

e Wis a bounded?(R?) function ;
e W(A,p) =-2Inja—ul .

The first case will be rather easy whereas the second will asipithe dficulty of taking into account "singular”
interactions which so-often appear in physics. The secasd corresponds to log-gases and is referred B as
ensembles. In fact, this class of integralgat 1/2, 1 and 2 is intimately related with various classical ensesibl
of random matrices.

1.3 The classical random matrix ensembles

Random matrices have been first introduced by Wishart iretteell920’s (1928) as a tool for studying statistics of
noise in the measurement of samples. Then, in 1958 Wignpopeal to use certain ensembles of random matrices
so0 as to model excitation spectra for heavy nuclei. In a mlitghis ideas were the following. The very details of
the interactions in a heavy atomic nucleus are hardly aitites®ue to the large number of interacting particles
and the possible change of the precise and explicit formefriteractions due to fine tuning in the system, one
may, in fact, treat the model's Hamiltonian as a random tdeiaolely satisfying to overall explicit symmetries of
the model under investigation. Furthermore, the naturbe§pectrumig typical statistical features should not be
altered whether one considers some random operator dficiexutly large random matrix. Considerations about
the invariance of the system under time reversal gave rifedée "classical" ensembles of random matrices:

e the unitary ensembl&y consisting ofN x N hermitian matrices = M" with a probability distribution
that is invariant under unitary transformatiolls— UMU™, UTU = Iy;

e the orthogonal ensemblgy consisting ofN x N symmetric matrice! = M! with a probability distribution
that is invariant under orthogonal transformatiois— OMO, O'O = Iy;

e the symplectic ensemblgy consisting of Al x 2N hermitian self-dual matricel = M = Jy MtJ}\l with

N = diado-,...,o-) , o = ( _01 é) (2.10)

with a probability distribution that is invariant under tary-symplectic conjugation transformatiolt —
UMUT, (whereUUT = Iy, UNU = J\);

The fact that one imposes the probability distribution toiftn@riant under specific conjugation is a mere
restatement of the fact that a hermitian matvixandU™MU will lead to an exactly identical description of the
guantum system. Hence, all equivalent realisation oughetyeated on the same ground and thus be associated
with an equal probability. The reasoning, in the case ofagtimal and symplectic ensembles, is much similar.
The diference on the class of transformations leaving the prabahbileasure invariant solely arises from the
requirement that the type of conjugate transformationshbtiy respect the overall symmetry of the class of
Hamiltonians (which is imposed by additional physical syetnes enjoyed on the system such a time invariance
of etc...).

For all of these three ensemble, the probability distrinufunction takes the form

1 .
dPn(M) = N—Ne-”[QW)] -dM  with Ay = f e "M . gm | (1.12)
&



in which dM is the Lebesgue measure on the algebraically independgigser-urthermoreQ is some polyno-
mial of even degree -so as to ensure the convergence of dggalt, hence making }(M)] well defined. In fact,
one could consider much more general confining potenfaabject to the sole condition of growingfBaiently
fast at infinity so as to ensure the convergence of the intelgrauch a more general case, the quantit®{N1)]
ought to be understood in the sense of matrix functionalubagc

Note that unless de@) = 2 (Gaussian distribution), the algebraically indepenaenities aranotindependent
random variables; they are correlated.

In the following, we are going to provide a thorough anahafishe orthogonal ensemble. In particular, we
are going to establish its connection with the log-gas aptmatures = 1/2. The analysis that we shall present
can be repeated for the ensemifigsand 7y as well but bears some additional technical complicatibas Wwe
shall not discuss in the present notes.

1.3.1 Acase study : the orthogonal ensemble

An N x N symmetrix matrixM depends oN(N + 1)/2 free parameters:
¢ the N diagonal entrieMy, k=1,...,N;
e theN(N - 1)/2 upper-df diagonal entries.

Hence, in this case, the probability distribution takesftmm

N N
APy (M) = NiNe-”[QW)] ] [dMaa- | | dMao (1.12)
a=1

a<b

The purpose of this section will be to establish the

Theorem 1.1 Let f € LY(Sy, dPy) be orthogonal invariant (OMO') = f(M). Then, f is a symmetric function

F of the eigenvalued,..., Ay of M € SN f(M) = F(14,...,4N) and the ensemble average reduces to an
integration over the eigenvalues
1 N N
f f(M) - dBN(M) = —— f F(a,.oan) - [ [Ma— ol - [ e @), (1.13)
Sn ZN [Q] RN a<b a=1
in which
N N
Z(N]-/Z)[Q] — f]—[ 11a = A - 1_[ e Q) . g\ (1.14)
RN a<b a=1

At this point, one can already thing of several directioneestigate.

e The most natural being: what are the typical freatures ofitbibution of the eigenvalues &l € SN? A
good insight on this issue can be obtained by investigatierargeN limit of the density of probability of
finding an eigenvalue al;

N N N
PP = [ [ [ha o[ [t (1.15)
a=1 a=2

RN-1 a<b

Does p(ll_l/\f)(/l) has a goodN — +oo limit? In what sense such a limit exists? Is it possible tcaobtin

explicit control on the speed of convergence towards thm#g&®h An explicit expression for the corrections?



e Do the eigenvalues have some "average" positioRr - - - < yn, assuming that they are ordered increasingly
A1 < ... < AN? Are the fluctuations around these average positions trong

e Are the eigenvalues correlated in the lafgdimit? A good insight on this question can be given by studyin
the largeN behavior of

PP = [ [He- ol ]‘[ew ]_[daa (L.16)

RN-2 a<b

e Provided a good scaling is chosen, are large gaps in thergpepbssible? What is their probability?

We shall start by checking that, indeed, the probability snea @y is invariant under orthogonal transforma-
tions.

Lemma 1.1 The probability measurél.12)defined on the space of symmetric matrices is invariant uodkog-
onal transformations M-~ OMC".

Proof —

It is clear that trQ(M)] is invariant in respect to the orthognal conjugationsnéte it remains solely to check
the invariance of the measure.

For a symmetric matrix, let

M = (Mll,---,MNN, |V|12,---,|V|N—1N) (1.17)

denote itN(N + 1)/2 vector column representation. It is clear that the transétion7 : M — O'MO defines a

linear operatofl on RYZE M > TM. Thus, the Jacobian of the transformatidn— O'MO is given by defT].
Now, one has that

N
tr[(M?] = tr[(7 - M)?] ZM +2) M = Z[‘TM]aa + ZZ[‘TM] . (1.18)
i<k j<k
Thus, setting
d|ag(1 .2), (1.19)
N(N-1)
-2
we get that

(M.DM) = (TM,DTM)  with (--) the canonical scalar product ez (1.20)

. . N(N+1) . .
so thafT is orthogonal in respect to the scalar prodcuRore  induced byD, ie T'DT = D. As a consequence,
(detT])? = 1. n
Every symmetric matriM can be diagonalized by some orthogonal similarity tramsédion:

M=0-A(N)-O'  with  A(dy) = diagls,...,An)  and Oe O(N). (1.21)

It thus appears reasonable to trade the integration ovesphee of symmetric matrices into one that would be
compatible with the parametrization of a symmetric matgpaldiagonal and an orthogonal one. The main issue



here is that such a parametrization is not unique. Indeéd{|ebe the closed subgroup &f(N) consisting of
diagonal matrices with entriesl or —1. Then, for a fixed\(An), the matriceD andO - H, H € Hy will lead
to the same matrix M. Furthermore, should two eigenvaluésca®e, then an even greater choice of matries
(arbitrary block form associated with the blocks &fAy) o« the identity) will still lead to the same matribd.
Finally, even if the eigenvalues were allffdirent, there would still remain a permutational freedonoeissed
with the various ways of ordering them.

Hence, in order to carry out the change of variables, some iweme is necessary. We are first going to show
that, in fact, we can restrict the integration to a nice ct#ssatrices, namely to

As = {MeSN : M has simple spectrum (1.22)

Lemma 1.2 As is open and dense i8y. Furthermore Sy \ As is of Py-measure zero.

Proof —
The first two statements are clear by standard perturbdteory. Further let

N
AM) = ]_[(ﬁa—ﬂb). (1.23)

azb

A(M) is a symmetric polynomial in the variablag. Hence, it is a polynomial in the symmetric polynomials, and
thus a polynomial in the cdicient of the matrix M. We proceed by contradiction. Assume that

Pn[SN\ As] > 0. (1.24)

SincePy is absolutely continuous in respect to Lebesgue’s measLkE o , it follows thatA(M) is a polynomial

onR ™7™ that vanishes on a set of non-zero Lebesgue measure. Byrihealéo comeA(M) = 0. Yet, itis readily

seen that for anyl = diag(11, ..., An) such thatly # Ay for a # b, A(M) # 0, a contradiction. [ ]
Lemma 1.3 Let Pe C[Xy, ..., Xy] be such that there exists a Lebesgue measurable seREsuch that
Pe =0  L£jE]>0, (1.25)
in which £ is the Lebesgue measure BA. Then P=0
Proof —
The proof goes by induction. Far= 1, assume thd e C[X]
Pe = 0 (1.26)

for someL;1-measurable séE c R with £1[E] > 0. Clearly, #£ = +o0. Thus,P vanishes on a set of cardinality
greater then @ + 1 and hencd® = 0. Now, assume the statement holds up to sameet P € C[Xy, ..., Xn11]
andE be as in the hypothesis of the lemma. Represent

m
P(Xa,- o Xopt) = D X33 QalXa, . Xn) . (1.27)

a=0

10ne can also obtain an explicit representation in termseoféolvenR(P, P’), with P = det[2 — M], thus yielding the polinomiality
in the codficients ofM explicitly.



Let fy, : X — (Xn, X) and defineE, = {x, € R" : fy (R) N E # 0}. Then, by Fubbini’s theorem,
0 < f le - dLpy = f 1e, (%) - L1l £X(E)] - ALy . (1.28)

Thus, there exists £, measurable s c R", £,[&] > 0 such that[jl[fx‘nl(E)] > 0-L, a.e. on &. Removing

from & a set of measure zero if necessary, we may assumeCilh&Inl(E)] > 0 oné&. Hence, for any, € & the

polynomial P(xy, . . ., X,, X) vanishes on the sef;:nl(a) of positive Lebesgue measure. It is thus zero. Hence, the

polynomialsQy, ..., Qm in n variables vanish o0& with £,[E] > 0. By the induction hypothesi§) = 0 for any

K. [
Hence, when integrating versiiy, we may restrict the integration téls. We now build a dfeomorphism

betweenAs and

RY x O(N)/Hn  with RY = {ayeRN : a3 <+ < A} (1.29)

that will allow us to change the coordinates and integratétmiorthogonal group part. Note that we have imposed
an ordering of the coordinates on the first space.

Lemma 1.4 Let® be the map
®: As - RY XxON)/Hy  ®(M = OA(AN)O") = (AN, O - Hn) - (1.30)

Then,® is a smooth dfeomorphism froniAs ontoR?‘ x O(N)/Hy with inverse®(Ay,U) = O - A(y) - O in
which O is any representative of the coset U. Furthermore,

N
det[Duu)¥] = [ [1a— ol g(U) (1.31)

a<b

for some smooth function:gO(N)/Hn — R*.

Proof —
We first observe tha?¥ is well defined. For ifO andO’ = O - H with H € H) are any two representatives of
the cosetJ, we get that

O'A()(O) = OHA(A,)H!O! (1.32)
=A(An)

sinceH andA(1,) are both diagonal and? = Iy.
We are now in position to prove that

Indeed, one has

® o ¥P(An,U) = O(OA(AN)OY) = (AN, O-Hy) . (1.34)
U

Also, for M € Ag there existsly € R’T\' andO € O(N) such thatM = OA(Ay)O!. Then,
¥o®d(M) = Y(An,O- Hy) = OA(AN)O" = M, (1.35)

sinceO is a representative of the co®t Hy.



e Smoothness off

We observe thatHy is a close subgroup of the Lie gro@(N). As a consequenc&®(N)/Hy admits a unique
structure of &> manifold such that the canonical projectisrnt O(N) — O(N)/Hy is a smooth submersion.
Furthermore, relative to this manifold structurés a principal fiber bundle with structure gro#fy meaning that

e for anyUg € O(N)/Hy there exists an open neighborho® of Ug in O(N)/Hy and a smooth section
7 1Y Uo) — Uo x Hy, such thatr = pr, o 7y, that intertwines théy action onz=1().

