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Two-level quantum systems: States, phases, and holonomy

H. Urbantke

Institut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5, A-1090 Wien, Austria

(Received 27 April 1990; accepted for publication 13 September 1990)

For a two-level quantum mechanical system, pictorial descriptions of states, state vectors, phases,
and their time evolution on the two- and three-sphere are discussed, including adiabatic changes

and Berry’s phase.

I. INTRODUCTION

The standard formulation of quantum mechanics ‘uses
complex Hilbert space and thus complex numbers in an
essential way. Of course, it would be possible to do with real
numbers alone, but then the formalism would “cry for
complex numbers.” We do not want to speculate here on
the possible origin of the occurrence of complex numbers in
quantum physics, but rather address the difficulty of illus-
trating and visualizing complex vector spaces even in the
finite-dimensional case, i.e., the case of N-level systems.
For a two-level system, the Hilbert space is complex two-
dimensional = real four-dimensional and thus beyond im-
mediate visualization: Complex superposition is not easy to
illustrate! However, due to the fact that only normalized
vectors matter, the dimension is reduced by one, which
brings us into the domain of visualizability, although the
advantages of linearity of the space are lost.

Since many features of quantum mechanics can already
be discussed using two-level systems,' it seems worthwhile
to put together several aspects of geometric visualizations
that are possible here, some well known and some less well
known but of recent interest.

I1. PURE AND MIXED STATES

Almost every textbook on quantum mechanics—let us
quote only one of them? for more detailed reference—in-
troduces the concept of pure and mixed states and illus-
trates it with the help of two-level systems. Here, the Hil-
bert space H can be taken as the space C* of pairs
|z) = (2,,2,) of complex numbers, equipped with the sca-
lar product (an overbar denotes complex conjugation)

(zlw): = Z,w, + Z,w,. (N

The elements of H = C? are the state vectors. They deter-
mine pure states. A pure state is formally given as the set of
complex nonzero multiples 4 |z) of a nonzero state vector
|z) (“‘vectorray”), or the set of multiples A |z), where A and
|z) are restricted by |[1|=1 and (z|z) =1 (“unitary
ray”’)—the well-known normalization condition that is
preserved by quantum mechanical time evolution. The

same information is also contained in the projection opera-
tor

p:=|z){z| (2)
or, in matrix form,

.= 212, z 122)
ik = ZiZy, ) =\ - =) 3
Pix o (Pu) (2221 27 (3)
where |z) is assumed normalized; a phase factor A
(|4 |* = 1) multiplying |z) obviously drops out from p.
Thus state vectors, even when normalized, contain more
mathematical information than states (rays, projection op-
erators).

The matrix p, —called the density matrix of the pure
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state—enjoys the properties of Hermiticity, normalization,
and positivity

P =p

trpr=>p; =1,

(wlplw): = YWpyw, = [{w|2)|*>0 (4)
Lk

for all |w); further, we have the projection property

P’ =p. (5)
The density matrix description has the advantage of gener-
alizing to the concept of mixed state; formally, the density
matrix of a mixed state is characterized by the properties
(4), while the projection property (5) is dropped. Density
matrices of mixed states are obtained by taking linear com-
binations 2r,p, of density matrixes p, of pure states with
real positive coefficients r, summing to unity, Zr, = 1.
The set of all density matrices is then closed under taking
such combinations: It is a convex set (in the real affine
space of all Hermitian matrices of unit trace). We donot go
into the statistical significance of these features, which are
quite general, but turn to the visualization in the C e,

~two-level, case.

