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The Hopf fibration—seven times in physics
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Abstract

It is pointed out that the Hopf fibration—a special but very basic non-trivial principal fiber
bundle—occurs in at least seven different situations in theoretical physics in various guises. Sur-
prisingly, the gauge theory aspect is in the minority here.
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1. Introduction

The Hopf fibration as a purely mathematical idea has been around since 1931 when
it allowed Hopf1 to determine the third homotopy group of the 2-sphere and to show, in
particular, that this group is non-trivial, by exhibiting a suitable map from the 3-sphere
to the 2-sphere and the fibration of the 3-sphere related to it. It was realized only much
later that this fibration occurred in the same year well-hidden in a physics context when
Dirac extended the framework of wave mechanics by admitting for “wave functions”
what we now call sections of non-trivial complex line bundles, and studied, in particu-
lar, quantum mechanical motion in the field of a magnetic monopole. The basic defini-
tion of the Hopf fibration is, however, also closely related to the distinction between state
vectors and states in quantum mechanics, and its base space—the 2-sphereS2—appears
literally in the case of two-level systems (“qubits”, as they have been called recently)

1 [23]; later Hopf invented more fibrations that now bear his name, but we will stick strictly to the 1931
construction in this article.
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as the so-called “Bloch sphere”, as was pointed out, e.g., by Penrose. Without recognition
of the nature of the base space, a directly related fibration was—as remarked by Hopf—
considered in the context of the parallelism invented by Clifford in 1873, couched, however,
in the language of real projective 3-space (elliptic version of non-Euclidean geometry). A
very direct occurrence, without any obvious role for the nature of the base space, appears
when the phase space flow of the two-dimensional harmonic oscillator is restricted to a
non-trivial energy shell. A more tricky occurrence of the fibration is in Penrose’s theory
of twistors, where it serves to illustrate one special geometrical realization of a (projec-
tive) twistor. More features of the Hopf fibration are involved in its occurrence in General
Relativity, namely in the global structure of Taub-NUT space: the nature of its base space
and the linking of its fibers play an essential role in the study of that space. Complex line
bundles associated with the Hopf fibration appear directly when the zero mass helicity rep-
resentations of the (covering group of the) Poincaré group are considered (“Wignerism”),
the non-trivial topological features making themselves felt at various instances, inhibiting
the procedure of going from finite to zero mass. Finally, the Hopf fibration determines the
spin structure of the 2-sphere, a concept entering not only “two-dimensional Wick-rotated
physics”, but appearing also upon separation of the ordinary Dirac equation in spherically
symmetric external electrostatic fields—although this fact is seldom mentioned in conven-
tional treatments of the relativistic hydrogen spectrum.

This remarkable multiple occurrence of Hopf’s fiber bundle in at least seven different
physical situations indicates that it is a basic geometrical element, possibly useful in the
physical description of more situations, rather than a mathematical curiosity which most
physicists did not know about before the mid-1970s. In the words of Penrose, it may be
regarded as an “element of the architecture of our world”. Naturally then, the present
article is more a matter of contemplation rather than research. InAppendix A, we will
include the definition and a brief indication of several mathematical features of the fibration
together with textbook references; the reader is advised to consult, if necessary,Appendix A
parallel to the main text. InSection 2, the appearance of the fibration in two-level quantum
systems is described, including a “connection” in the bundle that is related to adiabatic
transport and Berry’s geometrical phase. This is, in a sense, a “top-down” version of the
description, and in this form the fibration makes its appearance also in the two-dimensional
isotropic harmonic oscillator (Section 3), in Taub-NUT space (Section 4) and in twistor
theory (Section 5). Its is only in Wigner’s helicity representations of the Poincarë group
(Section 6) and in Dirac’s monopole quantization (Section 7) that the bottom-up view—
cherished by us physicists since we learn it this way in gauge theory—comes first; in fact,
it is only the latter example where the scheme “local gauge potential, local field strength”,
augmented by global considerations because of singularities in the local, gauge-dependent
quantities, leads to the well-known patching construction of the fibration. We close by
pointing out the role of the fibration in giving the 2-sphere’s spin structure (Section 8),
a concept necessary for global considerations involving the Dirac equation and the Dirac
operator.

Our collection could result in the moral that there are perhaps more fiber bundles in
physics than a local, gauge theory shaped eye allows to see, and that, therefore, there may
be some merit for us physicists in also looking at the non-differential geometric methods
of studying them.
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2. Hopf and the qubit—two-level quantum systems

The occurrence of the Hopf fibration in two-level quantum systems—systems that can
be described using a two-dimensional complex Hilbert space, also nowadays known as
qubits—was mentioned, e.g., by Penrose[36], and is described more extensively in[48];
so we can be brief and somewhat schematic about it here.

We take the two-dimensional Hilbert space just to beC2 with its standard Hermitian
inner product〈z,w〉 := z̄1w1+ z̄2w2 = z†w. The states of the system are given by density
matrices, i.e., Hermitian-positive 2×2 matrices of trace 1; the observables of the system are
given by Hermitian matrices; the expectation values of the observable with matrixA in the
state with density matrixρ is given by the real number TrAρ. Whenρ has rank 1, it has the
form of a one-dimensional projector,ρ = zz†/z†z, and is called a pure state, represented
by the (non-zero) state vectorz ∈ C2, and the expectation value ofA becomesz†Az/z†z.
One notes that a pure state determines the state vector only up to a non-zero complex factor,
and even whenz is required to be normalized,〈z, z〉 ≡ z†z = 1, a phase factor eiα, α real,
remains undetermined. This of course means that the pure states can also be identified with
the points of the projectivized space P(C2) = CP1, but for the moment we will stick to the
density matrices.

Consider now the expectation values of three observablesσ1, σ2, σ3, where

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

(These are known as the Pauli spin matrices, since they relate to the components of the spin
angular momentum observables of a spin1

2 particle; but for our formal purposes here this
interpretation is not essential.) Collecting them into a matrix vectorσ = (σ1, σ2, σ3), we
have for its expectation value in a stateρ the vectorR := Tr ρσ ∈ R3. One can verify that
this relation can be inverted asρ = 1

2(1+R · σ), where the positivity ofρ impliesR2 ≤ 1,

equality holding precisely for pure states. This means thatR(z) := z†σz/z†z satisfies
R2(z) = 1. In other words, the density matricesρmay, in the qubit case, be represented by
vectors inR3 belonging to the closed unit ballB3 (the “Bloch sphere”, in physics jargon,
since it was used by F. Bloch to illustrate magnetic spin resonance phenomena), and the
state is pure iff the representingR3-vector is a unit vector.