We introduce
g: Uy — n YUy suchthat gU) = 771U, Iy) . (1.36)

Then,g is a smooth local section dB(N)/H\.
For anyU € Uy andAy € RN, we have

(AN, U) = g(U) - A(An) - (g(U))', (1.37)

and the map is clearly smooth.

e Smoothness ofb

Let Mg € As. The matrixMg has distinct eigenvaluet (M) < - - - < An(Mp) and admits an orthonormal basis
of eigenvectorslj(Mo),

Mon(Mo) = /ljUj(Mo). (1.38)

SinceAs is open there exists an open neighborhaddg of Mg in As. We shrink the neighborhood if necessary
so that, for anyM € Mg

14;(M) = 2;(Mo)| < % with 6 = min{|l2a(Mo) — Ap(Mo)| : @%b, abe[1; N]}. (1.39)

Then we introduce the spectral projections okits orthonormal of eigenvectous (M):

1 dz
Pi(M) = — 5 (1.40)
z-2j(Mo)I<5/3
It is readily seen thati;(M) are given by
P;j(M) - uj(Mo)
uj(M) = —2 . 1.41
M= 16 (M) o (Mol (1.41)
The eigenvalues dfl are expressed as
A;(M) = (uj(M), Muj(M)) . (1.42)

As a consequence, boM — An(M) = (11(M), ..., An(M)) andM — O(M) = Mat(ui(M),...,un(M)) € O(N)
are smooth om\g. Hence,

®(M) = ®(O(M) - A(In(M)) - O(M)') = (A(n(M)). 7(O(M))) (1.43)

is also smooth.



e Calculation of the Jacobian

We now calculate the Jacobian¥f For this purpose, fix a poiri\g, Ug) € R?‘ X O(N)/H. Letx, = (Xq,..., X¢),
¢ = N(N - 1)/2 be a system of local coordinates in some neighborlidgaf Ug:

14
ek Ux)  with 378 < e (1.44)
a=1

Then, we denot®(x,) = (g o U)(X,) with g defined as (1.36). In this way, we get an open neighbourhdgaf
Mo = ¥(Ag, Ug) in As:

4
Mo = {M €As 1 M= O(x)A(AN)O'(X,) with Ay e RY and Z X < 62} . (1.45)

a=1

GivenM € Ag, we get

MM = (axko(x[))/\(/l,\,)ot(xg) + O(X[)A(lN)(axkOt(Xg)) and 9,M = O(x;)- 91, A(An)-O'(x,) . (1.46)
Hence, due t§d,,0(x)) - O(x;) = — O'(x)(9x,O(xc)) which is a consequence 6¥(x,)O(x) = In,

0'(xQ) - (9 M) - O(x) = [Sj(x). A(N)]  with  Sj(x7) = O'(x,)- (85, 0(x)) - (1.47)
We introduce the map
VoA - Vo(A) = O'-A-O. (1.48)

We have already established thé& induces an orthogonal transformation on the vector reptasen M €
N(N+1 .. . . N(N+1 .
RS of M € As, this in respect to the canonical scalar product induced[hy?] onR 2 In particular, let

Vo correspond to the linear transformation induced/gyon RYGY,

Vo: M Vo(M)=Vo(M) then de{fVo] = +1. (1.49)
Thence,

Vo@uM.....00M.3M. ... 0, M) = (83,A(). ... 02, AN, [Si(xe)s AN~ [Se(xe)s AGN)])
(1.50)

. N
Where we do stress thf$y(x,), A(An)] is the

the symmetric matrixSy(x,), A(An)].
It is readily seen, sincA(Ay) is a diagonal matrix, that

dimensional vector that is canonically associated with

(N+1)
2

(O1,AQN). ... B2 A(N). [S1%0)s A@AN)]. -+ - [Se(Xe)s A(N)]) = ( ION >?N ) (1.51)
with
(A2 — 41)(S1)12 (A2 - 4)(S212 .. (A2 = 41)(Sp)12
Xy = (A3 = 21)(S1)13 (A3 —A41)(S21zs - (43 = 21)(Se)13 . (1.52)
(AN = AN-1)(SNN-1 - (AN — AN-2)(S2NN-1 - (AN = AN-1)(Se)NN-1

10



Thus,

detu- (04M,....00,M, 0 M, ..., 04, M) = (+1)-det[Xy] . (1.53)

Hence, all in all, in a neighbourhood & € R the Jacobian of the mad — (A(An),U)is

det oM —N/l Al - (U 1.54
|e[m]|—glb— bl - (V) , (1.54)

in which f(U) > 0 is a smooth function o®(N)/Hy. Note thatf(U) > 0 is a consequence of the maximalily of
the rank of the dferential of¥, as ensured b o ¥ = idz . u
We are now in position to establish the

Theorem 1.2 Let f € LY(Sy, dPy) be orthogonal invariant (OMQY) = f(M). Then, f is a symmetric function
F of the eigenvalues(M) = F(14,...,4n) and

N N
ff(M)-dPN(M) = ﬁfml,...,m)-]_[ua—aby]—[e—‘?“a), (1.55)
Sn ZN [Q] RN a<b a=1
in which
N N
Z{Ql f [ [1a— -] e, (1.56)
RN a<b a=1
Proof —

As it has been already discussed, eaghe O(N)/Hn admits an open neighbourhodd, and a smooth
lift go : Up — 7~ (Up) c O(N). Furthermore, the neighbourhodd, can be endowed with a system of local
coordinates:

4
Uy = {UO(x,) ng < € and UO(0) =; Uy (1.57)
a=1

Uu,Uo is an open covering dD(N)/Hy. Hence, by compactness, there exists a finite subctiyer. ., Um with
associated liftg. Lethy, k=1,...,mbe a smooth partition of the identity associated wifh, U:
m
h >0 Z ha(U) = 1 forany U e O(N)/Hn and supptp) c Up . (1.58)
a=1
Then, sinceAs has full measure

f fF(Myetrlem] . gy = i f F(M) - hp(pry(@(M))) - e 1M g (1.59)
p=1

where py denotes the projection on@(N)/H\y.
Observe that the map restricts to a dfeomorphism from

Wy = RY x{U € O(N)/Hy : (V) > 0} (1.60)

11



onto
Vi = (MedAs : hy(pry(@(M))) >0} . (1.61)
Thus, the change of variablds — ®(M), according to the previous results, leads to

f f(M)e el gm = f Fly.... AN)]—[Mb_ Aa|]_[e Q)N 3

RN a<b

xZ f ho(UP(x7)) - FUP(x)) - d'x . (1.62)

X<e?

M\\

a=1

where we remind thdt (P (x,) is a parametrization of elements®f by a system of local coordinates. The claim
then follows since the second line of (1.62) does not deperfd and thus cancels out between the average of
and the partition functiomvy. [

1.3.2 Other matrix ensembles and eigenvalue distributions

Although we shall not establish these properties here, aneestablish similar properties for the unitary and
symplectic ensembles. Namely

. _ 1 QUa) . gN
S[f(wl) dPn(M) Zf\.”[Q]R[Ful’” LAN) - L—t[)ua puE ]_[e dVa (1.63)
ff(M)-dPN(M) = %fml,.. LAN) - ]—[Ma—/ibl“ ]—[e—ZQUa) aNa (1.64)
4 zZ{rq Y a<b

In the case of the unitary ensemble, there is a "doublinghefexponent in the repulsive two-body interaction.
This efect takes its origin in the doubling of the "freedom" of cleior the df-diagonal entries oM € &Ey.
Indeed, both imaginary and real parts in the uppg@id@gonal entries are now free from constraints. The addi-
tional doubling which is observed in the case of the symjaeaisemble,i¢ an interaction of the formia — Ap|*)
stems from the occurence of additional freedom in the coostm of hermitian self-dual matrices. Also, note
that the factor 2 present in front of the confining poten@ain the case of the symplectic ensemble issued
multiple integral stems from the fact that eigenvalues ofrhitan self-dual matrices always appear in pairs:
(A1, A1, A2, A2, ..., AN, AN).

Furthermore, the log-gas interpretation of the probabdistribution function for the eigenvalues of the her-
mitian, orthogonal and symplectic ensembles is clear. Asittemof fact, one can reduce several other integrals
over various one-matrix ensembles also to solely intemnatover the spectrum.

For instance, consider dnx N, L > N, random matrixX whose entries are reg & 1/2), complex g = 1)
and real quaterniorB(= 2) independent random variables distributed with a Gansséasity given resp. by

—e* e o ;e—2|zjk|2 and ;e‘z""’lk'z (1.65)

\2n Vi
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where the occurence of two distributions in the real quadercases is due to the fact that a quaternion can be
parameterized by 2 complex numberandw. The Wishart ensembles (Ate {1/2,1,2}) are then defined as
consisting of random matrices of the ty&’. Such a matrixX admits a singular value decomposition

X =U-A-Vf (1.66)
in whichU, resp. V, isarL x L, , resp.N x N, unitary matrix and\ is aL x N matrix of the form

A = diag(vH1. - - -, VEN) ) . (1.67)

OL-NyxN

Thereps, ..., un are theN eigenvalues oK'X. The positive numbersyi, ..., N are called the singular
values ofX. By generalizing the handlings relative to the orthogomsleenble, one shows that one can reduce the
integration in the partition function to solely the singulalue part leading to the so-called Laguerre ensemble
based partition function

+00

N N
. 1
A S fﬂ Ma— [ [{AZ" - ePe)-dVa with  o=L-N+1- 3 (1.68)
0

a<b a=1

in which, depending on the type of matrices considered, boald sej3 = 1/2, 1, 2.

Hence, one sees that changing certain overall charagteridtthe "base™ matrix ensemble may lead to quali-
tatively different forms of the pdf for the eigenvalues. In the case of Wartsmatrices<' X, the main diference
with the previous cases lies in the fact that the integratiors through a semi-axis and that one allows for a
power-law singularity at the origin. This has rather impattconsequences on the universality properties associ-
ated with the model. For instance, the scaling limit for tiggribution of eigenvalues "near"” the edge- O takes
a completely dierent form from the ones that can arise in the three "claSstcsembles of random matrices
introduced so-far.

In fact, one can even construct ensembles of random mattibese eigenvalues will be supported on some
segment oR, ie be bounded from beloandabove. Consider matricés= X" X andB = Y'Y with X e Mixn(K)
andY e M «n(K), K = R, C, H depending o8 = 1/2,1, 2, random matrices distributed according to the
Gaussian laws introduced previously. Then the eigenvatyes., xy of the matrix @ + B)‘% A (A+ B)‘%
belong to[ 0; 1] and, upon settind, = 1 — 2x,, have a probability density function giving rise to the sdled
Jacobi ensemble:

1
N a=N;-L+1--

1N
A fl_[|,1a_/1b|2‘3.H{(l—da)ﬁ“-(1+/1a)ﬁy}-d'\'/l with ’? (1.69)
*1

a<b a=1 y=N2—L+1—[—3
in which, again, depending on the type of matrices consijgre 1/2, 1, 2.

1.4 Afirst hint towards building a relation with probabiliti es

We have introduced enough concepts so as to establish aatimmietween the problem of extracting the large-
N behavior ofN-fold integrals of interest and sequences of probabilitasuees on Polsih spaces. Consider the
partition function orRN:

N N
ZNV, W] = f [T eeWetat [ TeNvetw . o, (1.70)
a=1

RN ab=1
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with V andW suficiently regular so that the integral is defined for &hy
For a givendy € RN, one associates the so-called empirical measure

N
1
L(N/lN) = 3 § 5., €PR), (1.71)
a=1

in which 6 is the Dirac mass at and®(S) refers to the space of probability measures on the sBadden, the
partition function can be recast as

ZN[V. W] = f exp{—NZW[LE\fN)]}-dN/i where W[u] = % f [V(s)+V(t)+ﬂW(st)]-du(s)®d,u(t) . (1.72)
RN R2
Assume thatW admits a unigue minimum of*(R) and that it is "stficiently-well" behaved as a function on
P(R).
e The integrand exb— NZW[Lﬁ“)]} behaves as¥\"), meaning that, it should produce an analogous be-
haviour of the partition function;

e The Lebesgue measure should generate, at mosE®hbehaviour. A heuristic argument in favor of this
statement is that the volume pf- M; M ], M > 0 goes as (®1)N, ie grows exponentially fast.

e Atomic measures o are dense iP(R), hence, given a measugee P(R), provided that the sequence
xn € RN is chosen properly,(l\)f“) — uintheN — +o0, where, for the time being, we do not give more
specifications on the symbes.

e Pickau € P(R) such that = W[u]-inf,cpw) W[u] > 0. Then all pointsly € RN such thaL(I\fN) "is close
to" u will have roughly a relative contribution (@5'\'2) in magnitude as compared to those configurations
of points Ay € RN such thall_(,\fN) "is close to" minimizingW, ie (W[LE\IAN)] —inf epw) Wlu].

Thus, on the basis of the above arguments, one can expedhthattegration variables will localize -in the
N — +oo limit- in such a way thaL(I\fN) will be "close" to minimizing. Hence, one may expect that

1
lim — -InZN[V, = inf . 1.7
m e INZAVW] = inf Wl (L.73)

N—+0c0

We are, indeed, going to establish this result, once uponawe bpecified more thoroughly the structures that we
will be working with.

1.5 The need for scaling

The concentrated reader has probably noticed that the mamadatrix issued partition functions did not have a
prefactor ofN in front of the "potential" part €, where we remind tha® is a polynomial of even degree:

2m

QX) = > apXP am>0. (1.74)
p=0

We are now going to explain the origin of the scaling withand show how it can be "reinstalled by hand".
Consider thus

Orqp = Na A%N-Q(ﬂa)d'\u— N2 1NI/1/1 Nll\I P 1.75
Z01@ = [ [[1a- e ~ [ exp(Np s D nbta- dol- N 2,Qua] - @79

RN a<b RN a#b
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As already argued in the previous section, in order to actett®e leading largéN behavior of InZ(NB)[Q], one
needs to maximize the argument of the exponential. In fadhis respect, there will be two competinfjexts:

e The logarithmic potential part is a repelling interactid@onfigurations of integration variables which are
"as far apart as possible" will maximize its value.

e The confining potential partQ ensures the convergence of the integrals. It will tend tepkehe integra-
tion variables localized in some finite (possibly growindghwi) region.

However, there are fierent prefactors dfl in therhs of (1.75) in front of each term. Hence, theitexct will
not appear on the same scales.