The set of 2 X 2 Hermitian matrices is a four-dimensional
real vector space; the condition of unit trace reduces to a
three-dimensional submanifold (an affine hyperplane with
1 times the unit matrix as a distinguished origin), in which
we have to locate the domain of positivity. One way of
doing this is to write the real quantities p,,, p,, with
Putpn=1as

pu =i(1+R3), py =4(1 —R3) (6a)
and the complex quantity p,, = p,, as
P =3(R, +IR,), (6b)

thus introducing a formal vector R = (R,R,,R;)eR>.
This parametrization will also be written as

pi(1 + Rea), (6¢)

where 1 is the 2 X 2 unit matrix and ¢ = (0,,0,,05) are the
Pauli matrices. One point of this vectorial way of writing p
is that if the two-level system corresponds to a spin-1/2
particle with translational degrees of freedom neglected,
then R is proportional to the expectation value of the spin
of the particle in the state p and thus is a vector in our
ordinary three-space; otherwise, the R? introduced here is
auxiliary and formal.

Now putting w, = 0; w, =0; w:w, = — p,,:p;, in the
positivity  condition we find p,;30; pn>0;
P11P22 — P1oP2120, or, in terms of R,

1 — R*>0. (7
This condition also checks to be sufficient for positivity and

© 1991 American Association of Physics Teachers 503



shows that in our auxiliary R? the domain of positivity is
just the closed unit ball, which is obviously a convex set.
The condition p* = p for pure states is equivalent, in R
language, to

R>=1, (8)

illustrating the general fact that the pure states form the
extremal points of the convex set: Here, they form the sur-
face S? ( = unit sphere) of the unit ball.

In what follows we shall concentrate mainly on pure
states and on the visualization of the phases of the corre-
sponding normalized state vectors, in the S? picture just
obtained as well as in another picture that we introduce
right now.

II1. PURE STATES AND STATE VECTORS
A. (Stereographic) S° picture

Consider the Hilbert space C? as a real vector space R*:
the components of |z) then are

X:=(Rez, = X,,Imz, = X,,Rez, = :X;,Im z, = :X,),
(9
and the condition of normalization is
I=lz2* + |z =X] + X + X} + Xi. (10)

This is the equation of the unit sphere S*CR®*. Although
only three-dimensional, S* is already hard to imagine in its
entirety, and is known to have some surprising topological
properties. Consider normalized state vectors correspond-
ing to the same pure state

(pu) = (2Z:) =3(1 + Reo). (n

They are obtained from one of them, (z,,2,), by multiply-
ing by an arbitrary phase factor 4 = ¢,

(12)

where a is real. What does the corresponding point on S*
do as we vary a?
Separating real and imaginary parts, we obtain

X-cos aX + sin aJX = X(a),
JX: = (=X, X, — X, X3), (13)

a normalized combination of two orthogonal unit vectors
of R* for every a: The point thus traces a great circle on S°,
and this circle represents the state. Repeating this for all
pure states gives the Hopf fibering of S* by a system of
circles ( Clifford parallels) which themselves can be repre-
sented by points of a sphere S, as we saw above.

One way of visualizing this fibering is to use a stereogra-
phic map of S* onto an “equatorial” hyperplane R, in
complete analogy to the well-known stereographic map of
S? onto R?. We shall perform our stereographic projection
onto the equatorial hyperplane given by X, = 0: This will
leave us with some convenient axial symmetry. The stereo-
graphic maps send circles to circles; but while the original
fibering is by circles of the same radius ( = 1), the image
circles will not all have the same radii. Rather, image cir-
cles of the same radius 7 form a torus T?(7) CR?, and by
varying r one arrives at a coaxial concentric system of nest-
ed tori, all orthogonal to a fixed concentric sphere. On each
of these tori, the circles are not meridional but are known as
Villarceau circles, each contained in a plane that touches
the torus at just fwo points (Fig. 1).}

It is not hard to verify the statements made. Let
(x,,%X2,X5) be the Cartesian coordinates in the equatorial

2 €z, =z, (a),
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Fig. 1. Stereographic map of the Hopf fibering by Clifford parallels as
drawn by Penrose’ (courtesy Cambridge U.P.).