We can also get a geometric picture of the state vectorsz themselves by looking at
C2 as beingR4, taking the real and imaginary parts ofz1, z2 (in some order) as its real
components. Then the assignmentz �→ R(z) gives us a mapR4 → S2 ⊂ R3, and restricting
to normalizedz, z†z = 1, whose realifications fill the 3-sphereS3 ⊂ R4, we get a map
S3 → S2. This is theHopf map: if the real components ofz are numbered suitably and
the definition ofR(z) is written out explicitly in terms of them, the above expression for
the latter becomes literally identical to Hopf’s original formulae. It is easy to check that
the inhomogeneous coordinateζ = z2/z1 on the space of pure states when looked at as
CP1 is just the complex stereographic coordinate on the Bloch 2-sphere when this sphere is
projected onto its equatorial plane from its south pole. The inverse images of the points on
the Bloch 2-sphere under the Hopf map are “phase circles” on the 3-sphere. The 2-parameter
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system of phase circles on the 3-sphere so obtained constitute itsHopf fibration. In [48],
the author explains the visualization of this system of circles by stereographic projection
of the 3-sphere onto its equatorial 3-plane, where it appears as the system of “Villarceau
circles” on a nested family of coaxial concentric tori orthogonal to the unit 2-sphere.

In [48], the author describes the idea of Penrose how to represent normalized state vectors
z in terms of the Bloch sphere picture: one assigns toz not only the phase-insensitive
positionR(z), but also the phase-sensitive unit tangent vector at that position given by
P(z) := RZ(z), whereZ(z) := {z, σz} with {z,w} := z1w2− z2w1. Whenz undergoes a
phase change, this tangent is just rotated through twice the phase angle.

In [48], the author further discussed adiabatic transport of state vectors over curves in
the space of pure states, as specialized from the general case to the qubit case. For a given
curveτ �→ Rτ on the 2-sphere, the transportτ �→ zτ is required to satisfy the differential
equation〈z, (dz/dτ)〉 = 0, i.e.,zτ is to be a curve onS3 havingR(zτ) = Rτ whose tangent
vectors are annihilated by theconnection form〈z,dz〉 ≡ z† dz. It is shown there explicitly
that the associatedP(z) undergo Levi–Cività transport (which again only illustrates several
general theorems). The holonomy of the connection resulting from parallel transport over
a closed curve in state space—yields the famous “geometric phase” of Berry. Note that this
connection is invariant under the action of the unitary group on our Hilbert space—it is in
fact the only one with this property and will be encountered again inSection 7.

3. Hopf and mechanics—the harmonic oscillator

It may surprise some that the simple two-dimensional isotropic classical harmonic oscil-
lator provides an example of the occurrence of the Hopf fibration in physics. But indeed, its
phase flow, restricted to a non-trivial energy shell, Hopf-fibers the latter! To see this easily,
we scale everything such that the mass and the angular frequency of the oscillator become
1; the Hamiltonian then reads

H = 1
2(p

2
1+ p2

2+ q2
1 + q2

2),

whence the equations of motion

q̇k = pk, ṗk = −qk (k = 1,2).

Employing the usual complex variablesak := qk + ipk, these become

H = 1
2(|a1|2+ |a2|2), ȧk = −iak

with solutionak(t) = ak(0)exp(−it). If H(0) �= 0, energy conservation allows to normalize
ak/
√

2H =: zk, thezk satisfyingzk(t) = zk(0)exp(−it), |z1|2 + |z2|2 = 1. Hence we see
that the phase space trajectories give a Hopf fibration of the energy shell. Moreover, the
2-surfaces given byH1 = const., H2 = const., whereHk = 1

2(p
2
k + q2

k) = 1
2|ak|2 are

conserved and have vanishing Poisson bracket with each other, are analogous to the tori
whose stereographic projection is depicted in[48]; they are just the Arnold tori of our
integrable system. The similarity of the pictures of the Hopf fibration with Fig. 242 of[1]
or with Fig. 31 of[16] is, therefore, not accidental. More details, such as the relation of
the Hopf map to the concept of moment map, as well as its role in rigid body motion and
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classical analogs of the quantum geometric phase, together with many historical remarks,
are given in Section 1.10 of[51].

Interesting generalizations concerning the linking of flux lines of divergence-free vector
fields on 3-manifolds, with application, e.g., as an obstacle to the dissipation of magnetic
energy in stars, discussed in Chapter III of[2], show that the important feature of the Hopf
fibration in the present context is the linking of its fibers (cf.Appendix A).

4. Hopf and General Relativity—Taub-NUT space

Around 1950, Gödel and Taub independently started the investigation of spatially ho-
mogeneous cosmological models in General Relativity. The ones constructed by them are
space-timesM having line elements of the form

ds2 = −dτ2+ γik(τ)ω
iωk,

where theωk are essentially left-invariant 1-forms on a three-dimensional Lie groupG and
the product of forms in ds2 is symmetric tensor multiplication as usual. More precisely,
M = I × G, whereI is some interval forτ, to be determined during the process of solving
the Einstein field equations, which become ODEs under the ansatz above, and theωk are
pullbacks underM→ G of left-invariant forms onG.

By “the” Taub universe one means the solution of Einstein’s vacuum field equations with
vanishing cosmological constant in which theωk belong toG = SU(2) (“Bianchi type IX”)
and may be constructed from the manifestly left-invariant Maurer–Cartan matrixU−1 dU,
which is Lie algebra-valued and so may be decomposed as(−i/2)ωkσk, theσk again being
the Pauli matrices. Further,γik(τ) is assumed diagonal andγ11 = γ22. As a consequence,
ds2 has as isometries not only the left translations of SU(2) (augmented byτ → τ) but also
the 1-parameter group of right translations generated by−iσ3: the latter does not preserve
ω1, ω2 but does preserveω3 and (ω1)2 + (ω2)2. Using the group approach to the Hopf
fibration (described inAppendix A), we see that it is this extra symmetry which brings
in the Hopf fibration—and it also permits the Einstein equations to be solved explicitly.
(Without it, the SU(2) model is known as “mixmaster universe”[30], for which the vacuum
field equations are not integrable; on the other hand, requiringγ11 = γ33 in addition implies
symmetry under all right translations and thus makes the model isotropic as well, so that no
distinguished Hopf fibration appears: this is the geometry of the standard Robertson–Walker
cosmology with positive spatial curvature.) Even without imposing field equations, the extra
symmetry causes the 4-geometry to be “algebraically special” in that its Weyl tensor is of
Petrov–Penrose type D[11,35], both degenerate principal null directions of it having the
Hopf fiber tangents for their spatial projections. This is also related to the “optical geometry”
of the Taub space-time, which in turn is related to the standard “CR-structure” ofS3 [46].
When the vacuum field equations (without cosmological constant) are imposed, the general
solution of the resulting system of ODEs is[40]