Due to the "large" (of the orde¥?) number of terms in the interaction potential part, foffisiently "mild"
separations between the variablgsand Ay, a # b, this term will completely dominate the "confining” poteti
part, which only has\ terms. Thus, the latter will start to compensate for the Ilimgelogarithmic interaction
solely when the variables will become "spaced" by an avedigiance scaling with some power Nt The
aim of this scaling is to bring the scale of the variables ichsa form that the "logarithmic" interaction and the
"confining" potential are of the same order of magnitudeaalyeon a region of finite (in respect i) lenght.

We are going to argue the correct power of the scaling on thés lmd the assumption (that will be further
justified rigorously by the analysis to come) that

N N
l=01)a=1...,.N = %Z f(1a) ~ O(1) and % > 9(da, ) ~ O(1). (1.76)
a=1 a=1

Thus, in the integral, we change variablgs= N*u,, leading to

N N ) 2m-1 ap/lp
ZO1Q) = NeNNeANN-D), f [ [1a-toP ] [N a.dNy with V() = amd®™ + Z e
RN a<b a=1
(1.77)

Here, again, the logarithmic interactions are of the ordgd@?), on a finite withN size region whereas the
"confining" potential interaction are of the order of\¥(™*1). Hence, the rescaling of variables b}yzlﬁ seems

to be the "good" scaling which immediately, in the new inédigm variables, allows one to tune the contributions
of the "two-body interaction" part and of the "confining patial" to the same level of magnitude. Under such a
scaling, the partition function is recast as

2m-1
o g N . () apd®
Z¥1Q] = NzmNzNN-D. fﬂlaa Apl?- ne NWE.gNA - with VTP = aomd®™ + Z NE &

(1.78)

RN a<b

Hence, we basically recover the case of a partition fundiiaving an explicitN in front of the confining
potential. True, the potential itself dependsnHowever, for a fixed compact skt, settingVu.(1) = ama®™,
we get that,

1
IV = Veslliwgi oo, 9 (1.79)

Furthermore, when going to infinitie moving "far" away from compacts,

Vn(4) .
Voo(/l) A—+o00

(1.80)
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Thus it seems plausible, and this fact will become apparent bur analysis, that the remaindég — V., will
merely produce sub-leading corrections to the large-Nviebaof In Z(,f)[Q].

1.6 Occurrence of similar multiple integrals in other contexts
1.6.1 The quantum separation of variables

The so-called quantum separation of variables is one ofxhetenethods allowing one to fully characterize and
compute -in terms of solutions to 1-dimensional spectrablams- the eigenvalues of numerous partifiedéential
operatory in N variables. The operat@y in naturally defined on some dense spaceédRN). The method
consists in constructing a unitary transform

N
U PENdY) - RN uydYy)  with w(y) = | | {sinhlmwua—ys)] - sinh[mwa(ya - yo)l}

a<b

(1.81)

The unitray map allows one to solely work on the spiat@N, u(yy)dVy) where the separation of variables occur,
namely, if¥(xyN) is an eigenvector ady, then

N
UMI(yn) = | | aw(va) (1.82)
a=1
in which gy solves an auxiliarpnedimensional spectral problem. Therefore, the scalarymbthkes the form
N N
(¥29) oy = f 1_1) { sinh[rw1(ya - yb)] - sinh[mwa(ya - yb)} - n AP(ya) - dy . (1.83)
RN a< a=

Thus, the norm of the states is given bil&old integral. For various reasons, one is interested traefing the
largeN behaviour out of such multiple integrals.
In fact, in physics, one is mostly interested in computirgsh-called form factor of local operators acting

: . i, . : ,
on a "reduced number of variableg®, p; = ﬁaxl is a kind of local operator of interest for physics. For nuowsr

local operator®), one can find an expression foff O, ie describe explicitly how the operator acts on functions
living on the space where the quantum separation of vasaigleurs. Then, form factors of certain such operators
O take the form

N N N
(©.0°%) Lonary = f | [{sinhlrwi(ya=yb)]-sinhlrwz(ya=yo)l}-| | do(va)as(yva)- | | ova)dVy . (1.84)

RN a<b a=1 a=1

Thereo(y) are functions that represent a sort of perturbation ofritegrand, much in the spirit of (1.6).

Studying the largeN behaviour of such integrals is still an (hard) open probldmportant complications
arise due to the lack of factorization for the measufy,) under a rescaling of the variables. Furthermore, the
complicated formulation for the functiorgis also a problems. Basically, most tools developed fordages
issued multiple integrals break down and one has to invemé maphisticated techniques.

In fact, just as the log-gases issued multiple integralsidikrve to be called semi-classical multiple integrals,
the former class of integrals should already be refered socpmntum integrals, so large is the gap in the technical
arsenal that is necessary for its analysis. Another instahsuch integrals, in fact in a much more complex form,
stems from Bethe Ansatz solvable one-dimensional spimshai
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1.6.2 The emptiness formation probability

The emptiness formation probability is a specific correl#tat arizes in the so-called XXZ spind chain. The
Hamiltonian of this model acts on the Hilbert space

h = ®|5:1Va VaZCZ ) (1.85)
and takes the form
Hxxz = i{aéggﬂ + O'ZO';H + COS{) - oh0h, — hio-é} (1.86)
=1 =1
wherec*¥* are astandard Pauli matrices )
O'X:((])-(])-) o-y:((i)z)i) O'Z:((])'_Ol), (1.87)

and we have used tensor notations so as to write down the téamit in a compact form; namely for some
operatorO € £(C)

O = id®---®ide0O®d®---xid (1.88)
e
a—1 terms
The emptiness formation probability corresponds to theveelorrelator
m
_ (g 0 0) o
w(m) = (¥§ g( 01 )[a] ¥{) (1.89)

where\Pg‘) correspond to the ground state of the Hamiltortigrxz. One can show that, in the so-called thermody-
namic limit of the modeL — +oo, lim__,, . 7. (M) = 7(mM) admits amm-fold multiple integral based representation:

q
1 o T (sinhQa +i2/2) sinh@a — i2/2)

(m) = Hfd aa]b_z[l{ T }-Fm(/ll,...,/lm), (1.90)

with
detn [t (1, &)|d A,
Fr(Ass.. Am) = lim ul (m‘ 49| detnlo (41 4| (1.91)
fo-itiz I1 sint? (fj - fk)
j<k

The functiont is explicit

t(,p) = —tsing (1.92)

sinh(l — u) sinh@ —u —i2)
p is interpreted as the density of certain parameters thanpetrize the model’s ground state. It is defined as the
solution to integral equation

q

du  t(4,8) . 3 sin
PO+ [K-wpwd) 3 = 52 with KW= g (L99)
-q
For & close to—iZ/2 andg = +o0, the solution is explicit
p(L.é) = ' (1.94)

2§sinh§ (1-9) ’

and then the determinant involvingbecomes computable in that it corresonds to a Cauchy matrix.
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2 Some facts about probability measures on Polish spaces

In all of the setting, §, d) will be a Polish space (complete, separable metric spatfe)shall endow it with its
Borel o-algebraB generated by open sets. We shall also denotg () the space of Borel probability measures
onsS.

We remind two facts about finite measuresin

Lemma 2.1 Let u be a finite measure on S awd a collection of disjoint Borel subsets of S. Then at most
countably many elements @f has non-zerg-measure.

Proof —
Givent > 1setA, = {Ae A : u[A] > 1/¢}. Thus, for any distinchy, ..., A in A, one has

k
k
HIS] 2wl Uiy Aol = ) ulAd] > 7. 2.1)
p=1
ie A, has at mos|¢ - u[S]] elements. [

Proposition 2.1 Any finite measure on S is regular in the sense that for anylBaleset Be 8
u[B] = sup{u[F] : Fc B, Fclosed = inf{u[O] : Oc B, Ooper}. (2.2)
The first equality is referred to as inner regularity wherels second as outer regularity.

Prior to discussing the convergence of measures and itézatatity, we shall introduce a few concepts that
will be useful in the course of our handlings. In general, whtidying measures, it is often useful to know that
the latter, basically, concentrates on compacts. Thisgotgjis called tightness. As we shall establish right away,
probability measures are always tight.

Definition 2.1 A Borel measurg on S is tight if given any > 0 there exists a compact K S such that
u[S\K] < € (2.3)
Recall the convenient characterization of compacts in detapnetric spaces.

Lemma 2.2 Any totally bounded (for any > 0 the set is covered by finitely many balls of radésnd closed
subset K of S is compact.

It is clear that the converse is true.

Proof — Let x, be a sequence of elementskn SinceK is totally bounded, it can be covered by finitely many
balls of radius 1p, this for anyp. Hence, for anyp, at least one of these balls contains infinitely mahn'g.
Consider the following construction. Fpr= 1 take a balB; of radius 1 such that

N1 = {n: % €By} (2.4)
is infinite and pickn; € N1. Then, forp = 2 take a balB; of radius 12 such that

Ny = {n>n1 . XnEBlﬂBz} (25)
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is infinite and pickn, € N>. Continue so-on, fop + 1 taking a ballBy,1 or radius ¥(p + 1) such that
Npa = {n>np 1 X, € B N By N By (2.6)

is infinite and picknp,1 € Np.1. Thence the sequence() is a subsequence ok) such thatx,, € By for any
¢ > k. Itis thus a Cauchy sequence. As such it converges to s in virtue of the latter’'s set completeness.
K being closed, it follows thax € K. As a consequenc is compact. [

Theorem 2.1 Ulam
Every probability measure on (S,d) is tight.

Proof —
Pick e > 0 and consider a sequencg)(that is dense iI$. As a consequence, for afiy- 0

_ 1
S = UiB0a. 7). 2.7)

Becauses is of finite measure and is continuous, there exists such that

— 1 €
n
H[S\ UL, B(Xn, z) < o (2.8)
The set
n, 1
K = Ng1UL B, z) (2.9)

is closed and totally bounded, hence compact. Furthermore,

€

WS\K] < 3 S\ U B0k, %)] Y=« = (2.10)
>1 >1

2.1 Convergence of measures

Definition 2.2 A sequenc@y € P(S) converges weakly to € P(S), un — u if

ffdyN—>ffd,u (2.11)

for any f e Cp(S), the space of real-valued bounded continuous functions.on S

The notion of weak convergence can be, in fact, rephraseztnimstof a convergence on closed (or open) sets

Theorem 2.2 Portmanteau
Letun € P(S) be a sequence of probability measures on S. Then, the faljostatements are equivalent:

) un — ueP(S);
ii) for any open set Ulim supy_,, . #n[U] > u[U];

iii) for any closed set Flim supy_, . #n[F] < u[F]1;
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iv) for any continuity set A gf, ie u[0A] = O, ImMn_ 0o un[A] = u[A] .

Proof —
i) = ii). LetU be open. Then define

fm(X) = min{m-d(x,U°), 1} . (2.12)

SinceUC s closed,f, T 1y. Furthermore, clearlyf, is bounded and continuous.

U] > [ @ din® > [@-di® = IminfulU] > [ (9 du(9. (213
Since, by the monotone convergence theorem,

| (9 dut9 — wtu1. (2.19)

i) follows.

ii) < iii) by taking complements. Namely, givénclosed,

liminf un[F] = 1-limsupun[F] > p[Fe = 1-pu[F] (2.15)

N—+o0

and givenO closed,

lim supun[O°] = 1—I|i\|minf,uN[O] < u[O°] = 1-4[Q] (2.16)
N—+oo —+00
i&iii) = iv)
Is Aiis a continuity set fop, then
ulA] = ,1[/1] < I;\lm inny[,Z\] < limsupun[A] < u[A] = u[A]. (2.17)
—teo N—+co
iv) = i)

Let f € %u(S). Since the measugeis finite, there exists at most countably mats/such thag| f1({x})] > 0.
Hence, for any, one can find a sequeneg < a» < --- < ay such that
max@e1 —a) < € u[fi({a))]=0 and rangel) c[a;;aw]. (2.18)

Then introduce the below approximatidnfor f

M

Fk = {se S a < f(9 <ak+1} and fo = Zaklpk. (2.19)
k=1

One has that, by continuity df, 0Fx = f~1({ax}) U f1({aks1}). Thusu[f~1({ax}))] = 0. As a consequence, by
iv),

M M
[ fodin = Y auntFd > Y awlFd = [ fooda. (2.20)
k=1 k=1
Since, by constructioff — f.| < ¢, the claim follows upon relaxing — O. [ |
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2.2 Metrizability

It so happens that one can metri2€S). There will, in fact, arise two equivalent distances in tiandlings.
Working with the two provides one with a convenient way ofying Prokhorov’s theorem which is the key result
of this section. We start with the Levy-Prokhorov metric

Definition 2.3 Thee-neighborhood Aof a set Ac S is defined by

A = {yeS : EIyeA,d(x,y)<e} (2.21)
Definition 2.4 The quantity

dip(uv) = infle>0 : u[A] < v[A]+e forall Ac B (2.22)
is called the Levy-Prokhorov distance between the proligliiieasure: andv.