R*CR* given by X, = 0 onto which the stereographic pro-
jection is made. If we project from (0,0,0, + 1), the run-
ning point (X,,X,,X;,X,) on S* is related to its stereogra-
phic image (x,,x,,x;) by (see Fig. 2)

Xi=+ X =1/ +1),

Xi=2x,«/(xz+ ]) (l: 11293))

(14)

Exploiting the normalization of |z) and separating an
absolute phase from the relative phase @ between z, and z.
we now write

z, = cos(F/2)e =cos(F/2)e ¥/ )72

=@ —@,  (135)

2z, = sin(§ /2)e:=sin(F /2) e e’ T 72
thus defining an angle o, 0<d<7. Varying a will only
change the absolute phase (¢, + ¢,)/2 but neither @ nor
3. The latter appear in R as [cf. (3) and (6)]

R,=cosd, R,+iR,=sinde", (16)
representing the usual polar angles in the S picture of pure
states. [ Also note that R,R,,R; are related to Re z, Im z,
where z: = z,/z, = tan(# /2)e", by a stereographic rela-
tion similar to (14)!]

2 2 2 2
X% =x7 +x; + x3.

SJ

RB

Fig. 2. Stereographic projection of S onto its equatorial hyperplane R*.
From similar triangles and the normalization condition one obtains Eqs.
(14).
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Observe now, first, that the points of the circle on S3
traced by the initial point (z,,z,) = (X,X,,X;,X,) all have
|z, (@)?=X7(a) + X i(a) = cos® ¢ /2. It follows from
(14) that their stereographic projections have

4(x? +x3)/(x* + 1) = cos’ (¢ /2). (17)

The set of all points xeR’ satisfying this equation forms a
surface of revolution, obtained by rotating the curve in the
(1,3)-plane given by

2x,/(x} + x5 + 1) = cos(¥ /2) (18)

around the three-axis. Excepting the limiting cases ¢ = 0,
7, this curve is a circle of radius tan « /2, with center on the
one-axis a distance 1/cos(2#/2) from the origin, and thus
orthogonal to the unit circle x? 4 x3 =1 (1/cos? (¢4 /2)
— tan®(3 /2) =11). It follows that the surface of revolu-
tion is a torus orthogonal to the unit sphere x*> = 1. This
gives us the picture of a family of nested, coaxial, concen-
tric tori, parametrized by ¢ in the interval 0 < ¢ < 7, plus
the degenerate forms as ¢ -0 or ¢ [Fig. 3(a)].

Observe now, second, that the points of the circle on S°
also have

sin(/2)e%z,(a) — cos(d /2)z,(a) = 0. (19)

Taking the real part and performing the stereographic sub-
stitution (14), we obtain

Xy =tan{(d /2) (cos @ x, —sin @ x,). (20)

(a)

(b}

Fig. 3. (a) Meridional section through a family of nested coaxial concen-
tric tori orthogonal to the unit sphere S?CR?. For one torus, a doubly
tangent plane orthogonal to the plane of our section is indicated; (b) Top
view of a torus as intersected by a doubly tangent plane along a pair of
Villarceau circles intersecting at the points of tangency. One of them has
also been rotated about 90° to show the linkage. (In this view, the circles
appear as ellipses with one focus at the center of the figure.)
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The set of all xeR? satisfying this equation is a plane
through the origin whose angle of inclination against the
(1,2)-plane is 4 /2; varying ¢ will rotate the plane around
the three-axis. Consideration of the position ¢ = 0 makes it
clear that the plane touches the torus above at two points
[sin(+ /2) =tan( /2):1/cos(¥ /2) ] [Fig.3(a)].Itscom-
plete intersection with the torus contains the stereographic
image of our circle on S®>—in fact, it consists of the stereo-
graphic images obtained by projection from both, (0,0,0,1)
and (0,0,0, — 1), since the sign dichotomy introduced in
(14) does not show up in (17) and (20). ,

Finally, performing the stereographic substitution in the
imaginary part of (19) gives

x> F2tan(d/2)(sing x, + cos @ x,) =1, 21D

the equations of two spheres of radius 1/cos(¢/2) with
centers on the line of intersection of (20) and x, =0 at
distance 4 tan(<J/2)from the origin. Intersecting the
plane (20) with these spheres gives the image circles under
the + projections, of radius r = 1/cos(4 /2) [Fig. 3(b)].