γ11 = k
2

cosh(ktTaub+ α)
1+ cosh(ktTaub+ β) = γ22, γ33 = k

cosh(ktTaub+ α),

dτ2 = γ2
11γ33 dt2Taub.
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Hereα, β andk > 0 are the constants of integration.2 The interval fortTaub is the whole
real line, but contrary to Taub’s original belief this does not prevent this space-time from
being incomplete. We cannot go into a discussion of this in any detail, but only highlight
the appearance of the Hopf fibration in the further development. By a number of trans-
formations one (analytically yet non-uniquely!) continues to other regimes (NUT regimes,
after[28,34])—remarkably discovered independently, following an entirely different route),
where the symmetries described above—which are spacelike in the Taub regime—become
timelike in part. More specifically, it is the Killing field tangent to the Hopf fibers which
becomes timelike; thus the appearance of closed timelike lines makes the solution very
peculiar. The transitions from one regime to the other happens[32,35]) across a “Cauchy
horizon”, anS3 null hypersurface generated by the SU(2) symmetry group, whose null
geodesic generators are just Hopf fibers.3 In the NUT regime, a further feature of the
Hopf fibration becomes important—the linking of the fibers. Generally, the linking of
the inverse images of points under a smooth mapS3 → S2 can be expressed by a cer-
tain integral, its Hopf invariant[4], and it turns out that this integral is related here to a
physical quantity called “NUT charge” or “dual mass”[38]. The linking also prevents the
NUT regime from being asymptotically flat in the usual global sense, although its curva-
ture tensor goes to zero asymptotically: it is only locally asymptotically flat, there are no
global spacelike hypersurfaces. Nevertheless a null conformal boundaryImay be attached
[38] to the asymptotic region; however, it does not have the usual topologyS2 × R but
ratherS3, again Hopf-fibered by its null generators. There are many more peculiar prop-
erties of the Taub-NUT solution which we cannot even mention here[29]. NUT space
has been termed the spherically symmetric “gravimagnetic monopole” in[25]; indeed,
the analogy to the spherically symmetric Dirac magnetic monopole (Section 7) would be-
come more pronounced if a Kaluza–Klein type formulation (cf.[41]) of the latter were
used.

5. Hopf and twistors—Robinson congruences

The concept of twistor can, according to its inventor, Penrose, be introduced in a number
of ways, and all conformally invariant field laws in flat space-time can be reformulated in
terms of twistors, generating new ways of looking at such laws; this has already been very
fruitful in the past in many cases.

Clearly, this is not the place to give any of the different ways of approaching or using
twistors. We rather pick out one way of representing a twistor space-time-geometrically

2 Because it is seldom written down explicitly, we give the transformation between Taub’s time coordinate and
constants of integration and the ones used later, following the NUT paper[34]. Namely, one achieves a rational
dependence on the time coordinate and the constants by introducingt,m, � via

t −m√
m2 + �2

= tanh
1

2
(ktTaub+ β), m√

m2 + �2
= tanh(α− β), 4�

√
m2 + �2 = k,

renderingγ11 = t2 + �2, γ33 = 4�2U, dτ2 = dt2/U, whereU := (�2 + 2mt− t2)/(�2 + t2).
3 Moncrief [31] has shown that there exists a wider class of solutions to Einstein’s equations possessing anS3

Cauchy horizon Hopf-fibered by its null geodesic generators.
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and highlight its relation to Hopf, referring to[13,18] for more concerning twistors. For
this, we will make a shortcut[47] that, while unfortunately destroying manifest conformal
covariance of the geometry, fits nicely to the group geometric description of the Hopf fibra-
tion (given inAppendix A). Namely, instead of the group SU(2) considered inAppendix A,
we here take the group U(2) ofall unitary 2× 2 matrices. The unitarity restriction for
U ∈ U(2) implies that the determinant detU has absolute value 1, so leaves open an arbi-
trary phase factor for it: U(2) is a four-dimensional compact Lie group. It may in fact be
decomposed as a product U(1)×SU(2), but this is slightly tricky, in that the ‘naive’ decom-
positionU = U1

√
detU yields a direct product decomposition with

√
detU ∈ U(1) and

U1 ∈ SU(2) only locally,4 since
√

detU is 2-valued and it is not possible to pick a unique
branch in a continuous fashion because U(2) is not simply connected. No such problem
arises if we set

U = U0

(
1 0

0 detU

)
or U =

(
1 0

0 detU

)
U0 :

the assignmentsU �→ U0 ∈ SU(2) andU �→ detU ∈ U(1) are both continuous here.
However, the decomposition is now only asemidirectone in the algebraic sense: SU(2),
being the kernel of the homomorphism U(2)→ U(1) given byU �→ detU, is an invariant

(or normal) subgroup, but the matrices

(
1 0

0 detU

)
form a subgroup isomorphic to U(1)

that is not invariant. So we have the homomorphisms det : U(2)→ U(1) andι0 : U(1)→
U(2), sending exp iα �→

(
1 0

0 exp iα

)
, whose composition is the identity on U(1), thus

splitting the short exact sequence 1→ SU(2) → U(2) → U(1) → 1; this is the situa-
tion of a semidirect product. Using this decomposition we see thattopologically5 U(2) ∼=
S1 × S3.

The relation of this setup to twistor theory comes from a way of putting a Lorentzian
global metric on U(2) which is locally conformal to the Minkowski metric and which
is such that the cosets of the subgroupι0(U(1)) arenull geodesics. This system of null
geodesics constitutes an example (in fact the only one up to conformal transformations) of
what Penrose calls aRobinson congruenceof null geodesics and which is a geometrical
representation—either in U(2) or in the conformally related Minkowski space, as we shall
see shortly—of a (projective)twistor. We now describe the relation to Hopf and give the
metric involved.

4 Globally, we have a homomorphism of the direct product U(1) × SU(2) onto U(2) given by(exp iα,U1) �→
U1 exp iαwith kernel{(1, 1), (−1,−1} ∼= Z2. More important for us will be the universal covering homomorphism
R × SU(2)→ U(2), sending(α,U1) �→ U1 exp iα with kernel{nπ, (−1)n|n ∈ Z} ∼= Z.

5 In the group theory sense, one can still regard the 3-sphere as the coset space U(2)/U(1) if U(1) is embedded
as just described. This makes it the simplest example of a Stiefel manifold. See[33,42] for physics applications
of the more general cases.
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The relation to Hopf is easy: one simply applies to the second, global decomposition the
first, local one, writing

U = U0

(
1 0

0 detU

)
= U0

(
1/
√

detU 0

0
√

detU

)
︸ ︷︷ ︸

√
detU,

or

U =
(

1 0

0 detU

)
U0 =

√
detU

(
1/
√

detU 0

0
√

detU

)
U0︸ ︷︷ ︸
.