Proposition 2.2 d_p is a metric orP(S)

Proof —
We start by showing that,_p is symmetric.
Hence, lefu, v € P(S). Assume thatl, p(u, v) > n. Then, by definition, there exists a et B such that

ulA] > VA +7. (2.23)
Note the inclusion
((A,,)‘3)77 CA®. (2.24)

Indeed, ifx € ((A,])C)n, then there existy € (An)C such thatd(x,y) < n. Furthermored(y,A) > €. Hence,
d(x, A) > 0 and thusx € A°. This inclusion implies, upon taking the complement of 8,2hat

AT > WA + 0 2 w|((A)°) | + 0. (2.25)
In other words, the sé = (A,)° verifies that
VBl > ulBl +n = dip(vp) > 7. (2.26)

By sendingy T dip(u, v), one gets thad, p(v, 1) > dip(u, v) so that, by symmetng, p(v, 1) = dip(u, v).
We now establish the triangle inequality. Assume that

dip(u,v) < 7 and dip(v,p) < e (2.27)

Thus, for anyA € B,

uAl < V[A]+n  and  V[A] < p|(A)] + €. (2.28)
As a consequence, sing&,), ¢ A,.c, one has that
UA] < p[Agie] + €+ 7. (2.29)

Thus,d p(u, p) < n + €. The claim then follows by taking the infimum oveand then over.
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Finally, we establish that, p fulfils the identity of indiscernibles. Hence, assume tha{u, v) = 0. Then, for
any closed séf, one has that

ulF] < VIF4] + % (2.30)

F. is a decreasing sequence of measurable set[&ndl < +co. Hence, by continuity of the measure

lim V[F3] = v[ Arent F%] = Y[F] (2.31)

N—+o0

Thenceu[F] < v[F] and by symmetryu[F] = v[F]and by inner regularity: = v. [

The second distance of interest in the study of probabilidasures is the bounded-Lipschitz distance.

Proposition 2.3 Let
deL(u,v) = sup{|ffdy - fgdv| : ||f||BLS1} (2.32)

where|| - ||gL is the bounded-Lipschitz norm

[IflleL = sup
X#Y
X,yeS

f(x) - f(y)
|—d( ) | + iéjsp|f(x)|. (2.33)

Then, g, is a distance oiP(S) .

Proof —
It is clear thatdg, is symmetric and that is satisfies the triangle inequalitynehce solely remains to prove
thatdg (u,v) =0 = u =v. LetF c S be closed. Introduce

fm(¥) = min{m-d(x F), 1} . (2.34)

Then, sinceF is closed,fn, T 1y whereU = FC€. Furthermore||f|lg. < m+ 1. As a consequence

ffm-d,u = ffm-dv. (2.35)

Hence, by the monotone convergence theorditd] = v[U]. Recall that every finite Borel measure 8ris outer
regular,

¥YBe B u[B] = inf{u[U] : U>B, Uopenq. (2.36)

This implies thaj: = v. ]
Prior to establishing the equivalence of the Levy-Prohamod bounded-Lipschitz metrics as well as their
compatibility with the weak convergence of probability e we recall Arzela-Ascoli’s theorem:

Theorem 2.3 Any equicontinuous sequencgg: fE — F of continuous functions the compact metric spacgs E
admits a convergent subsequenggiri respect to the sup-norm topology Of(E, F).
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Theorem 2.4 The four statements are equivalent:
) un —

ii) for any bounded Lipschitz function f

f (9 dun(9) f H(9) - du(S ; (2.37)

i) dei(un,u) — 0;
iv) dip(un,u) — 0;
Proof —
i) = ii) is obvious.
ii) = iii) The idea is to approximate, for a giver- 0 anybounded Lipschitz function by elements fronfirzite
set. There is no chance in doing so on the whole saddowever, Arzela-Ascoli theorem allows one to do so

on compacts. Then Ulam’s theorem allows one to conclude.
Hence, givere > 0, by Ulam'’s theorem, there exigtse S such thau[K®] < e. Introducing the function

0e(X) = max{O,l—%d(x, K)} (2.38)

which satisfiegigells. < 1+ e ! andlk < g. < 1k, one gets that

i) > [a9-dn(® - [ 09 dut9) > ulK] > 1-e. (2:39

Therefore, for anN > Ny large enough/,zN[Ke] > 1 - 2e. In other wordspuy is essentially concentrated &
provided thaiN is large enough.
Further set

B={f:lflec<1 and Bk = {fikx: feBl. (2.40)

By Arzela-Ascoli's theoremBy is compact hence totally bounded in respect tolth¢K) norm. Thus, given
€ > 0 there existd, ..., fiy € Bk such that, for anyf € Bk, there exists g e [1; m]

sup|f(X) - fj(¥)| < €. (2.41)
xeK

In fact, such a uniform approximation can be extendel tdor if x € K, picky € K such thatd(x,y) < e.
Then,

1f0) - ;| < [f) - fW)| + [0 - i3] + [f;0) - fi(x)]
< [Iflled(xy) + € + Iifjllsd(xy) < 3e. (2.42)
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We are now in position to estimate
[ [ f9du® - [ fdun] < | [ 1909 - [ (3] + flla: (K] + nlKE)
Ke Ke
< ‘ij(S)d,U(S) - Kf‘fj(S)d/.lN(S)‘-FZXSGléE)“(X)— ;9| + 3e
< | [ 1i9du® = [ (9] + Il (KSD + anlKE]) + 9

< max]l‘ f fi(90u(s) - f fj(s)de(s)| + 12 (2.43)

je[1;m

Then optimizing in respect tb € B yields,

o) = sup] [ F(9u9) — [ F(9dan(9] < max | [ (99 ~ [ (9] + 126 2:44)

Hence,

limsupds (u, un) < 12¢, (2.45)

N—+o0
so thate — 0" allows one to conclude.
i) = iv)
For any Borel sefA € 8 introduce
1
9:(0) = max{0,1- =d(x A)} (2.46)
€

which satisfiegigells. < 1+ e andla < g. < 1a.. Then,
Al < f G(9dun(9) + f G(90u(S) + (L+ €Y - darlunop) <ulA] + (L+ ) -dailun. ) (2.47)

so that setting = max{e, (1 + € 1) - dgi(un, 1)}, One gets

pn[A] < pl[As] + 6 = dip(un,p) < 6. (2.48)
One can optimisé in respect tcee. Takinge = +/dg( (un, 1) yields,

if dgL(un,p) <1 then &< 2+/dei(un, ) (2.49)
and if

daL(un.u) > 1 since by definition dyp(un,p) <1 < 2+/daL(un, p1) - (2.50)

In other words, the bound, p(un, 1) < 2+/dsL(un, ) always holds.

24



iv) = i)
By definition, ifd_p(un, ) — O means that there exists a sequessige~> 0* such that

UnN[A] < u[Aq] + en forany Ae 8. (2.51)

By Portmanteau theorem, it is enough to show that for anyfsairdinuity A of 4 one has ling_.. un[A] =
u[A]. Let Abe such a set. Then

Un[Al < u[Aq] + en = p[A] + u[Aq \ Al + en (2.52)
un[AT] < p[AG] + en = plA] + u[AS VAT + en . (2.53)
In other words
Un[A]l = plAl < p[Aq VAl + en (2.54)
ulAl = un[Al < p[AG\AT + ey (2.55)
Hence,
WAl = un[Al] < u[AS\ATT + p[Aq VAl + en . (2.56)

Sincey is finite as a probability measure & by continuity
Jim p[AGANAT = pf e (A \ATY| = W[AS\ A% < u[0A] =0 (2.57)

il e (A \A| = u[AVA] < u[oA]=0. = (2.58)

Jim A\ A

2.3 Characterization of compact sets irP(S)

Definition 2.5 A setl” c £(S) is uniformly tight if for anye > 0 there exists Ke S such that
Yucel ulK < €. (2.59)

The matter is that eveny € P(S) is tight, ie for any e > 0 there exists a compakt such thaju[K] > 1-e.
However, uniform tightness is a much stronger requiremethat it holds on a whole family of measures. In
fact, the main result of this section, Prohorov’s theorestes that uniform tightness and relative compactness are
equivalent notions. The former is however, in practice, measier to verify.

In order to establish the above theorem, we need a few prtepairopositions.

Proposition 2.4 Letuy — puthenl = {un : N e N} U {u} is uniformly tight.

Proof —
Sinceun — u, one also has that p(un,u) — 0. Take 1> ¢ > 0 and letK € S be a compact such that
u[S\ K] < e. It then follows from the definition of the Levy-Prokhorov trie that

. 1
1-€ < p[K] < un|[Key| + by with by = dip(un,p) + - (2.60)
As a consequence,

ay = inf{6>0 : uy[Kp,|>1-¢f - 0. (2.61)
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The measurgy being tight in virtue of Ulam’s theorem, one gets that thetists a compact

KN C KaN+1/N such that /JN[KN] >1-€. (262)
Then, set
L = KuU { UN>1 KN} . (263)

By construction, for any € I', v[S \ L] < e. So it solely remains to show thhtis relatively compact.
Let (x,) be a sequence ih. There are two options. Either the sequengg ¢ontains a subsequence,)
contained in K or one of th&,’'s. Then, by compactness of the latter, it does contain aergewit subsequence,

and the job is done. Else, one can build a subsequegges(ich thatxs, € K;,. However, due t&s, C Ka; 1+1/5,

there existy/, € K such that

d(Xs,,¥n) < @, +1/6h — 0. (2.64)

N—+o0

Furthermore, sinceyf) is a sequence iK, it admits a convergent subsequenge to somey € K. Hence, it
follows from the above bound ai(xs,, yn) that

d(Xs5,-Y) fond 0, (2.65)
hence ensuring the compactness of [

We shall admit the below structural result.

Lemma 2.3 Let (X, d) be a separable metric space. Then, there exists a compait s@hce(Y, d) and a home-
omorphism T from X onto ().

This technical result allows one to get Prokhorov’s theomerhe non-compact case as soon as its compact
version is obtained. Hence, we now establish a selectiaréhein the compact case.

Proposition 2.5 Assume thafS, d) is a compact Polish space, th€a(S), d, p) is compact.

Proof —
SinceS is compact#’(S) is a Banach space once that it is equipped with

[flle = SURcsIT(S). (2.66)
Let ¢’ (S) denote its dual and set
G ={pe?(S) : lell<1, ¢(1) =1, ¢(f) 20 forany fe%(s), f=0 (2.67)

The Riesz representation theorem then states that
T:u->T, T (f) = ff(s) - du(s), (2.68)

is a bijection fromP(S) ontoG that is, furthermore a sequential homeomorphism in regpéloe weak-* topology
ong:

== Ty (f) — Tu(f)  forany fee(S) (2.69)
—+00
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and

on(f) = ¢(f) foranyf €% (S) = T (en) N T (y). (2.70)
Recall that by Alaoglu’s theorem, the set

B = lpe?'(S) : lel <1 (2.71)

is weak-* sequentially compact. Singgis weak-* sequentially closed i, G is also weak-* sequentially
compact. Thu®(S) is compact. [
We are finally in position so as to establish Prokhorov’s teeo

Theorem 2.5 (Prokhorov)
The following statements are equivalent

i) A subsel” c P(S) is uniformly tight ;
i) For any sequencéuy) in T there exists a converging subsequence to a probability uneass P(S);
ii) T is compact inP(S) equipped with the weak convergence of probability measures
iv) T is totally bounded in respect tq gl or, equivalently, d, .
Proof —

i) = ii) It follows that any sequencg() in I is uniformly tight.
We first show that is uniformly tight. For any > € > 0 there exists a compakt € S such that

forall vel V[K] > 1-€. (2.72)

Letu € T. Then there exists a sequengg ) in I’ converging tqu. Thenceu[K] > limsupy_, .., un[K] = 1—¢,
thus ensuring the uniform tightnessiof

Let (un) be a sequence iR. Let (Y, 5) be a compact metric space ahd S — Y a homeomorphism frors
ontoT(S). Then, sincel is continuous, one defines the measufgsn (Y, B(Y)) as

vn[B] = un[T7H(B)] . (2.73)

Then, ¢n) is a sequence of probability measuresf(Y).FurthermoreP(Y) is compact sinceY is compact.
Hence, ¢n) admits a converging subsequengg converging to a probability measures P(Y).

The whole point now is to translate the measugeto a measure 08. The first step consists in showing that
the mass of’ has not escaped too much oufldfS). It is at this stage that uniform tightness plays a role.

We show that there exists € B(Y), E c T(S) such thav[E] = 1. By uniform tightness of, there exists a
sequence of compack& such that

1
oK >1- 7 Yperl. (2.74)

The setsT (K,) are compact irY, hence closed. Thus

=

v[T(Ko)] = limsupvn, [T(Ke)] = limsupun [T(Ko)] = 1-=. (2.75)

{—+o00 {—+o0

(Y
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ThusE = sup.; T(K,) is a Borel set i such that

v[E] > v[K/] > 1—% hence v[E] =1. (2.76)

We now construct the limiting sequenges £(S) of the sequencgy,. First, we restrict the measureto a
measuré onE c T(S) by

JA] = V[ANE] forall Ae B(T(S)). 2.77)

This is a well defined manipulation in thatbeing Borel inB(T(S)), An E is Borel inE, and thusAn E is Borel
in Y sinceE is Borel inY.
The restricted measuteis a finite Borel measure oR(S) such that[E] = v[E] = 1. Set for anyA € 8

HIAl = VT = THIA] = AT H A (2.78)

Clearly,u € P(S). It remains to show thaiy, — u. LetC be closed irS. ThenT(C) is closed inT(S). Thus,
there existZ c Y closed such thaf (C) = T(S) N Z. FurthermoreT~1(Z) = C since there are no points in
T(C) outside ofT(S). FurthermoreZ N E = T(C) n E. Thus,

limsupun [C] = limsupwn[Z] < V[Z] = IZNE] + V[ZNE] = T(C)NE] = u[C]. (2.79)

k—+00 k—+00
Hence, by Portmanteau’s theoremy, — u.

i) = iii) Every sequence ifi can be approximated by a sequenc@irBy hypothesis, this new sequence has a
converging subsequence to some elemeat.

ii) = iv) Any compact sefF is totally bounded, hence ensuring tiiEs totally bounded.

iv) = i) Sinced p < 2+/dgy, it is enough to deal witll_p.