Deciding on one of the projections and gradually varying
@ now shows that all image circles on the same torus are
linked; the nestedness of the tori for different values of ¢
shows the linkage of any two image circles.

An advantage of this picture is to show some features of
the topological situation; in particular, how each circle
links all the others. However, the S” nature of the quotient
of §? by the fibering is not seen directly: States whose phase
circles in the stereographic projection are on the same torus
correspond, in the S? picture, to points of a circle of con-
stant latitude [cf. Eq. (16)]—but the occurrence of the
degenerate tori (¢ = O or 7) prevents one from reading off
the topology of the state space from the stereographic S’
picture immediately.

B. The S? picture

We therefore turn to another visualization of normalized
state vectors which is directly based on the S? description
of pure states given above. We do not explain its relation to
the homomorphism of the unimodular unitary group
SU(2) onto the group of rotations in real Euclidean R®,
SO(3,R) (see, e.g., Ref. 4), nor its immediate derivation
from R. Penrose’s Lorentz-covariant “null flag” represen-
tation of two-component spinors,’ but simply parachute
onto the elementary formulas allowing the visualization.

Thus, in addition to the unit vector R associated with the
density matrix of a pure state, which in this case is [cf. (3)
and (6)]

R = (2Rep;,2Imp,p,, — p22)
= [2,2, + 2,2),i(2,Z, — 2,2,),|2,|* — |2,]% (22)
we define two more vectors P, Q from R? by
P+iQ=Z:= (2} —22,i(z} +23),—2z,z,). (23)

Using (z|z) = 1, one easily verifies that,.in addition to
R? = 1, we have

Z’=0, RZ=0, ZZ=2, ZXZ= —2R, (24)
from which

PP=Q’=1, PQ=RP=RQ=0, PxQ=R.

(25)

These relations show that P, Q, R, in that order, form a
positively oriented orthonormal triad. Since we have inter-
preted R as the position vector of a point on the unit sphere
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S?’CR’, we can visualize P as a unit tangent vector to S? at
R (and Q as well, but because of orthonormality and orien-
tation, it does not contain new information over and above
R, P). The essential observation is now that, while R is
independent of any phase change in |z), P is sensitive to
such a change: If |z) - ¢®|z), then Z — €*9Z and thus

P—cos 2aP — sin 2aQ = P(a), (26)

i.e., P gets rotated in the tangent plane to S” at R by the
amount 2a. Note that P registers phase changes mod 7
only: |z) and — |2) still give the same P, and R, P together
determine |z) up to sign. This, then, is the second visualiza-
tion of normalized state vectors. The S* nature of their
totality is now not immediately apparent (Fig. 4).

It is tempting to interpret the basic algebraic operations
available in C? in this picture, and to a certain extent this
can indeed be done—the limitations coming from the sign
ambiguity just mentioned. For instance, an interpretation
of the basic scalar product (probability amplitude) (z|z’)
of two normalized state vectors is as follows.

Consider first the probability |(z|z') |, which is indepen-
dent of the phases of |z}, |z') and therefore should be inter-
pretable in terms of the corresponding R, R’ alone. Indeed,
one checks that [{z|z'} | equals the squared distance from
the origin of the chord from R to R’, or that

\/1—|(2|z’)|7=%|R—R'1. 27

Thus, in particular, if |z}, |z') are orthogonal, the chord is a
diameter of S°.