The unimodular part indicated by the brace constitutes the projection of the coset ofι0(U(1))
passing throughU0 ∈ SU(2) onto SU(2) in the local direct product decomposition sense.
If U0 is kept fixed while detU is varied,U traces the coset throughU0 in U(2), while
the indicated local projection traces part of the Hopf or anti-Hopf fiber throughU0 in
SU(2) ∼= S3.

To get the metric, start from the right (resp. left) invariant Maurer–Cartan matrixΩ :=
dU · U−1 (resp.= U−1 dU) on U(2); then for arbitrary real constantsα, β the symmetric
differential forms of degree 2 given byα(TrΩ)2+ βTr(Ω2) are bi-invariant, i.e., invariant
underU �→ AUB for all A,B ∈ U(2). (Here multiplication of differentials is symmetric
tensor multiplication as in the usualgik dui duk for metrics; i.e., if theui are some parameters
on the group manifold, thegik for the above forms aregik = αTr(U,iU−1)Tr(U,kU−1) +
βTr(U,iU−1U,kU

−1).) Among them, the ones with the ratioα : β = −1 are of partic-
ular importance because of their Lorentzian signature and their high (maximal possible)
conformalsymmetry. If we take−α = β = 1

2, we have

1
2Tr(Ω2)− 1

2(TrΩ)2 ≡ −detΩ = −detU−1det dU =: ds2E,

where also under the det sign symmetric multiplication of differentials is understood.
We refer the reader to[47] or [18] for the description of the full conformal symmetry

of ds2E in terms ofU, but repeat from there its relation to Minkowski space; it is given as
follows. Decompactify U(2) by removing allU having det(U − 1) = 0; to the rest, apply
theCayley transformation

X = −i(U + 1)(U − 1)−1⇔ U = (X− i1)(X+ i1)−1,

producing Hermitian matricesX from unitaryU and conversely. One then calculates

dX = 2i(U − 1)−1 dU(U − 1)−1, det dX = −4 detU(det(U − 1))−2detΩ.

Finally, parametrizingX as

X =
(
x0+ x3 x1− ix2

x1+ ix2 x0− x3

)
= x01+ x · σ

with the Pauli matricesσ = (σ1, σ2, σ3), we see that the Minkowski metric

ds2M := (dx0)2− dx2 = det dX

is conformally related to ds2E, i.e., the Cayley transformation is conformal.
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The decompactification above removes from the SU(2) subgroup just the single element
1; the rest gets, via Cayley, related to the hypersurface TrX = 0—i.e.,x0 = 0—of the
Minkowski space constituted by theX or (xi); one checks that this is just a stereographic
relation. The system of Hopf fibers on SU(2) ∼= S3 thus gets mapped to the system of
Villarceau circles described in[48].

Let us now have a closer look at ds2E in order to see that the cosets of our subgroupι0(U(1))
are null geodesics. Write detU = exp 2iτ, U = U1 exp iτ, U1 ∈ SU(2), remembering that
τ and exp iτ are only locally defined as smooth functions, having jumps on non-contractible
loops which we know exist on U(2); so dτ is still globally defined. In terms of this local
decomposition, we haveΩ = i dτ1+Ω1 withΩ1 := dU1 ·U−1

1 (resp.=U−1
1 dU1), so that

TrΩ1 = 0 from detU1 = 1. This gives the manifestly global definition of dτ as(1/2i)TrΩ
and

ds2E = −det(idτ1+Ω1) = dτ2− detΩ1,

where detΩ1 ≡ det dU1 is seen (Appendix A) to be the usual line element onS3 ∼= SU(2),
for which the Hopf fibers, being great circles, are geodesics. Since ds2E is a Riemannian
sum of two metrics, its geodesics are given by their local projections which are geodesics
in their respective metrics. Thus the cosets under consideration are indeed geodesics for

ds2E; and they are null, since parametrizing them asα �→ U0

(
1 0

0 exp iα

)
(resp.α �→(

1 0

0 exp iα

)
U0), we easily find detΩ = 0 along them.

Two remarks are as follows. (1) On passing from U(2) to its universal covering group
R × SU(2) (cf. the preceding footnote),τ becomes globally defined, and ds2E is then the
usual metric on the Einstein cylinder universeR × S3 (up to some scaling); and while the
closure of the Cayley image of Minkowski space within U(2) is all of U(2), the closure
(of a connected lift) within the universal cover gives the usual ‘conformal infinity’ picture
[13]. (2) Performing the local projection onto SU(2) first and Cayley afterwards is not
the same as doing Cayley first and orthogonally projecting onto SU(2)’s Cayley image
3-spacex0 = 0 in Minkowski space thereafter. Thus the Cayley images of the above
cosets (null geodesics of ds2E) are null geodesics of ds2M and therefore straight null lines
by the well-known conformal invariance property of null geodesics. So their Minkowski
orthogonal projections ontox0 = 0 are straight lines there and not the stereographic Hopf=
Villarceau circles! As Penrose points out, the latter are useful nevertheless in this context,
however: a null straight line in Minkowski space is easily constructed from an initial point in
x0 = 0 and the direction there of its projection ontox0 = 0 by running through the straight
line given by these data with the speed of light; and for the null geodesics in question,this
direction is given by the tangent to the stereographic Hopf circle at the stereographic image
point. This is how Penrose instructs us to read the stereographic Hopf fibration in the twistor
context.

We finally describe, following Penrose, the relation to (projective) twistors. Twistors are
elements of a four-dimensional complex vector spaceT equipped with a Hermitian form
h of signature(2,2) and a compatible determinant functionε; the automorphism group of
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this structure, SU(2,2), is a 4:1 covering of the (connected component of the) conformal
group of ds2E. We will be interested in the projective twistors, i.e., the one-dimensional
subspacesCT of T (0 �= T ∈ T)—so notice that all equations below are homogeneous in
the twistor variables that occur, unless special normalizations are made. We first interpret
CN, 0 �= N ∈ T, in the null caseh(N,N) = 0, and only then interpretCT , 0 �= T ∈ T, in
the non-null caseh(T, T) �= 0 by looking at those null twistorsN �= 0 which are orthogonal
to T , h(N, T) = 0: this will lead to the Robinson congruences.