Sincer is totally bounded, for any > 0 there exists a finite subsBtsuch thafl' c B.. Furthermore, by
Ulam’s theorem, for any € T, there existK® e S such that

u[KW] > 1-¢ (2.80)
Thence,
Kg = UusK®” € S and u[Kg] = 1-€. (2.81)

Given anye > 0, takeF a finite set such th&g c F.. Sincel” c B, for anyv €T there exists € B such that
dip(u,v) < € = 1-€ < u[Kg] < p[F] < v[Fo] + € hence v[Fy] > 1-2¢. (2.82)

Now, takes > 0 and takes; = 6 - 27~ above, hence giving rise to finite séts such that

-5 <|Fos] = reiFos] = 1-DH[F] = 1-Y 5 =1-5.  (283)
i ? 1 2 =1

Finally, given any finite sef introduce

UylF] = UxerB(X.7) (2.84)
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a finite union of balls of radiug. Then, in particular,
(Fe)s c Us[F]. (2.85)
ot ol

It follows that the set

L = ﬂt’zl(Ft’)% (2.86)
is closed and totally bounded. SinSds completeL is compact, hence ensuring the uniform tightness. of
[ ]
Prokhorov’s theorem ensures, in particular, the compéstenfP(S).
Corollary 2.1 A Cauchy sequence {®(S), d_p) is convergent.
Proof —

Let (un) be a Cauchy sequence #(S). ThenitisI' = {un : N € N} is totally bounded and thus, by
Prokhrov’s theorem{y) admits a convergent subsequence. Being a Cauchy seqitghas,converges. [
2.4 Separable character ofP(S)

Proposition 2.6 The spacé®(S), d p) is separable.
Proof —
LetS = {Xc}Jkex b€ a countable dense set3nThen the set
p
r = {a16xl + ...+ apdx, ¢ &€QN[0;1], Zak =1, peN} (2.87)
k=1
is countable. It remains to show that it is dense.
Letu € P(S). Given any? > 1, one has that
1 1
U B(xj,>) = S thus there exists k; : “[U B(x;, = ] > 1-2. (2.88)
4 4
k>1 k>1
Decompose
ke 1 ke
UB@.3) = (A (2.89)
k>1 k>1
into a union of disjoint sets
1 1 1
Atm = B(x1.3) - Ajm = B(x.5)\ u’ L B(xj, - 7)- (2.90)
Then, by construction,
1
[ Vs A] = Zu Ace] 21— 7. (2.91)
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It thus appears that a good approximate twould be the measure

HlALe] - 0x + oo+ A *Ox, (2.92)

Yet, in order to deal with a measure belongingtone still has to slightly modify the coordinates so as td dea
with rational ones. Thus, pick

ke ke
2
aj;r € Qn [0;1] : ;aj;g =1 JZ:; |ﬂ[Aj;g] - a,-;g| < Z (2.93)
The construction of such a sequence is left in exercise. ,[dan
ke
e =)y (2.94)
=1

Let g be bounded Lipschitz o8. Then,

IECETCENFCRNCE Jzk[;

+ f (9 - du(9

K,
S\UL A

ai.00(x;) — f o9 - du(9)
Ajie

[ 1) - (91 dutsign[ s\ Uy

Ajie

K ke
< llglhe Y JulAge] = age] + + D
j:l j—l

2 1 1
< Z”gHBL + ”gHBL'z + ||g||BL'Z- (2.95)

As a consequenceég (u¢, u) — 0inthef — +oo limit. [
We are thus finally in position to establish the followindtitig" of Polish space structure theorem
Theorem 2.6 Let (S, d) be a Polish space. The®(S), dg.) is a Polish space.

In particular, it follows from the above theorem ti{&(R), dg| ) is a Polish space. This last result will be, in fact,
used in full extend in the next section.

2.5 The large deviation principle
2.5.1 First definitions and basic properties

Definition 2.6 A function f: S — R is said to be lower semi-continuous (Isg)iis level set f1(] — «;c]) are
closed for all ce R or, equivalentlyliminfy _x f(X,) > f(X).

Lemma 2.4 Let{f },c; be a collection of lower semi-continuous functions. Théf) £ sup.;[fi(X)] is also Isc.
Furthermore, if f is Isc then f attains its minimum on anyeksS, K # 0.

Proof —
Letc > 0. Then, by definition, the sets

Fic = {xeS : fi(x) < c} (2.96)
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are closed. LeF. = f71(] —o0;c]). If xe F then, foralll € T fj(x) <c, ie xe Fi.cforall | € 7. Reciprocally,
if fi(x) <cthensup.;[fi(X)] <c,iexe Fc. Thus,

Fc = NierFic (2.97)

and so is closed.
Let K be an non-empty compact 8f Then, letl = inf,ck f(X). For each > |, the sets

Fi={xeK: f(x) < 1} (2.98)

are closed by lower semi-continuity d¢f SinceF, is a decreasing non-empty sequence of closed sets of the
compact sekK,

F = n,F, (2.99)
is not empty. However, i € F, thenf(y) < |. Since, by definitionf (y) > I, we getf(y) = infyek f(X). [ ]

Definition 2.7 A sequence of probability measupgs € £(S) is said to satisfy a large deviation principle with
speed |, ay — +oo and rate function Jff

J:S—>[0;+0]islsc (2.100)
: . 1 .
foranyF c Sthatis closed Ilimsug,. . ™ Inun[F] < —infgJ (2.101)
N
: o 1 :
foranyO c Sthat is open Iiminf_ e ~ Inun[O] > —infgJd (2.102)
N

J is said to be a good rate function if J is a rate function and bampact level sets.

At this stage, it appears appropriate to make some genenarks and observations about the very formulation
of a LDP.

e The first observation one can make is that the LDP is well edleindeed, leB be a Borel-measurable set.
Then one has

P | o P | . 1 . 1
liminf —Inun[B] < liminf —Inun[B] < limsup— Inun[B] < limsup— Inun[B], (2.103)
N—+co Ay N—+co AN N—+co AN No+oco AN

so that the way of ordering the limits in (2.101)-(2.102) sloeleed make sense.

¢ In fact, the role played by the open and closed sets in the IsDfite similar to the role played by open
and closed sets in the weak convergence of measures:

un—=u © VYFcS closed limsupn[F]<u[F] & VYOCS open Iinlglinny[O] > u[Q] .
N

(2.104)

e The upper bound in the LDP (2.101) says that the mass of "t (since for any Borel measurable set
B, the setB o Bis closed) is not too big whereas the lower-bound (2.1023 Hagt the mass of "small sets"

(since for any Borel measurable &tthe setB c Bis open) is not too small.
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e The Isc requirement can always be met, in the sense thatshduDP be formulated with a rate function
that is not Isc, then one can always construct a new rate ifumttat will be Isc and drive a LDP that
is equivalent to the initial one. Furthermore, the Isc regmient is also an optimal one in that it allows
one to consider situations which cannot be reached by tleeusa of continuous rate functions. Indeed,
a continuous rate function would not allow to make a distimcbetween closed and open sets. Indeed,

assume thaB is Borel measurable and such ti&a& B. Then, by continuity

inf J) = inf J(x) . (2.105)

Y<B xeB

In other words, continuous rate function would not allow ¢émeontrol the subtleféect that could happen
on a wide class of Borel sets. The need for such a control isdlyp applications of LDP’s to problem
related with random matrix theory issued integrals.

Nonetheless, it is quite possible that a give rate functimescdmit so-called-continuous Borel seB, ie a

set such that ir}(f - J(X) = inf g J(x). Infact, for these sets the superior and inferior limitancaie, viz
€

the limit itself exists.

e |t could be tempting to alter the formulation of the LDP so@snly deal with limits and not superior and
inferior limit, ie demand that for any Borel measurable Bet

. 1 ,
Nll)rgwxln,u,\,[B] = —wgf.]. (2.106)

In many practical situations, such a formulation is simpgless as imposing too much important restric-
tion. Indeed, suppose that the sequengehas no-atoms for eved. Then takingB = {x} would imply
that the only possibility if to takd(x) = +oo, this for anyx € S.

e SinceS is closed andin[S] = 1, the bound (2.101) implies thatinfs J > 0, ie infs J = 0. In particular,
if Jis a good rate function, then there existsxan S such thatJ(x) = 0.

So as to summarize, the formulation of a LDP in terms of "weakeits provides one with a setting that is
suficiently "relaxed" so as to be able to hold in numerous intergssituations while still providing numerous
informations of the sequence of probability measures bsindied. In fact, the main purpose of a LDP is to
answer the question of where the mass of the sequence ofjiliybmeasures becomes concentrated in the large
N limit. In other words, the LDP provides one with tools thdbal to measure how events -represented by open
and closed set of the space S on which the sequence of piigbatdasures is defined- become "exponentially
improbable" as soon as one moves away from the ¥&{®) of "highest" probability. More precisely, assume
that the rate functiod admits its minimum at a unique poirt Lete > 0 and sefF = S\ B(X, €). Then, by the
inequality for the superior limit, for any £ > 0 there existdN large enough such that

al-Inun[F] < —infJ + pinfd = un[F] < g an(-n)infrJ (2.107)

Thus, the mass of all points at uniformly ki finite distance to the minimum af is exponentially small in the
largeN limit.

It is natural to wonder whether there could exist severa fahctions for a given sequence of probability
measures 06.

Lemma 2.5 The rate function J associated with a LDP is unigue.

32



Proof —

Assume that a given sequence of probability measures atimaitdifferent rate functiond andH. Then there
existsx € S such that, sayJ(x) > H(xX). By lower semi-continuity, there exists an open neighbood O of x
such that inf_5 [J(X)] > H(x). Thus

—H(X) < —inf[H(y)] < liminf iInyN[O] < IimsupilnyN[f)] < —inf [J(X)] < - H(X), (2.108)
yeO N—+oo Ay a

inf
N—+c0 N xeO

a contradiction. [
In practice, in order to establish that a sequemges P(S) satisfies a LDP, it is often easier to establish first,

a weaker version of the LDP and then some tightness propéthesequence of measures that is being studied.
The two will then imply the full LDP.

Definition 2.8 A sequencgy € P(S) is said to satisfy a weak LDP if it satisfi¢3.100) (2.101)and (2.102)but
with closed sets replaced by compact ones.

Definition 2.9 A sequence of probability measumgg € P(S) is said to be exponentially tight if there exists a
sequence of compacts K S such that

. . 1
lim suplim sup— In un[K{] = —c0 . (2.109)
L—o+c0 N—o+o0 N

These two properties do imply the LDP

Proposition 2.7 Letuy € P(S) be an exponentially tight sequence that satisfies a weak LibPate function J
and speed g Then J is a good rate function apg, satisfies the LDP with rate function J and spegd a

Proof —
By hypothesis, given anl > 0 there exist¥, € S such that

lim supi Inun[KE] < -L (2.110)

N—o+oo AN

Thus, givenF c S closed, one has
,uN[F] = ,uN[F N KL] + /JN[F N KE] < ,uN[F N KL] + /JN[KE] . (2111)
Hence,

. 1 . 1
limsup— Inun[F] < limsup— In[2- max{un[F 0 KL], un[KE]}]
N—+o00 aN N—+oc0 aN
< max{ - L - inf J} < max{-L -infJ} (2.112)
FNKL F

and the result follows by sending— +oo. _
It remains to establish that the rate function is good. Bydtlgesis, for any there exists a compaét, > 0
such that

. 1 ~
limsup— Inun[Kf] < -L (2.113)

No+co AN
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Yet, sinceK is open, by the lower bound in the LDP,

1
—inf J(X) < liminf — Inun[KE], 2.114
inf 309 < iminf = Injan[KE] (2.114)
we get that
inf. J(x) = L = foranyc<L J Y] -w;c])cK., (2.115)
xeK{
and thus the level sets corresponding to L are compact. Since is arbitrary, the result follows. [

Finally, in order to establish that a sequenge € P(S) satisfies a weak LDP one usually establishes a
technically easier to obtain result that is, however, egjaivt to a weak LDP.