For further elaboration, it is of advantage to consider
also the bilinear antisymmetric quantity

{z|w}: = z,w, — z,w,, (28)
which satisfies
Hz|w}? + [(zlw) [*= (z]2) (w|w). (29)

(If |z) and |w) are normalized spin-1/2 state vectors, then
{z|w}/y/2 is just the probability amplitude for finding total
spin 0 in the two-particle state |z)®|w); and
[{zlw}| = IR — R'|.)

It is less easy to verify that the phase angle arg(z|z') is
given by the following prescription. Draw the oriented
great circle on S? which leads from R to R’ (we assume
(z|2') #0 so that R, R’ are not antipodes and this circle is

Fig. 4. States and normalized state vectors on the unit ball. Mixed states
correspond to interior points (e.g., R'), pure states to surface points (e.g.,
R), and normalized state vectors to unit tangent at surface points (e.g.,
P). Phase changes in state vectors rotate these tangents about their point
of contact by twice the phase angle increment.

506 Am. J. Phys,, Vol. 59, No. 6, June 1991

unique). Call 5, B’ the angles that P, P’ make with this
circle in the sense of its orientation. Then

2arg(z|lZ) =B’ -,
(30)

2arg{z|z} =B+,
the latter actually being independent of which circle on §?

we draw from R to R’: It need not be the great circle.
Finally, we consider a complex linear superposition

|z) = N(a'|Z') +a"|z")) (31)

of nonproportional normalized state vectors, where N> 0
ischosen tonormalize |z). Let then |z');|z" ) be represented
by R, P'; R”, P” on ¢, and ask for R, P representing |z).
First change the phases of |z'),|z”) appropriately to swal-
low the phases of @', a”: After the corresponding rotations
of P’, P”, we may thus assume @', a” to be real. Next look at
{z|z'} and {z|z"} and their interpretation to arrive at the
following prescription for R, P. Find the oriented circle on
S? that leads from R’ to R” and makes the same angle with
P’ and P” (positions after the rotations just mentioned; this
will not be a great circle, in general). Then R will also be on
this circle and P will make the same angle with it. To locate
R on it, intersect it with the “Apollonian” sphere, which is
the set of points in R* whose distances from R’ and from R”
are in the ratio |a”|:|a’|. There are two intersection points
and thus two candidates for R, because on the one hand

— |z") is represented by R”, P” as well as |z ) is, while, on
the other hand, N(d'|z') —a”|z")) differs from + |z),
and a continuity argument is necessary for the final choice.

For the proof, figures, and many finer details, in particu-
lar regarding the sign ambiguity, we must refer to Ref. 5,
Chap. 1.6. (To make the comparison, it is necessary to
observe that the structure considered there corresponds to
considering C? and the bilinear form { |-} alone, while our
“sequilinear” scalar product (-|-) corresponds, in the
framework of that book, to singling out a timelike future-
directed unit four-vector, whose orthogonal space is the R®
used here.)

The purpose of indicating these constructions here was
just to point out how many intricate geometric features are
hidden in the algebraically deceptively simple framework
of complex Hilbert space for quantum mechanics in a case
where they still can be visualized. This is in marked con-
trast to the real vector calculus used to describe geometry
and classical mechanics in Euclidean R*!

We conclude this section with a topological remark: The
Hopf fibering of §* is “nontrivial,” i.e., there is no bijection,
continuous in both directions, between S§* and S X S' (the
latter is not simply connected, containing noncontractible
loops, while the former is). This has the consequence that it
is not possible to choose phase factors for all (pure) states
of the system that would vary continuously over a/l state
space. In the S? picture, this appears as the impossibility to
find a continuous field of unit tangent vectors all over the
sphere S?, a fact that is known as the “impossibility to
comb a hedgehog.”