We choose a basis inT that diagonalizesh, so that its matrix is diag(1,1,−1,−1);
thenh(T,N) = T 1N1+ T 2N2 − T 3N3− T 4N4. Consider now a null twistorN: we have
|N1|2+ |N2|2 = |N3|2+ |N4|2. Therefore a unitary 2× 2 matrixU ∈ U(2) exists6 effect-

ing U

(
N3

N4

)
=
(
N1

N2

)
, but it is not unique. We exemplify this by the choice

(
N3

N4

)
=(

1

0

)
: we then have|N1|2 + |N2|2 = 1, andU is given byU = U0 diag(1,exp iα) with

U0 =
(
N1 −N2

N2 N1

)
∈ SU(2) andα real—so in this caseCN determines and is deter-

mined by the left coset throughU0 of ι0(U(1)). For some other choice ofN4, we would
similarly have obtained the coset of a conjugate subgroup, which, by the invariance of
our metric, would again constitute a null geodesic. This gives the interpretation of null
twistors. The choiceN4 = 0 of the example already exemplifies the interpretation of a
non-null twistorT havingh(T, T) < 0, since if we takeT to haveT 4 as its only non-zero
component, the conditionh(T,N) = 0 just impliesN4 = 0, allowing to normalizeN
to look as above withU0 ∈ SU(2) arbitrary. ThusCT indeed gets interpreted by all the
cosets ofι0(U(1)), constituting the Robinson congruence considered before. Similarly, if
we chooseT to haveT 2 as its only non-zero component, exemplifying non-null twistors
having the opposite signh(T, T) > 0, the null twistorsN orthogonal to it satisfyN2 =
0; when we scaleN1 = 1, the condition onU becomes the same as before withU re-
placed byU−1 andN1, N2 byN3, N4, implying thatU now runs through right rather than
left cosets: this is related to the anti-Hopf fibration, having the opposite sense of twist.
(A general position ofT leads to a general position of the congruence, whose descrip-
tion in Minkowski space by the method above would involve Dupin cyclides instead of
tori.)

6. Hopf and Wignerism—helicity representations

In all examples discussed so far, the bundle, or total, spaceS3 was of immediate impor-
tance and thus in the forefront of the formalism; the base spaceS2, on the other hand, did
figure in the qubit case and is used in technical treatments of NUT space that work with the

6 The description of conformal transformations in terms of fractional linear block matrix transformations of the
unitary matricesU as given in[47] can be directly inferred from this parametrization of null twistors. A similar
parametrization using Hermitian matricesX is possible when components with respect to anull basis are used
(the relation of theX to theU being given just by the Cayley transformation); cf.[18,13].
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space of Killing trajectories. In the two examples to follow, it will be the other way round:
it is the base space that is in the foreground, while the bundle space appears as derived,
e.g., via a patching construction. The latter is necessitated by the need to look at the global
aspects of the objects involved. The situation in which such an object is a connection or
covariant derivative will be treated in the next section; common to that example and the one
to be treated now is a smoothness requirement that will provide a domain of definition for
certain differential operators.

In the present example, the latter will be the generators of the (homogeneous, proper,
orthochronous) Lorentz groupL in the well-known “massless”helicity representationsof
the (universal covering group̃P of the proper orthochronous) Poincaré groupP. It may
surprise some that something topologically unusual should be lurking behind this matter,
but consequences of this fact have indeed been discussed in the literature[21,22]. These
representations show up as one of the “physical” cases in Wigner’s classification of the
unitary irreducible representations ofP̃, which in turn are building blocks of any formalism
that realizes relativistic symmetry in the quantum domain[49].

From the fact that the translation subgroupT of P is an Abelian invariant subgroup one
derives that every such representation can be realized in the spaceΓ(E) of sections of a
(complex) vector bundleE over an orbitO of L in the vector spaceT ∗ dual toT. (In
physics, that vector space is the space of wave numbers and is, according to de Broglie,
via× (inverse Minkowski metric tensor), identified withT except for its physical dimen-
sion, which then is momentum.)̃L (coveringL) acts onE, eachL̃ ∈ L̃ transforming
the fiber overp ∈ O into the fiber overLp by a linear transformationQ(L̃, p). From
this derives a linear action onΓ(E) which is irreducible iff for any “origin”p̄ ∈ O the
Q(L̃, p̄) furnish a unitary irreducible representation when theL̃ are restricted to the sub-
groupK̃p̄—the “little group”—ofL̃ that leaves̄p unchanged. Further, the representation of
L̃ in Γ(E) is determined (“induced”) uniquely up to unitary equivalence by that represen-
tation of the little group. Thus the classification is by classifying the orbits ofL in 4-vector
space and by classifying the unitary irreducible representations of the associated little
groups.

The case of interest for us is the one whereO is a half null cone inT ∗ (forward or back-
ward), corresponding to zero mass particles, so thatp̄ is null (lightlike) and the little group
has structure U(1)×C (semidirect product). Further, the relevant representations of the little
group are those where the invariant subgroup corresponding to the factorC (covering “null
rotations”) is represented trivially in the fiber overp̄; then, for irreducibility and unitarity,
the U(1) factor has to be represented one-dimensionally, i.e., the whole representation is
determined by a character of U(1), and the vector bundle has one-dimensional fibers—it is
a complex line bundle. The characters are indexed by integers; since U(1) double-covers a
1-parameter subgroup of rotations ofL and since the effect of non-null translations on the
state vectors of the representation may be compensated by such rotations depending on this
integer, 1/2 times the relevant integer is called thehelicityλ of the particle associated with
the representation.

Our interest in those representations comes from the fact that for non-vanishingλ the
line bundle is topologically non-trivial, enabled by the fact that the base space null cone
O ∼= S2×R is non-contractible. The interesting topology already resides in the restriction
of the line bundle to anS2 cross-section of the null coneO; we may take it to be the orbit of
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p̄ under the SO(3) subgroup ofL and may then restrict the little group to be U(1). We thus
get an induced representation7 of SU(2) (double-covering SO(3)), carried by the space of
sections of the restricted line bundle overS2, and this is the point where the Hopf fibration
appears in the setup.

To see this first as cheaply as possible, we use a mathematical trick of the trade ([9, p. 114];
[41]). Namely, in situations like the one above (“homogeneous vector bundles”), there is a
standard bijection between sectionsψ of vector bundles over group orbits and vector-valued
functionsψ̃ on the group itself with a prescribed behavior along the cosets of the little group.8

In our case as restricted toS2 and SU(2), to every section of the line bundle there corresponds
bijectively a C-valued functionψ̃ on SU(2) whose values change asψ̃(U exp iασ3) =
exp(2iλα)ψ̃(U) as one goes along a left coset of U(1) in SU(2). Thus again using the group
description of the Hopf fibering, we see that the Hopf fibers serve as “guiding lines” for
the behavior of the functions̃ψ. The representation of thẽL is, in this language, given by
composing thẽψ with the left translation bỹL. (Since the Hopf fibration is left-invariant,
the defining property of thẽψ is not lost.)