Proposition 2.8 Assume that there exists a Isc function J such that for allSx
. . 1 P §
=J(X) > limsuplimsup— Inun[B(X, €)] and —=J(X) < liminfliminf — Inun[B(X, €)] . (2.116)
e—0 N—+oco AN e—>0 N-o+co Ay
Thenuy satisfies a weak LDP with rate function J.
Proof —

Let O be open in S. Then, for any € O there exists), > 0 such thaB(u,) c Oforall 7 € [0;6,]. Then,
given anyp € [0;6, |,

.1 .1
un[O] = un[B(u,n)] = liminf — Inun[G] = liminf — In un[B(u, 1)] (2.117)
N—+co Ay N—+co Ay
so that, by taking liminf_, of both sides of the inequality, we get that

lim inf iIn,uN[O] > —-J(X) . (2.118)

N—-+co Ay

Then, optimizing ovex € G we get (2.102). Further, l& € S. Since,
: . 1
=J(X) = limsuplimsup— Inun[B(X, €)] (2.119)
e—»0 N-o+oo AN
we get that for any) > 0 there exist$y > 0 such that
. 1 .
lim supa— INun[B(X,6x)] < —J(X) +7n <—=J,(X) = —min{I(x) — 7,77} . (2.120)
N—o+co AN

Uxek B(X, 6x) is an open cover dk and thus admits a finite subcovef' | B(x, 6x) 2 K. Thence,

. 1 . 1
Ilmsupa—ln,uN[K] < Ilm.‘;up‘_j—ln,u,\l[UE‘:1 B(X, 6x)]
N

N—+oc0 AN N—+o0

1
< limsup—In|{m- max B < ma
- IN—>+tjopaN [ ke[l;m]l“'\'[ (Xk’5xk)]] - peul;)n(w

o)) < —inf 39 (2.121)

The LDP on compact sets then follows by sending 0*. [
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3 The largeN analysis of regular multiple integrals

3.0.2 Afirst example

We are now going to study an extremely simple example of aiptelintegral. This will allow us to illustrate how
the previously introduced formalism can be applied to the\stof the largeN behaviour of multiple integrals
and, also, how, in practice, one can establish that a sequgnaf probability measures dR does satisfy a LDP.
Our model example will consist of the integral

( f e NV om)N 3.1)

R
Clearly, all information on its larg& behaviour can be deduced from the Laplace principle fomiedisional
integrals. We, however, shall take another route based dh ODe can, in fact, interpret the integral (3.1) as the
multiple integral
N
e NV gy = avpN with  1[V] = f e NV . da . (3.2)
pn a=l %

Then(l [V])N appears as the normalization constant for the probabiligsue

(v~
In the following, we shall assume that the potentiak such that
o Ve Cl(R) ;

N
1
dPn(AN) = []e™@ a4 on RN, (3.3)
a=1

e V(X) > vi|X + v» for some constants/{, o) € R* xR ;
V/(X+Y)
V(x)
The lawPy allows one to define a random variable, the empirical measar@(R):

e 36 > 0, SURp SURy<s | | < +o0

N
1
L0 = 52 0 € P where Ay =(u....An) RV (3.4)
a=1

In fact, Py induces a probability measusg onP(R) throughuy = Lf\fN)#IPN, ie for any Borel seB c P(R),
un[B] = Py[{An e RN 2 LW e BY]. (3.5)
Under the above assumptions, we are going to prove the
Proposition 3.1 The sequencgy satisfies a LDP with speed?§ind good rate function

] = f V() - du(x) — inf [V(s)] . (3.6)
R
Furthermore,
N[n;méln [AIVDM) = - inf (] = —inf[V(9]  with  J[u] = f V(¥) - du(¥) (3.7)
R

Proof —
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e Exponential tightness

In order to establish the exponential tightness of the sempien the idea consists in tailoring a ficiently
nice sequence of compact séts c P(R) such that obtaining the sought upper boundfQfKy] is relatively
straightforward. Since the potentidl naturally arises in the density of probability measukg @y), it seems
natural to build the sequen¢g on the basis of functionals involving the potential

Letv = infsgr [V(S)] and define

Ky = {u € P(R) f V() = V] - du(¥) < L} . (3.8)

R

SinceV - v > 0, by the monotone convergence theorem,
f[V(x) —v] - du(x) = supfmin{V(x) -V, M} - du(x) (3.9)
MeN
R R

we get that thdhs is lower semi-continuous as a supremum of a continous familfunctions onP(R). Thus,
K is closed as a level set of a lower semi-continuous function.
For anyu € K_ one has

1

U[R\[-M;M]] < I Miv v

f V() — V] - du(¥)

R\[-M;M]
<« L f [V(X) - V] - du(X) < Lt (3.10)
T vi-M+vy—v # T v -M+v—v© '
R
As a consequence,
L
KLCﬂ{ﬂEP(R)Zﬂ[R\[—M;M]]Sm}ZW. (3.11)
MeN 1 2
Note that
Fnm o= f du(s) (3.12)
R\[-M;M ]

is Isc by the previous reasoning. Herieis closed as an intersection of level sets of lower semitcoatis
functions onP(R). Furthermore% is uniformly tight. Indeed, givel > 0 there existM > 0 such that

L
ViM +vo -V

Thus foranyu € K, u[[ -M; M| <e.
Thence, by Prohorov’s theorer is compact. AK, is closed, it follows that it is compact.

Note that, this proof also ensures tlias a good rate functiorie the level sets of are compact.

Having found a proper sequence of growing compacts, we néablesh the exponential tightness of the
sequencey. For this, we estimate

<E€. (3.13)

un [KE] = Baf{n = (... an) e RN - LY e KE] (3.14)
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In order to bound it from above, we need a lower bound for thenadization constant and, as well, further bound
the integral part.
One has that

V] = f NV gy > @ (N-1V | f V) . g (3.15)
R R
Thus,
_ 2 (AN) N
un[KE] < _ e e_NTI V(s)dL“N(s).]—[e—%vua).d'\'/l
(fevody)" asi
2 LM eke
_ 2 (n) N
_ o ey f o 7 (Ve O [e b gy
- N
V
(E{e_ (J)d’l) LN ke > exp[-N2L/2] a=1
2.
o3 -DNv » o 22
< 2 _ertoNE 2 2N . (3.16)
(fevd) viN
R
As a result,
. 1 V—\o L
lim sup— In upn[KE] < S — 3.17
N_>+oopN2 ﬂN[ L] = 2 2 ( )

so that taking lim sup, . ., yields the exponential tightness of the sequeng¢e

¢ A technical simplification

In the following we are going to prove estimates for shrigkballs. However, we shall not do it directly for the
sequencey but rather foiiry = un - (IIV])™:

“J[u] > IimsuplimsupilnﬁN[B(y,é)] and —Ju] < liminf liminf iIn,E,\,[B(,u,é)] (3.18)
6-0 N-+oo N 6—0 N—+oo Ay
where
W = V09 duls). (3.19)

R

In such a way, by repeating the reasoning outlined in thefpybpropositions 2.7 and 2.8, we are going to
obtain similar bounds for all closed -upper bound- and op@mer bound- sets, namely for all open subg@tsf
P(R) and all closed subseks of P(R)

(= . 1 _ PR S . (=
—/Ilrg'f:{\][ﬂ]} > lim sup Infin[F] and  liminf-<5Inziy[O] > —llll’elg{\][p]} (3.20)

N—+oo0
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Then, by takingD = F = P(R), sinceun[P(R)] = 1, one will get

= T . 1, _ =
- inf {301} < imint 5 InENPE)] < limsup Inay[P(R)] < - it (3] (3.21)
thus sinceun[P(R)] = 1 yielding
— inf {J[ul} = lim 1|n|[V]. (3.22)
HeP(R) N—+co N

In order to obtain (3.7), it remains to compute the minimurteady, for anyu € P(R) :

ﬂmegmmm@=gwm, (3.23)
R

sincey is a probability measure. Furthermokéattains its infimum at least at one posgt Then
J[6s] = V(o) = inf [V(9)], (3.24)

so that indeed (3.7) follows.
This limit being established, one deduces from (3.20) edtinofuy on shrinking balls

=Ju] > IimsuplimsupailnpN[B(y,é)] and =J[u] < Ii%n i(r)lf ||i\1m inf ailnpN[B(y,é)], (3.25)
N — —+00 N

6—0 N-o+oo
thus leading, according to propositions 2.7 and 2.8 to th&. P with speedN? and good rate functiod for the
sequencen.
e Upper bound
In order to establish the upper bound@g B(u, 6)], one should integrate on the domain
Ay ;LY € B, 0)) . (3.26)

The characterization of its geometric form is rather inplimwever, it has a very good description in terms of
the empirical measure. It is therefore convenient to rettesintegrand in terms of integrals versus the empirical
measure.

Setky = ||min{V, M}||gL. Then, forM > 0,

N
in[B(u, 8)] = f exp{ —N(N -1) f V() - dLE\fN)(s)} ]_[ g Vi) . gN)y
(A : LN eB(g)) o=t

< f exp{ ~N(N-1) f min(V(s), M} - dL(NM(s)} ﬁ eVl gy . (3.27)
a=1

(an : LYV eB(u0))

It follows from the definition of the bounded-Lipschitz mefrsinces — [V(S)—-V]1x<m(S) is a bounded Lipschitz
function, that forL{™ e B(y, 5)

fmin{V(s),M}.dLﬁN)(s) > fmin{V(s),M}-d,u(s) — 5| min{V, M}|lsL (3.28)
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Hence,

Zin[B(,8)] < exp{—N(N—l) f min{V(s),M}~dp(s)}~e‘5'N(N‘1)’<M | f eV . d)" . (3.29)
Thus, clearly,

. 1 _ .

IlmiipmlnﬂN[Bw’m < —fmln{V(s),M}-dy(s) + 5KMm - (3.30)

Further, sending — 0 leads to

Iimsuplimsup%lnﬁN[Bmﬁ)] < —fmin{V(s),M}-dy(s). (3.31)

6050 N+

Finally, the sequence
fm(s) = min{V(s), M} (3.32)

is increasing. Thus, by monotone convergence,

M—+c0

lim fmin{V(s),M}-d,u(s) = MILerfV(s)-dy(s). (3.33)

Hence, upon sendinlyl — +co0 one gets

. . 1 _ -
lim suplim sup— Inzy[B(u, 6)] < —J[y] . m (3.34)
650 No+oo N

It is important to note at this stage the very subtle&s that took place in taking tleederedlimits. Taking
the N - +oo demanded the introduction of some regularizations. Therlatould,in fine produce divergent
factors should thé — 0* not be taken first. Only after the— 0" limit, could the regularizing parameti be
sent to+oo.

e Lower bound

Obtaining a lower bound is the most subtle procedure. Sineecan only use properties of the bounded Lipschitz
metric when integrating versus bounded-Lipschitz fumgjoone should start by approximating the meaguee
P(R) by a compactly supported one. Further, one will need to laagaite precise control on the shape of the
domain of intergration. Although for numerous theoretimahsiderations, the below description

{/lN e RN ¢ dg (i LIV < 5} (3.35)
of the domain of integration seemsfigcient, it appears extremely hard to say anything about &petor more

precise geometric properties. Therefore, for minoratiorppses, it is convenient to build a domain contained in
the latter that, however, has an explicit geometry.
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Letu € P(R). If fV(s) -du(s) = +oo, then there is noting to prove. Hence, we may well assume that

fV(s) du(s) < +oo. Furthermore, we pick & 7 < §/2 andu be an atomless measure such that

deL (1) < 1. (3.36)
For anys > 0, there existdMs such that for anyM > My the measure
1 n
M) _ X<M " M
= (3.37)
([ -M;M])
satisfiesdg, (i, ™)) < 6, wheredg, is the bounded Lipschitz metric. It then follows that
{/lN eRN ¢ dpy(u LW) < 5} c {AN e RN ¢ dgy (™), L) < 25} . (3.38)
The measurg™ allows one to introduce
1 1
X = mf{ M =00 x]) > 1} and x}, = |nf{x> XN dM(EN X)) = N +1} a=1...,N-1
(3.39)
Then, it can be shown that for any> 0, there existsN, such that for an\N > N,
daL (1 Z S (3.40)
H—/
L *N)
N
In the following we assume th&t > N, wherer is such that < < §/2. Then
Qs = {/IN eRN ¢ |1 < g a= 1,...,N} c {/IN eRN ¢ d(u™, LY <5} . (3.41)
It follows from the mean value theorem that, provideg— x| < §/2,
d V(G +Y) N N V(x+y)
V(1a) — V(X3)| < = sup ‘ IV(x3)l < IV(X3)l - sup sup —‘ (3.42)
| : : 2 o2l VOA) & 7 em o2l V(®)
As a consequence given any € Qs
+Y)
— ) V(1) = - » V(&) - 6-supsu 3.43
Z (1) Z %) XeRpW? V() |Z| VR (3.43)
s
Therefore,
N
An[B(1, 20)] > Tin[BE™,0)] = f [ ava

a=1
{ANeRN - d(u, LNy
N

< ne NV l_[ —N5wo|V(X’§‘)|.de/l
a=1 Qs

a=1

< exp{—N2 f V(s) - dLE () — N25 - @ - f |V(s)|-de\j‘N)(s)}-5N (3.44)
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Then, using thatls (LS, M) < 5, we get
pn[B(u, 26)] > exno{—N2 f min{V(s), Vi} - du™(s) — N% - s - f min{IV(9)l, IVIm} - du™(9)
- N?n(L+6 - ws)(Imin{V, VmlisL + ||min{|V|,|V|M}||BL)} (3.45)
where we have s&ty = max{V(s) : se[ - M;M]}and|V|y = max{|V(s)| : se[ —M;M]}. Thus,
o1
liminf W'”ﬂN[B(#,%)] >
_f min(V(s). Vi - du™(s) ~ 6~ ;- f min{V(9). Vim} - ™ (9)

= (L + 06 @s)(Ilmin(V, VmlllsL + Il min{IVI, Vim}llsL) (3.46)
Sendingy to 0" at this point, we get that

V(S Iy (949 _ fIV(S)|~1|x|<M(S)~dﬁ(S)
A -M;M]) ' A -M:M])

lim inf %In,uN[B(,u,%)] > —f

N—+c0

(3.47)