IV. TIME EVOLUTION AND ADIABATIC
CHANGES

We now consider the appearance of quantum mechani-
cal time evolution in our geometric representation of states
and state vectors. Generally, it is given in the Schrodinger
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picture by the Schrédinger equation for state vectors

d i
—|z(8)) = ——H|z(¥) (32)
dtl Q) P |2())

or the Bloch equation for density matrices
d i
£ o(t) = —— [Hp(D)], (33)
dzp( ) % [Hp(1)]

where H, the Hamiltonian, is a Hermitian operator. For
two-level systems, H is a Hermitian 2 X 2 matrix which we
may write, similar to (6), as

(zu glz) —H— Hol + H-o,
21 22_
where H,, = H,, iscomplex while H,,, H,,, H,, H are real.
Frequent use will be made of the relation
(a+a) (b'o)=abl + i(axXb)-o, (35)

which characterizes the algebra of the Pauli matrices. They
lead from (33), (6), and (34) directly to

d_R:R—_—._Z_HxR,

dt #i

(34)

(36)

describing time evolution in the S C R? picture. It follows
that %(Rz) = R'R =0: A pure state will remain pure, a
mixed state will remain mixed. (This follows quite general-
ly from the Hermiticity of H, i.e., the unitary nature of time
evolution.)

The geometrical interpretation of (36) is that R(z) at
each instant of time undergoes an infinitesimal rotation
around the axis given by H(¢), with angular velocity
2|H|/#. Soif H is time independent, this will just be a rigid
rotation, or precession, of R(?) around H, as exemplified
by the precession of a spin-1/2 in a constant magnetic field
[Fig. 5(a)].

However, if H(?) depends on time, the orbit of R(#)
depends very much on the ratio of the angular velocity
2/H|/# to the rate of change of H(¢). To discuss this, first
note that the eigenvalues and eigenstates of H are given by

E=H,+ |H|, pz=1(1+Ry0),

R; = + H/|H|. . 37
[ Verify Hp, = Epy using (35); sincep, = |E ) {E | where
|E) is a corresponding eigenvector, this is equivalent to
H|E) =E|E).] If His time independent, R = R, solves
(36) and is a stationary state: The precession circle degen-
erates into a fixed point (the two possibilities 4+ are an-
tipodal, corresponding to the orthogonality of eigenvec-
tors). If H depends on time, E = E(t) and R, ,, depend on
time; they are called instantaneous eigenvalues and eigen-
states, respectively, and Ry, is not a solution of (36). We
may now characterize the rate of change of H(¢) by the
velocity of Ry,,, which actually is an angular velocity
since R, moves over the unit sphere. Its order of magni-
tudeis |H|/|H|; and we can now get a qualitative picture of
R(?) in the so-called adiabatic limit 2|H|/#%i> |H|/|[H]|.
Then R(#) describes fast circles around the center Ry,
which get slowly displaced at the same time [Fig. 5(b)]
(see Ref. 1, p. 10-17).

An interesting special case arises if at time ¢ = 0, say, we
require R(0) = R, . Then, from our qualitative picture,
R(#) must coincide with Ry, in the adiabatic limit. This
can be made into a precise general theorem (the adiabatic
theorem®). It has been of recent interest in this special case
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(b}

Fig. 5. (a) Time evolution for time-independent Hamiltonian. R(¢) pre-
cesses around the axis H. (b) Time evolution in the adiabatic limit. R(z)
spirals around the “soul” R, .

to ask for the time evolution of the phase of the state vector,
the point here being the following.
In the time-independent case, if initially R(0) =R,
then R(¢) = R, so |z(¢)) differs from |z(0)) by phase
only, in fact, |z(#)) = exp( — iEt /#)|z(0)). In the S? pic-
ture, the unit tangent P(¢) representing the phase of |z(z))
rotates in the tangent plane at R, with angular frequency
2E /#%. Assume now there is adiabatic time variability such
that after time T'we have H(T)/|H(T) | = H(0)/|H(0)|.
Then if R(0) = Ry, , in the adiabatic limit R(#) =Rg,
traces a closed curve on S* R(T)=Ry =Rgq,
= R(0). From the stationary situation just mentioned,
one would guess that the phase increments picked up by
|z(#)) during the round trip R(#) would add up just to

. T
|z(T)) = exp( —%J E(t’)dt’)lz(O)).