In physics texts, this is presented somewhat differently and slightly heuristically. One
uses the system of “improper” eigenvectors common to all translation operators as a basis
in representation space. They are indexed in part by the spectral values of the translation
generators, and the Lorentz group acts on that spectrum which thus must, for irreducibility,
be an orbit of the Lorentz group. One fixesp̄and chooses a basis in the eigenspace indexed by
it. One then imagines this basis transported to all other eigenspaces, using the representing
operators of selected Lorentz transformations, one for each orbit pointp to be reached from
p̄. Traditionally, these coset representatives are chosen, for definiteness and explicitness,
as boosts. In the “massive” case,p̄ is timelike, and the boost is taken with respect to an
“observer” whose 4-velocity is parallel to it; but in the massless case we are interested in,
such choice is impossible, since a 4-velocity must be timelike. However, if any timelike
choice of the observer is made, there is a unique boost with respect to it that carriesp̄ into
p (by the Doppler and aberration effect, physically speaking)exceptwhenp has its space
direction antipodal to that of̄p with respect to the observer. In this case, the boost becomes
undefined, the necessary speed being that of light. One might argue that fixation to boosts
w.r.t. one single observer or to any boost at all is unnecessary, it could be just any Lorentz
transformation representing the coset defined byp. But for a simple topological reason no
choice that would depend continuously onp is possible for all ofO, because if it were, the
topology ofK̃p̄ and ofO would imply the infinitely connected topologyS2×R×U(1)×R2

for L̃—but the latter is simply connected. Why bother about continuity at a single null line

7 As a representation of SU(2), it is reducible; according to Frobenius reciprocity, it contains all irreducible
representations with highest weightsλ, λ+1, λ+2, . . . exactly once, and none else. The irreducible subspaces are
spanned, in the “ψ-language” below—by “spin-weighted spherical harmonics”[12], in the context ofSection 7
also known as “monopole spherical harmonics”. Incidentally, since the base spaceS2 may be regarded as the
complex manifoldCP1, it makes sense to ask whether these complex line bundles are holomorphic—and they
are. The spaces of theirholomorphicsections are only finite-dimensional, as one may check by series expansion
around the north and south pole, and are easily related to binary forms in the homogeneous coordinatesz1, z2
of CP1 which are well known to carry the irreducible representations of SU(2). This illustrates a famous general
construction of Borel–Bott–Weil in rudimentary form.

8 Explicitly, if ψ : O→ E is the section, the associatedψ̃ is given byψ̃(L̃) = (Q(L̃, p̄))−1ψ(Lp̄).



H.K. Urbantke / Journal of Geometry and Physics 46 (2003) 125–150 137

on the coneO—in the end the representation spaceΓ(E)will be enlarged anyway to include
all sections square-integrable over the cone? The reason is that one wants to have continuous
representations, and for them one must provide a domain of definition for the infinitesimal
generators of̃L, which are differential operators—so we want to start with the space of
smooth sections of a smooth vector bundle. The above continuous, in fact smooth, choice
allows the construction of the bundle just over the patch ofO where the boosts work, and
one can then choose an anti-podal origin and boosts “starting” from there to obtain a second
patch, and finally match the two. The bundle so obtained is non-trivial for non-zero helicity,
but it is clear now that the trick used above is preferable to doing the patching explicitly:
this is possible in our “group-dominated” situation. We just mention that for the restricted
bundle overS2 considered above one can choose the coset representatives to belong to
SO(3) instead of being boosts; one then encounters a similar problem, and the necessary
patching will be related to the patching to be treated in our next example.

Alternatively, one can see the occurrence of the Hopf fibration by starting from the Weyl
equation(∂t ± σ ·∇)ψ = 0 and the “positive frequency condition” for 2-component spinor
fields, which are well known to carry helicity±1

2 under these conditions. In Fourier (i.e.,
momentum) space, the latter are(p01 ± p · σ)ψ̃(p) = 0 andp0 > 0, implying that the
Hermitian matrix 2P := p01±p ·σ is singular. This putsp on the forward light coneO and
impliesP to be of rank 1, soP = zz† for some complex 2-rowed columnz (2-component
spinor). It follows then thatz†ψ̃ = 0, so ψ̃ is uniquely determined byz apart from a
complex factor, whilez is uniquely determined byp apart from a phase factor. This says
thatp �→ ψ̃(p) is a section of a complex line bundle overO, associated toC2\{0} ∼= S3×R
viewed as a circle bundle overO ∼= S2 × R whose fibers over thep consist of allz ∈ C2

havingzz† = P . So if we consider the+ case and restrict to the cross-sectionp0 = 1 of
the cone, we can immediately compareP formally with the 2× 2 density matrix of a pure
state as discussed inSection 2to obtain the same geometry as discussed there.

The− sign leads to anti-Hopf; other helicities obtain from generalized Weyl equations
for positive frequency fields carrying 2|λ| totally symmetric indices[12]; the corresponding
line bundles overO are then tensorial powers of the one above—the tautological line bundle
of CP1, cf.Appendix A—and of its dual, as follows easily from the spinor algebra described
in [12]. This will bring in identifications modulo 2|λ|th roots of unity, related to so-called
“lens spaces” (Appendix A), also to be mentioned in the next section.

7. Hopf and magnetic monopoles

This example of our collection is probably the first one that caught the attention of a
larger number of physicists. As announced, the Hopf fibration comes here from a bottom-up
construction.

In his 1931 article “Quantised Singularities in the Electromagnetic Field” (magnetic
monopoles), Dirac[19] starts out looking for a generalization of wave mechanics in which
the wave function does not have a definite value for its phase difference between two
points. In the 1970s, it was realized[50] that it is advantageous to rephrase Dirac’s idea in
the “fiber bundle with connection” language that had been given to electromagnetism and
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non-Abelian gauge theories in the 1960s by DeWitt[20], Lubkin [27], Loos[26], Trautman
[41]. In the e.m. case and neglecting spin and inner degrees of freedom, the relevant bundle is
a complex line bundleE over space-time, and instead of ordinaryC-valued wave functions
one considers sections of the line bundle. (Dirac still called them wave functions.) Ordinary
numerical wave functions reappear when a basis (consisting of onlyonenon-zero vector
per fiber in the case of a line bundle!) is chosen in each fiber, smoothly from point to point,
and the value of the section at each point is written as a (complex) scalar multiple of that
basis vector. The gain in generality here is that one can consider non-trivial line bundles
(“twisted” like Moebius bands), which are still smooth but not capable of a smooth choice
of basis vectors, except locally. In regions where two choices (two “gauges”) coexist, one
has two smooth numerical wave functions for one smooth section, related by a smooth
gauge transformation (of “second kind”); but although a section can be smooth globally, in
the non-trivial case there is no globally smooth choice of gauge (due to the independence
condition on basis vectors), and thus no globally smooth numerical wave function for that
section. To include the cases where the line bundle has, because of spin and inner degrees of
freedom, to be replaced by a vector bundle with higher fiber dimension, one isolates from
the line bundle the bundle of its unit vectors—a circle bundle over space-time, a principal
fiber bundle with structure group U(1)—and then considers vector bundles “associated” to
it. In this scheme, there is a global but more abstract description of the e.m. field in terms
of a connection and its curvature on the (circle) bundle space, and a local “patchwork”
description of it in terms of the usual scalar and vector potentials.