Further, just as previously, we can sefido 0, hence replacing the measuréy the measur@. Then, since
V > 0 for x large enough

1 V(S) - Lyem (9du(9) V(9] Lgem(9) - du(9)

it el 20) = - [ UGS —0vme [ SRS @i
So that, sendingl — +oco and thens — 0, we get

Iirp_igf Ill\lnlLrlI %InuN[B(y,Zé)] > —fV(s)-d,u(s) = —J[y] . (3.49)

3.1 Varadhan’'s lemma and a first non-trivial application

In this subsection, we shall establish Varadhan’s lemmahvban be thought of as an infinite dimensional ana-
logue of Laplace’s method for extracting the leading laxgleehaviour of one-dimensional integrals of the type

f e NV .dg . (3.50)
R

We shall then apply the lemma so as to draw informations orlegheing asymptotics of one of the multiple
integrals that were introduced in the first part of the lezsur

Theorem 3.1 Varadhan's lemma
Letun € P(S) satisfy a LDP with rate function J and speed.a'hen, for any f: S — R that is continuous
and bounded from above

lim iInIE,\l[e""Nf] = sudf - J] with  En[g] = fg(s)-d,uN(s) (3.51)
s

N—+oc0 aN
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Proof —
We first estimate the limsup. L& > O be an integer. Ag is continuous, there exists finitely many closed
setsF, ..., F; such that

f<- Mon( ple)C and [f(x)-f(y)l < /M foranyx,yeFp, p=1,...,¢(. (3.52)

Then,

1
limsup— INEn[e™f] < max{ =M, max (limsu L nEyen'
N—>+oopa-N N[ ] { p€|[l‘t’]|( N—>+c>opa-N N[ F ])}

< max{- M, ErPla>§]I[xs€lépf(x) - inf J(x)]}

IA

max{ - M, max [Sup(109 = 309+ _)]}

< max{ - M, sup(f(x) = J())} + 1 (3.53)
XeS M
Letting M — +oo yields

IimsupiInEN[e""Nf] < sup[f() - I - (3.54)

No+oo AN XeS

In order to bound the liminf, lek e S. Then

liminf — In En[e™f] > liminf — L En[€™ " 1pxs)]

N-+co Ay N—+co Ay
2 y IEI(II 5) [ f (Y)] ye IBI(II 5) [J(Y)] = ye IBI(II X.6) [ I (Y)] ‘](X) (3 55)

By continuity of f, lims_q infyegs) [ f(Y)] = f(X), thus passing on to the— 0" limit yields

fiminf — INEN[e™] > f(x) - () . (3.56)
N—+co Ay

It then remains to optimise in respectX@o as to get

fiminf — InEy[e™'] > sup[f(x) - I m (3.57)

N—+co AN XeS

We are now in position to establish the

Theorem 3.2 Let W(1, ) be such thatfW||g. and V e CY(R) be such that %) > v1|X| + v» then

NlLrQw—ln [ a]b_[l Wla) ]_[ e Vi) gN ) ] = s [RZ W(s )du(9 @ du(t) — HJ' V(s)-dp(s)]. (3.58)
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Proof —
We have already established that the sequence of progabiiasures oRN given by

N
dPn(AN) = ﬁ]—le"\'v(”fﬂ)-d“d, I[V] = f e Vg, (3.59)
a= R

induces a probability measurg on P(R) throughuny = Ln#Pn and that the sequengg, satisfies a LDP with
speed\? and good rate function

I = f V(9 du(9 — inf [V(9)] . (3.60)

R

Hence, one has

f]—[ QW(da.db) | l_[e—Nvua) dNa (|[V])N.fexp{NzfW(s,t)dL(l\fN)(s)@@dL(,\fN)(t)}-dPN(/lN)

RN a’b 1 RN

= (VDN -En[eV Y] (3.60)

where the last equality is a mere restatement of the definifithe image measugg,, En refers to the expectation
in respect to the measurg. In order to be able to apply Varadhan'’s lemma, we still n@egbktablish that

po Wi = [ W(st du(9 e du() (3.62)
is continuous and bounded from above. The latter followsfro

| [ Wis - du(9 e dutt] < Wl (3.69)

sinceu € P(R). Since,W is bounded Lipschitz in two variables, it is a quite direchsequence of the bounded
Lipschitz metric thatW is continuous oP(R). We leave the details to the reader as a character buildieigise
in real analysis. ]

4 Leading large-N asymptotic behaviour of3-ensembles

Let

Pl (n) = (ﬁ)ﬂua % 1‘[ e NVl Ny (4.1)

N a<b

whereV : R — R is aC(R) function such that, for somg > g

limin V()
X—>+oo B - Inix

1, (4.2)
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and

M| (4.3)

limsup ws < +oo with ws = SuUp sup Vi

6—0 XeR |y|<é

Finally, the normalization constant or partition functimads and

z9 - f ﬂua Apf% - ]_[ e NVl) . Ny (4.4)

RN a<b
In the following we denote by the measure of?(R) induced b)AP(ﬂ), Vizuy = Lf\fN)#IP(,f).

4.1 The LDP for the associated sequenge

Throughout this section, we are going to prove the
Theorem 4.1 The sequencey € P(R) satisfies a LDP with speed?Nind good rate function

f(st) = @ + V(t) - BIn|x -y

Cy = infﬂerp(R)f f(St) dﬂ(s)®d:u(t) (45)
R2

Y] = f f(st) - du(9®du() — ov  where

Furthermore, the functionalfu] = f f(s 1) - du(s)®du(t) attains its minimum at a unique compactly supported

probability measureuy. Furthermore if the potential V is analytic, thesy is continuous in respect to Lebesgue
measure.

Note that this theorem is a typical example where one canmuly &/aradhan’s lemma since the functional
"perturbing" the decoupled measure studied in sectior2 3.0.

o - f IN1X— Y1 - du(x) @ du(y) (4.6)

is neither continuous nor bounded from above. Thus, theemtificulty of the proof lies in circumventing these
singularities. In fact, the steps of the proof decomposethxas in the case of the "simple" example studied
previously. Below, we shall establish the LDP and the linfithe partition function. In the next sub-section,
based on several auxilliary lemmas we establish an exgligtacterization of the minimizer o§, the so-called
equilibrium measure.

Proof —
Note that the densityRﬁ)(/lN) can be represented as

dr® ) = zl exp ~ N2 f f(x.y) - dL“N>(x)®dL“N)(y)} ]_[ev(w d2 4.7)

Xy

44



e Exponential tightness

It follows from Jensen'’s inequality applied to the prob#pimeasure

N ( eV
Ny(Ay) = ]—[{—}-d'\'/l (4.8)
s=1 ferV(ﬂ)d/l

that

Nz > Nin| f eVWda| - N2 f { f f(x,y)-dLﬁka)@dLﬁN)(y)}-®Nv(/1.\.)
RZ

RN

X2y
-2
= Nln[fe‘vu)d/l] - N(N—l)(fe‘v(”)d/l) I(M — BIn|x-y)-eVOV0dxdy > -CN?
R2
(4.9)
for someC > 0.
Observe that
1

IX—Y < A/(C+1)y2+1) sothat f(xy) > E(z//\/(x) + wv(y)) (4.10)
where

Yv(X) = V(X) = BIn(C +1). (4.11)
Finally, it follows readily from (4.2) that there exists @iantsv > 0 andc € R such that

f(xy) = W(V(X) + V() + c. (4.12)
Let the compacK, be defined as in (3.8)

KL = {,ueSD(R) : fV(x)-dy(x) < L}. (4.13)
Then, one gets

un[KE] < e COeaNL f eVWdy) . (4.14)

R

Henceuy is exponentially tight.

We proceed exactly as in the proof of the LDP in propositidh Blence, we define
iy = 29 (4.15)

and introduce

Wi = f f(s1) - du(9) ® du(t) . (4.16)
RZ
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e Upper bound

Given anyu € P(R), we shall establish the bound

. . 1 _
lim sup- lim sup Wln,u,\,[B(,u,é)] < —lyv[y (4.17)
0—0 N—+c0
For anyM > O set
fu(xy) = min[f(xy),M]. (4.18)

Then

N
in[B.0)| < f exp{-N2 f fM(x,y).dL(N*N>(x)®dLﬁN)(y)}-]_[e-V(ﬂs%dNa (4.19)
s=1

A
{/lN : dBL(LE\,N),/l)<5} i
Aa#Ap ,azb

where we have used that under any measure absolutely cousinn respect to Lebesgue’s one the integration
variables are almost surely distinct. As a consequelnkf@,@ L(I\TN)({X =vy}) = N~1and thus

M
f fu(xy) - ALV () @ dLM(y) = f fu(x y) - ALV () @ dL{M(y) + N (4.20)

XYy

Sincefy is bounded, the functional
97 < s [ ) a9 @ chy) (4.21)

is continuous and there exists & dependent constaft such that
11 1091 < cs (4.22)

provideddBL(LE\fN),p) < 6. As a consequence,

lim sup- lim sup %In,uN[B(/u,é)] < —|\(/M)[,u] . (4.23)

0—0 N—+o00

Then, lettingM " +c0, one concludes by the monotone convergence theorem.

e Lower bound

Foru € P(R), we now establish the bound

P A
"?JQf"'N”lLrlI mlnyN[B(yﬁ)] > —ly[y] . (4.24)

If u has atoms theh,[u] = +c0 and the bound is trivial. Hence, we may just as well assunteuthas no atoms.
We then proceed as previously.
For anys > 0, there existdVs such that for anyM > M; the measure

(M) _ 1|x|5M
(I VEYE) (4.25)
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satisfiedg, (i, ™)) < 6, wheredg, is the bounded Lipschitz metric. It then follows that
{/lN eRN ¢ d(u, LY) < 5)} c {AN eRN 1 d( LY) < 25} . (4.26)

We use this measugeto introduce

1 1
N _ : : N - N . N.
Xq :mf{x D] —o05x]) > N+1} and X3, = mf{xz Xg - ou(]xg i x]) = N+1} a=1...,N-1
(4.27)
Further, for any; > 0 there existd\, such that for an\N > N,
1 N
dec (1 g D 0n) <7- (4.28)
p=1
In the following, we assume th&t > N, wheren is such that 6< n < 6/2. Then
Qs = {AN eRN : a-x)| < g a= 1,...,N} C {AN eRrN : d(y,LE\f)) <6} . (4.29)
Assume thafly € Qs, then
N N N
=Y Va) = =YV = 6-ms- Y IVOR)I (4.30)
a=1 a=1 a=1

As a consequence,

un[B(, 26)] > En[BEM™,8)] > exp{—N2 f V(9)-dLI(g) — N2 ;- f |V(s)|-d|_(NXN>(s)}-R5 (4.31)

where
. 2B N B
R, = f [Tl > f [ 11— da+ 5 = %
i<y 22 A< 22
A1<-+-<AN
N 2 N-1 5 612 N1 ,
s [T K= T - f [ THass - A 2. 432)
b>a+1 a=1 52 a=1
A1<--<AN
The last integral can be estimated through the change afhlas
U = A1 U=2j-4-1 j=2...,N (4.33)
and the inclusion
)
{/lN D Aal < (5/2 A1 << /lN} D {/lN DAl < (5/2N 0< /1j+l —/lj < ﬂ} . (4.34)
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Indeed, then,

52 N_g /2N

[[ha-aafda > | ﬂlualﬁ du = 2 (2P (4.35)

B+1 2N
—5/2<<ly L _5/2N &2

Furthermore, sinc& — In X is increasing

N N N
% N-1 Xa+l Xb+1

[ mix-y-da09edi®0) = Y [ [ By inix-y1-dhegk) @ cheg)

N ab=1°y N
oy “
1 N-1 N- N-1
< N—Z Z (g —X) + > I, - x) - 2N2' (4.36)
a=1 b=a+ a=1
Thus
N
1—[ -1 l_[|xa+1—x [ > exp(28 f Ly - InIx =yt - du®™ () ® du™(y)} (4.37)
b>a+1

1

Putting all the pieces together and repeating the handéntsed in the course of the setting of the first LDP
established in proposition 3.1 and using that by the dorathabnvergence theorem

1
f Ly Inlx=y1- ™ 0 du™(y) — = f Inix -yl ™ (x) ® du™(y) (4.38)
3
we get

||i\1m inf _I\TZ Inun[B(u, 26)] > —fV(S)-d,u(M)(S) - 6-w(;-f|V(s)|-d,u(M)(s)
—+00
- 77(1+5'7D'5)(||V1|x|§M||BL + |||V|l|x|§M”BL) + ﬂf'nlx—yl-du(M)(x)®dy(M>(y). (4.39)

Sending firsty — 0%, then relaxingM ” +oo0 and finally taking liminf_,o leads to

e 1
Ilrp_!g\f I|Nn1|+r£ WlnyN[B(y,Zé)] > ly[y] . m (4.40)

4.2 Some applications of the LDP

In the present section we are going to apply the LDP for thereiglue distribution so as to establish several
corollaries that allow one to answer positively to certaiestions that have been raised in the introduction to this
series of lectures.