But this is not the case, i.e., the (“dynamical phase” split
off) redefined state vector

|2 (D))= exp(%fE(t')dt ’)]z(t))

does not, in the adiabatic limit, have |[2,(7))
= |z,4(0)) = |z(0)), but instead changes phase such as to
satisfy

(34 (D)]224 (1)) = 0. (39)
We shall not give a proof of this general result (which is

(38)

H. Urbantke 507



included as a technical means in all proofs of the adiabatic
theorem, a “convenient” phase gauge, first invented by
Fock’ and characterized by him in terms of a “minimum
oscillation principle”), obtained by making sense of « -0
by a simple observation.® Rather, we want to illustrate it in
our §? picture. Corresponding to the phase redefinition
(38), we have a redefined Z'(t) =P'(¢) +iQ'(t) for
|z'(¢)), and we now consider the adiabatic limit thereof.
From z,z, + Z,z, = 0 we conclude the existence of some
complex function A (¢) such that

z,=AzZ,. (40)
Going back to the definition of Z, differentiating and in-
serting (40) we obtain

Z= —21R (41)
Therefore, Z., must satisfy

R, XZ., =0, ie, RgXP, =0=R.XQ,. (42)
Thus, while a similar calculation using the definition of R
results in

R, =1Z,, +1Z,, (43)

z,= — Az,

which is no new condition since it just says R.*R; =0 or
RZ = const = 1 (already known), (42) is a genuine condi-
tion on Z., or P.,. (In |z) language: preservation of nor-
malization requires 0= (z|z) = (2|z) + (2|2}
= 2 Re(z|2), a weaker condition than (z|z) = 0.) Its geo-
metric meaning® in the S? picture is the following: Proceed
in infinitesimal steps to obtain Z/, (¢ + At) at R (2 + Af)
from Z.,(¢t) at Rp(¢) by first attaching Z/,(¢) at
R (t + At) (Euclidean parallel shift in R* D S?)—it now
“sticks out” of the sphere—and then projecting back to the
tangent plane along R (¢ + At?)). Indeed, writing this out
to order At yields

Z,, = — (Zy'R:)R, (44)

and this is of the form (41) and is, via (R *Z,) =0, im-
plied by (41).

The prescription just given is nothing but the well-
known Levi-Civita “geodesic parallel transport” of tan-
gents to a surface, embedded in Euclidean space, along a
given curve. It plays a considerable role in Riemannian
differential geometry, and has also been given a classical
mechanics interpretation by Radon,'® again involving an
adiabatic limit.

What is remarkable about this transport is that it is path
dependent, or equivalently, it does not lead back to the
starting value Z, (0) = Z(0) when executed along the
round trip R,y () =Rg,, 0<t<T, considered before.
Rather, P.,(7T) is obtained from P’'(0) by rotating it
through a certain angle, called a holonomy transformation.
Books on differential geometry'' inform us that this angle
between P, (0) and P, (T) will be given—as an easy con-
sequence of the Gauss—Bonnet theorem—by the surface
integral of the Gaussian curvature of the surface over the
domain encircled by the round trip (if the latter is
smooth), i.e., in the case of the unit sphere S, simply by the
surface area encircled. The corresponding phase between
|z;5(0)) and |24 (T)) is a very special case of what is
known as the Berry phase.'>® What is remarkable here is
that it depends on H(z) only through H(#)/|H(¢)|, which
is sometimes described as a kind of universality.

To finish up, let us also have a look on adiabatic phase
transport in the R*DS? and stereographic R* picture.
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Writing out {z|z) = 0 in this formalism and looking at the
imaginary part, we get

XX, — X.X, + X, X, — X, X, =0.