To see in more detail how the Hopf fibration relates to this, we first indicate how to
derive the Dirac quantization condition on magnetic charges in the modern approach. To
the magnetic fieldB produced by a static distribution of (hypothetical) magnetic charge,
compactly supported, with total magnetic chargeg �= 0, there corresponds the equivalent
2-form β = B dS = Bx dy ∧ dz + · · · having divB = 0 or d ∧ β = 0 outside the
support. Locally, we then have there the existence of a vector potentialA or the equivalent
1-form α = A dx such thatB = curlA or β = d ∧ α. If one restrictsβ, α to a sphere
S2 surrounding the support and uses the same symbols for the restrictions, one still has
locally β = d ∧ α; butα cannot exist globally on the sphere, as this would give 0�= g =∫

S2
B dS = ∫S2

β = ∫
∂S2
α = 0 by Stokes, since the sphere is closed. Covering the sphere

by U+ := S2 \ {south pole}, U− := S2 \ {north pole}, one has for the restrictionsβ± of β to
U± thatβ± = d ∧α± with 1-formsα± definedall overU±, since these are homeomorphic
to R2. Clearly onU := U+ ∩U− we have 0= β+ − β− = d ∧ (α+ −α−), so locally there
α+ − α− = dΛ for some functionΛ. SinceU is not simply connected,Λ will not exist
globally there as a continuous function. For example, if we considerΛ along the equator
contained inU, it will have a jump somewhere on it of size

∮
dΛ = ∮

α+ − ∮ α− =∫
H+ d∧α++

∫
H− d∧α =

∫
H+ β

++∫H− β =
∫

S2
β = g, using Stokes and denoting byH±

the hemispheres contained inU±. (Note that this involves a convention on the unit forg.)
The replacement, onU, of α− with α+ = α− + dΛ is called a localgauge transformation.

Now quantum mechanics comes in, where the HamiltonianH = (1/2m)p2 entering the
Schrödinger equation for a particle with electrical chargeemoving in a given magnetic field
is built from the canonical momentump = (/i)∇ + (e/c)A, which is gauge-dependent.
Therefore, a gauge transformation of the local potentialA− has to be accompanied by a phase
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transformation (“gauge transformation of second kind”) of the numerical wave functionψ−
of the particle, i.e., by its replacement withψ+ = ψ− exp(−i(e/c)Λ), all onU, to keep the
physics locally gauge-invariant. However,ψ± have to be smooth there, being restrictions
of functions belonging to a domain of definition of the Hamiltonian, which is a differential
operator. So, although globallyΛ has the non-zero jumpg somewhere on the equator, its
exponential exp(i(e/c)Λ) is not permitted to have one, which implies(eg/2πc) ∈ Z to be
an integern. This is the Dirac condition. The integern may be interpreted as the winding
number, or mapping degree, of the map from the equator circle to the unit circle given by
x �→ exp(i(e/c)Λ(x)).

With the idea of interpretingψ± as component functions of a smooth sectionψ of
a smooth complex line bundle with respect to two local normalized basis sectionss±,
one derives the transition function between the latter:s+ = exp(i(e/c)Λ)s−. From the
interpretation of(d + (ie/c)α±)ψ± as the local components of a covariant differential of
a sectionψ one gets the interpretation of(ie/c)α± as local pullbacksΓ± unders± of a
connection formω on a principal bundle whose curvature form is(ie/c)B dS. Multiplying
by−(2πi)−1, one gets[10, p. 309]the representative−(e/2πc)B dS of its Chern class and
−(eg/2πc) = −n as itsChern number. The integer (“topological quantum number”)n,
being the winding number of the transition map taken along the equator, characterizes a
complex line bundle overS2 or the associated circle bundle of its unit vectors uniquely up
to bundle isomorphisms[4, p. 301]. It should be clear now that from the conceptual point
of view the state vectors of our quantum mechanical system are given by global sections
of the relevant line bundle and that the Hamiltonian is built from the covariant derivative
operators acting on sections.

Our point here is that forn = 1 such a circle bundle is isomorphic to the Hopf bundle.
(n = −1 would correspond to anti-Hopf.) Since we have defined the Hopf bundle up to
now globally as embedded intoR4, to see this we must first patch the bundle up as above
and find two sections, one smooth overU+, the other smooth overU−, and then look at the
transition function between them when followed round the equator of the basis spaceS2.
A sections is the result of trying to find a right inverse to the bundle projectionz �→ R(z).
GivenR ∈ S2 ⊂ R3, we formρ = 1

2(1+ R · σ), which is Hermitian-positive with trace 1

and rank 1; soρ = zz† for somez ∈ C2 havingz†z = 1, unique up to a phase factor—but
we know we cannot make the choice such thatz is a continuous function ofR all overS2.

Using polar coordinates forR, we may takez = s+(θ, φ) =
(

cos(θ/2)

sin(θ/2)eiφ

)
for a section

s+ continuous overU+ andz = s−1(θ, φ) =
(

cos(θ/2)e−iφ

sin(θ/2)

)
for a sections− continuous

overU−. (Sinceθ = 0 and 0= π each give only one point on the sphere for allφ, these
sections are discontinuous at the south and north pole, respectively; seeAppendix A for
the less dangerous complex stereographic parametrization.) The transition function thus
equals eiφ, and the associated winding number as defined above is 1, which we wanted to
check.

Actually, the Hopf fibration provides more than just the topology ([42]; [17, p. 110]).
Namely, the canonical connection form on the bundle space, given globally byz† dz and
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locally, using a parametrization given inAppendix A, by (i/2)(dψ− cosθ dφ) is invariant
under the U(2) action onz and pulls back by the sectionss± (which are obviously given
by ψ = ±φ) to the forms(i/2)(±1− cosθ)dφ with curvature form (exterior derivative)
(i/2) sinθ dθ dφ ≡ (i/2)(x/r3)dS. These provide the vector potentialsA± and magnetic
fieldB for the exterior of a magnetic charge distribution invariant under the associated SO(3)
action and thus spherically symmetric—e.g., of a single point monopole; one immediately
checks that the Chern number is−1. To construct the circle bundle globally outside the
point monopole, i.e., over the partR3 \ {0} ∼= S2 ×R of physicalspaceR3, we present the
bundle space asC2 \ {0} ∼= R4 \ {0} ∼= S3 × R (rather than only its unit sphere) but factor
out only the U(1) actionz �→ eiαz (rather than theC× action, which again would give only
the quotientS2 ∼= CP1). Concretely, the bundle projection isz �→ z†σz; all concentric
spheres get Hopf-fibered this way as inSection 3. A U(2)-invariant connection form on
this U(1) bundle is given by iI(z† dz/z†z) ≡ (i/2)(dψ − cosθ dφ), where nowθ, φ are
regarded as angular coordinates on all ofR3 \ {0}. (Note that the standard radial coordinate

in physical space isz†z, while on ourR4 it is given by
√
z†z!) We leave this somewhat

sketchy, however, because our goal—to present a role of the Hopf fibration in the monopole
context—has already been reached before.