We shall start with the convergence of the density of eigeesa
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Corollary 4.1 Let f be bounded Lipschitz dhand rﬂl the one-eigenvalue distribution function:

N
p() = f P(Nﬁ)(/l,/lz,...,/lN)-nd/la. (4.41)
RN-1 a=2
Then,
Jim f f(1) - p()-d1 = f f(S) - dueq(s) (4.42)
—+00
R
Proof —

It is readily seen that
f f) pP() - dt = f f(11) - 9 (Ay)
R RN

= B (19000 = ml [19 dua]. @29

Recall thatls attains a uniqgue minimum at a compactly supported prolpbiieasureeq onR. This guarantees
that, givene > 0,

U =

inf J > 0. 4.44
P(R)\Bluege) sl (4.44)

Then, by the LDP for the sequengg, there existNg large enough such that

UN[P(R) \ B(ueq E)] < U (4.45)

foranyN > Np. Furthermore,

ol [ 199 = [ 19 dued9] = sn[testun{ [ 19 a9 = [ 19 chea)]

1< 2/Iflloo-exp{~N2 % }

+ in[legugol [ 1949 = [ 109 chee9) - dut9)] . (4.46)

el fllsL
In other words, given any > 0, one has that
lim sup{ f Fpd ) - £(1) - dl - f £(s)- d,ueq(S)} < e, (4.47)
N—+oo0 5
so that the claim follows. ]
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Corollary 4.2 Assume that the unique minimizeg, of J; is absolutely continuous in respect to Lebesgue’s
measure:
dueq(s) = p(s) - ds (4.48)

with connected suppofte™) ;o) ]. Lety%, a = 1,...,N denote the "classical" positions of the integration
variables which are understood to be ordered< - - - < Ay, Viz
Ya

a
== [ ey (4.49)
a)
Given anye > 0,
PO[{an e RN : Fa |20 — il > €] = ON™). (4.50)
Proof —
Givene > 0, set

Te = {AneRN : Fa 13 — ¥l > €. (4.51)

Let Ay € R’T\'. Picka € [1; N] minimal such thafly — ya| > €. Letb € [1; N] se such thati; — yp| is
minimal. The density of the equilibrium measure is ib([ o) ;o) ],dx) andp(x) > 0 a.e on[a() ;o) ].
Hence, there existg > 0 such that for any

lc[a:;a®] with [I|>¢2 = f dueq(d) > e (4.52)
|

As a consequence, provided tiNdit! < 5, one has that uniformly in
€
ce[1; N] lyer1 —vel < 5" (4.53)
The latter bound implies théit; — yp| < €/2 what, in its turn, ensures that

€
l'yb — val = ||')’b_/1a| — lya—4al| 2 E (4-54)

Furthermore, one gets that

b-a
2 [
N

U SR AR ERSCECEEC

(3
Yat3

Yb
- [ a9 > [ i > me>0 @55)
Ya Ya

It thus follows that, for anyly € e, dai (L{Y, keq) > 7e, ie

Te c {AneRY : LYY € B(ueq ne)] (4.56)
Thus, forN large enough,
_ 2
PO[Te| < un|Beqne)| = €V, (4.57)
for someC > 0, as ensured by the uniqueness of the minimudy@nd the LDP for the sequenpg. ]
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4.3 Existence and uniqueness of the equilibrium measure

Proposition 4.1 The functional
. 1
Iy [u] = f ) du(duy)  with  f(xy) = 5(V(9+ V@) - Binlx-yl, (4.58)
RZ

admits a minimum { on the space of probability measuresin

Ey = inf | . 4.
v HG'Q(R) v 1] (4.59)

This minimum is attained at a uniqgue measuyecalled the equilibrium measure. The suppsupguy] of the
equilibrium measure is compact.

Proof —
It follows from

IX—yl < /(@ +1)(y2+ 1) (4.60)

that for any probability measure @

lv 1] > —g [INOE + 1) + In(y? + 1)] - du(X) ® du(y) + f V()du(x) > «. (4.61)
R R
Above, we have used that
Yv(¥) = V(x) - BIn(¢ + 1), (4.62)
is continuous and thaty lx:w +00, ie there exists a constante R such thaiyy > «.

Also, ly is not identically+co , as follows by taking the probability measure

-1
du(x) :e—V(X>dx-{ f e—V<X>dx} . (4.63)
R

This means thaEy € R. We now show that the minimum is attained. The functidgak lower semi-continuous
as the supremum of lower semi continuous functionals. As\aeguence, given any weakly convergent sequence
untou € P(R), un — u it follows that

lim inf Iy un] > Iv[u] . (4.64)
Next we show that any sequence of measpresuch that
1
Ev + =2 Iv[u) (4.65)

is tight. Assume that, is not tight but satisfies (4.65). Then, there exists 0 such that for any compast in R
one has

un[R\ K] > €. (4.66)
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As (1) |t|_> +00, there exists aM > 0 such thatyy > [Ey —k+1]/e onR\ [ — M ; M ]. Then, it follows from
—+00
(4.61) that

1
By + = zK+-EV—K+uk fcmd@::EV+1, (4.67)
[X>M

a contradiction.

Yet, every sequence of tight probability measures admitgaeqjuence that is vaguely convergent to a proba-
bility measure. Hence, given a sequepgesatisfying (4.65), one hag, — u € £ (R). It follows from (4.64) that
w satisfiesEy > Iy[u]. Thenceu is an equilibrium measure. The rest of the claim is a consempief the below
series of lemmas.

Lemma 4.1 Every probability measurg realizing the minimum oflis compactly supported.

Proof —
Let u be a probability measure dhsuch thatey = Iy[u] and 2 c R such thau[2] > 0. We then define, for
€ € | —1; 1], the probability measure

1+ ewa) - (4.68)

3 1
He= 7174 eu[ 2]

€ — ly[ue] is smooth on| — 1;1[ and attains a miniumu at= 0. Hence

d
0= o Ivlel lemo= —2u [Z] IvIu] + Zf f(X Y)duz (X)du(y) = f[l//v(X)+fwv(Y)dﬂ(Y)—Zlv[ﬂ]]dﬂ@(X) (4.69)
R R

R

One has by hypothesis that
[ oot < oo (4.70)
Since alsajy(X) — +oo0 when|x| — +oo, it follows that there exists al > 0 such that

() + f W) - 20l =1 VIXN=M. @.71)
R

Thus, if there exists @ c R\[ - M; M|, (4.69)- (4.71) would lead to a contradiction. In other wsrithe support
of u is compact. [

Lemma4.2 Letu = u, — u_ be a compactly supported signed measureRoof zero mean. Then one has the
inequality

- f 1N 1% = Y1 [0t (ke () + - (e (¥)] = — f IN1x= Y [dher OO () + (s ()] (4.72)
R R
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Moreover, should the |hs be finite, one has in fact the equalit

- f IN1W(X) — WY)I [duer ()0 () + du— (X)du-(Y)]
R

+oo
= - f In () = W)l [ (9 (y) + d- (e, ()] + 2 f ) d—j (4.73)
R 0
where
+oo
) = f . ds (4.74)
0
Proof —
Given anye > 0, one has the identity
Py jsu
In(s® +€?) =Iné® + zs(fdue—auéi—u‘l) . (4.75)
0

Moreover, the function If(x—y)? + €] is continuous on the compact supporofApplying Fubini’s theorem and
using the representation (4.75) along with the fact thatiibasure has a zero mean, one readily gets the equality

— [[Infx= 92+ €1 e (9 ) + - (k-]
R

+00

== [nlx- 92 + €] o (0 0) + - (e ] + 2 [ Te il @7

R 0

The sequences of functiorsin [(x — y)? + €] and ef“|ﬁ(u)|2/u are increasing and the first one is bounded since
the support ofiis compact. One can thus apply the monotone convergenceethdeading to the claim. [

Lemma 4.3 There exists a unique probability measuggonR such that & = lv[uy].

Proof —

Assume thaji; andus, both satisfyEy = Iv[ui] = Iv[uz]. Then, in virtue of lemma 4.1y; andu, both have
compact supports. Thereford,being continuous, it is integrable in respectuig k = 1,2. As a consequence,
Ev < +o0 ensures that

—In|x-y] 4.77)

is integrable in respect @ ®ux, k = 1,2. By (4.72), it is thus integrable in respecitp® ys + u2 @ u1. Therefore,
it is integrable in respect to the measuye- u1 + t(uz — u1). Yet, as follows from (4.76), the function

pt) = f £ y)dr ()dr(y) (4.78)
R
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is convex ap”’(t) > 0. Yet, from

Ev < Iv[rd < (X=t)lv[ua] +tlv[pz] , (4.79)
it follows thatp is constant oh0; 1]. Thus,p”(t) = 0 leading to
(u1 - p2)(U) = 0 (4.80)

Henceu; = up, what proves the uniqueness.

Lemma 4.4 In the case where this measure is continuous in respect tbghesgue measurdyy (X) = ¥ (X) dx,
with ¢ (X) continuous, one has that there exists a constaich that:

V(% —zeflmx—yw(y)dy > o for xeR\suppluy]
R

V() - 28 f nx-ywG)dy = o for xesuppluy] . (4.81)
R

Proof —

Let uy be the equilibrum measure apdanother compactly supported probability measurd® cfuch that
Iv[i]. Sincely[uy] < +o0 andly[u] < +o0 we get that Inx — y] is integrable in respect to bothuk) ® du(y) and
duv(X) ® duy(y). It is thus integrable in respect to the signed measuyie-g{)(X) ® d(u — wy)(y) in virtue of
(4.72). As a consequendeg[ 7] with 7; = uy + t(u — uv) is well defined and

Wird = Ilav] +t f {Vx-28 f I x-yiday () AGE-120) (09 f In Xy dFT—ev) (YBAG 1)) - (4.82)
R R

R

Furthert = 0 is a minimum fory[r¢] so that

%Iv[n]u:ozo what leads to f{V(x)—cV—ZﬁfImx—yldyV(y)}dﬁ(x) > 0. (4.83)
R R
Here we have set
o = f Vduv(x) - 28 f In1x Yl iy () ® v () (4.84)
R R
Let
B:{XER V() - 2,8fln|x—y|-d,uv(y) < cv}. (4.85)
R

Assume thafi is such thafi[B] > 0. Then the probability measuig = u - 1g/u[B] has compact support and
satisfies

[ {ve9-0v-28 [ nix-yidavt) - e < 0 (4.86)
R

R
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a contracdiction. Thug[B] = 0 for anyu € P(R) with compact support and such tHg{u] < +co0. This holds
true foru = uy meaning that, by definition afy,

0= [{ved-ov-25 [ mix-ydevdfd(9 = [ {U09-0v-25 [ Inx-yidawt) v (4.87)
R R

R R\B

sinceuy[B] = 0. Hence,
U(x) —cy — 2,8f|n X —ylduy(y) =0 Ly ae. . (4.88)
R

Note that, in the case when the measuyeis continuous in respect to the Lebesgue measure, with some
continuous density, one has that the function above is continuoufRors a consequence, (4.81) holds. =

4.4 Explicit representation in the continuous case

In the remainder of this section, we assume that the edqjuitibmeasure is continuous in respect to the Lebesgue
measure. As a consequence, it is described by a densityose suppork consists of a union of disjoint intervals

2 = Up_q[ ak;Bk] with a1 <Bi<az<---<pBn. (4.89)

Thus, the unknowns in the problem of characterizing theilequin measure are the density the numbemn of
connected components of the support and the endpaings of each connected component. In the following, we
show that the density admits the representation

FEERHCLI

—=1:() with 4@ =] [@-a)? @-pt . (4.90)
k=1

Furthermore, itV is analytic in some open neighborhoasdX) of £, then the functiorh entering in this decom-
position is holomorphic on the same open neighborhood.

If the density of equilibrium measure exists, then, by tgkime weak derivative of (4.81), one obtains a linear
integral equation for the density of equilibrium measure:

V' (%) - zgff—fy)dy - 0. (4.91)
J y
In order to solve this singular integral equationX®we introduce the function
@ [y witn o= [ ] - ot (2} (4.92)
2inq(2) J z-y 1 K KT '

It is readily checked thé&ft is the unique solution to below Riemann—Hilbert problem
V' (%)

-————  forxe Z :
2inq, (X)B

e FL(¥W-F-(¥=

e FcO(C\X),
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Thus, the solution to the RHP fér takes the form

F(2= f dst V0 (4.93)
z

“s-2z(2in)?q, (98
In its turn, this leads to the representation for the derdigquilibum measure

ds _ -V’ (9)
B(2ir)? (5=X0: ()’

509 = 9(F. (9 + F-(9) = 6. (9 f (4.94)
z

which can be recast into one more regular by using Wah holomorphic on an open neighborhogt(z) of .
Thus, ifI'(Z) is a loop around lying inside of 7 (¥),

ds -V’ (9) _ V' () ds (4.95)
(2ir)?2 5 (5= %) (9) (s—x)q(s) (2ir)?p
b )
It remains to write down the conditions fixing the numbeand the endpoints;, 5;.
As((2) ~ Z"atz — « andq(2F (2 ~ —1/(2ixz) we get
V'(y) dy
- | YP—=%—=¢ =0,...,n. 4.96
Ef Yoz e P (499

Then-1 remaining conditions follow from the fact that the constanis the same independently of the intervals
[ Bx:

j-k{v’(x) _2 )‘([’Lj')ydy} dx=0. (4.97)
[47% z

Note that should all of the above conditions be met, then dsedateds(y) is the density of the equilibrum
measure feq in virtue of lemma 4.3.

One can also show thajgl is continuous in respect to Lebesgue’s measure so that otesd conditions
is surely met. However, apart from exceptional cases, onaatadetermine the associated parametess, Bk
explicitly.
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