This equation says that Xis, in R, not only orthogonal to X
(thus tangent to S* as it should) but orthogonal to the
Hopf fiber passing through X, whose tangent there is JX
[see (13)]. Since stereographic projection preserves an-
gles, this property holds also in the stereographic R* pic-
ture. To |z[4 (#)) there corresponds, then, a curve in S or
stereographic R, lying on a tubular closed surface formed
by a one-parameter family of phase circles; the curve is an
orthogonal trajectory of these circles and does not return to
its starting point when it hits the starting circle again. (For
example, if Rz, isacircle 4 = const in the S? picture, then
from Sec. III we know that the tubular surface is just a
torus in the stereographic R® picture, with one family of
Villarceau circles on it.) This kind of picture is, however,
less directly related to a Gaussian curvature integral in the
elementary sense, but requires fiber bundle concepts as
does the general case considered in Refs. 8 and 12.

V. CONCLUDING REMARK

In this article, we have put some more or less well-known
facts about states and state vectors of two-level systems—
some old and some new ones—into perspective, thus illu-
minating the geometrical structures involved in the com-
plex Hilbert space description. We must hurry to empha-
size that another ‘‘geometrical” aspect of quantum
mechanics was totally omitted here, the one concerning
observables. It is generally true that the set of states and its
structures is determined by the set of observables which
generate, over C, a certain associative, but not necessarily
commutative, algebra (in our two-level example, the alge-
bra generated, e.g., by 0,,0,). It seems that such algebras
have their own, noncommutative, geometry—but that is a
very different and very abstract story beyond the scope of
this article.

What should also be pointed out is the fact that the struc-
ture of the state space of N-level quantum systems is much
more complicated for & > 2 than it is for N = 2. For exam-
ple, for N = 2, the set of extremal points (pure states) is
identical with the topological boundary of the (convex)
domain of positivity within the set of all Hermitian N X N
matrices of unit trace. For N> 2, this cannot be the case
already for reasons of dimension, and this boundary has, in
fact, quite interesting geometrical properties, involving
curved edges and rulings of various dimensions, etc. and a
general kind of “‘obliqueness” (stemming from the fact that
the unitary group U(N) of C" is, by its action on density
matrices, homomorphically mapped only onto a genuine
subgroup of the group SO(N > — 1,R) of rotations in state
space). Also, for N> 2 there is the possibility of nontrivial
Hamiltonians with degenerate eigenvalues, leaving room
for additional phenomena. We cannot follow this here.
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Three different methods for generating numerical solutions of Laplace’s equation are derived
using a differential operator formalism for a Taylor series expansion of the electric potential about
a point. The expansions are evaluated on three different two-dimensional grids in the x-y plane to
yield algorithms good up to, but not including, fourth order. The accuracy and convergence of the
algorithms are compared by applying them to a rectangular boundary value problem. Second, it is
shown that the convergence criterion for numerical solutions can be interpreted as a charge
density; and, therefore, the numerical solutions are, in fact, solutions of Poisson’s equation.
Further, it is demonstrated that the numerical solutions of Laplace’s equation are bounded above
and below by the solutions of Poisson’s equation corresponding to a maximum uniform charge
density derived from the convergence criterion. For this reason, it is recommended that numerical
solutions of Laplace’s equation should be accompanied by a statement of the maximum uniform
charge density.

L. INTRODUCTION

In recent years the accessibility of personal computers
and spreadsheet programs has awakened both pedagogical
and practical interest in numerical solutions to physics
problems.'” In general, these treatments start from a fi-
nite-difference algorithm that approximates the differen-
tial equation that describes the physical process in ques-
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tion. Next, the treatments discuss how a particular
algorithm works, and then they ask the student to solve a
few problems with it. An important secondary question
about the algorithm, which is not often addressed, is “How
good is the solution?” In more specific terms, what about
its accuracy—how close is the numerical solution to the
analytical solution? An what about its rate of conver-
gence—will it yield a solution quickly, or are hundreds of
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