We mention finally that the circle bundles corresponding to higher values of|n| are
so-called lens spaces. Roughly, they are the bundles of unit vectors of complex line bundles
obtained by taking tensorial powers of then = ±1 line bundle, as can be seen immediately
from their transition functions. For connections on them, see[42,43]andAppendix A.

8. Hopf and the Dirac equation 9

The two-level quantum systems ofSection 2may be considered, in particular, as describ-
ing the spin states of a non-relativistic spin-1

2 particle—i.e., one ignores its spatial degrees
of freedom. If the latter is not done, one must write spinorial wave functions, subject to
appropriate wave equations. In the relativistic regime, the relevant wave equation is the
Dirac equation. We shall point out here that the Hopf fibration has significance also in
this context. Most directly this comes about when one considers the analog of the Dirac
equation in two-dimensional space-times in their Euclideanized and compactified versions,
which is done either when studying field theories in two space-time dimensions for their
own sake, or in (super)string theory. In this context,S2 ∼= CP1 is just the simplest example
of such a space-time or string world-sheet, more complicated ones being Riemann surfaces
corresponding to algebraic curves[37]. The concept of spinor field, to be subjected to a
Dirac equation, requires that of aspin structure, which is a 2:1 covering of the space-time’s
bundle of oriented orthonormal tangent frames (see, e.g.,[44] for detailed exposition suit-
able in the present context). Now the assignmentz �→ Z(z) used inSection 2to graphically
represent state vectors in the Bloch sphere picture of pure states shows that the Hopf bundle
yields a 2:1 covering of the bundle of oriented orthonormal tangent frames of the 2-sphere,
the structure group U(1) playing the role of the spin group covering the frame bundle’s

9 The idea to include this topic is due to A. Trautman.
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structure group SO(2). Indeed one verifies by elementary calculation thatP(z) = RZ(z),
Q(z) := IZ(z) satisfyP2 = Q2 = 1, P ·Q = 0, P ×Q = R. Thus the Hopf bundle is the
spin bundle of the 2-sphere.10

The canonical connection on the Hopf bundle (cf.Appendix A) already played a role
in Sections 2 and 7. Its associated covariant differential for sections of vector bundles
associated to the Hopf bundle provides the necessary ingredient for the definition of the
Dirac operator, since it is directly related to the Levi–Civitá connection on the 2-sphere, as
already remarked inSection 2.

It is, however, not necessary to enter these esoteric two-dimensional worlds to see the
Hopf fibration as a relevant structure in the realm of spinor fields: Trautman[44] has noted
that the Dirac operator on 2-spheres appears when one tries to solve the Dirac equation in
ordinary four-dimensional Minkowski space in presence of an external spherically sym-
metric electrostatic field by the method of separation of variables, using polar coordinates.
Indeed, the operatorsj and k appearing in Section 71 and Section 53 of[6] and [14],
respectively—just to quote two popular expositions—are essentially the Dirac operator on
the 2-sphere: this is easy to see locally, and was shown to be true globally in[44]. As
Trautman points out, there is a direct global analog for Dirac operators to the well-known
splitting of the Laplacian onR3 into a radial operator andr−2× (Laplacian onS2).11 At
least for the mathematically minded, this way of looking at the formal procedure in[6,14]
will be more satisfactory; and it allows for interesting generalizations[44] and applications
[45].
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Appendix A.12

A.1. Defining the Hopf fibration

In mathematics, the Hopf fibration is nowadays defined as follows ([4, p. 227]; [5,
Section 16.14]). Take the complex vector spaceC2 of columnsz = ( z1 z2 )

T, where

10 Also,z⊗z �→ Z·dRz turns out to give an explicit isomorphism between the tensorial square of the “tautological”
line bundle (bundle of chiral spinors) associated to the Hopf bundle and the holomorphic cotangent bundle ofCP1,
mentioned inAppendix A; see[37] for the extension of this aspect to higher genus algebraic curves and its
application in superstring theory.
11 Even the otherwise rather complete monograph[15] misses this point.
12 As a general reference for the concepts used below, we recommend the text[17].
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zi ∈ C. Then the complex projective line13 P(C2) = CP1 obtains fromC2 \ {0} by factor-
ing out the equivalence relation “z ∼ w iff w = λz for someλ ∈ C× = C\{0}”. Since these
equivalence classes bijectively correspond to the one-dimensional subspaces ofC2, one can
also define the points of the projective space to be just these subspaces. For its (complex)
manifold structure (see[4, p. 75]; [5, Section 6.11]; [10, p. 134]). Instead, one can first
restrict to the unit 3-sphereS3 ⊂ R4 = C2 given by thez havingz†z = 1, and then factor
out “z ∼ w iff w = λz for someλ from the unit circleS1 ∼= U(1) = {λ ∈ C, |λ| = 1}”.
Using the stereographic maps fromCP1 to the 2-sphereS2

ζ := z2
z1
�→
(
R

2ζ

1+ |ζ|2 , I
2ζ

1+ |ζ|2 ,
1− |ζ|2
1+ |ζ|2

)
,

whereverz1 �= 0 and

ζ′ := z1
z2
�→
(
R

2ζ̄′

1+ |ζ′|2 , I
2ζ̄′

1+ |ζ′|2 ,
1− |ζ′|2
1+ |ζ′|2

)
,

whereverz2 �= 0, one gets a smooth mapπ from S3 onto S2 ⊂ R3 which we can also
express as

z �→ (2Rz̄1z2,2Iz̄1z2, |z1|2− |z2|2) =: R(z).

(ζ, ζ′ are the inhomogeneous complex coordinates around 0 and∞ in CP1). This is the Hopf
map.π is a projection in the sense thatS3 is a principal fiber bundle over the base space
S2 ∼= CP1 with structure group U(1) ([5, Section 16.14]; [7, Section 4.4.4]; [9, p. 50]) which
we will call the Hopf bundle orHopf fibration.14 Hopf actually started out with a version in
real terms, considering instead ofC2 its realificationR4, i.e., columnsX = (X1, . . . , X4)

T,
wherez1 = X1 + iX2, z2 = X3 + iX4. The real counterpart of multiplyingz by i is
multiplyingX by the matrix (acomplex structurefor R4)

J :=




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 .

We also equipC2 with its standard Hermitian inner product〈z,w〉 := z†w = z̄1w1 +
z̄2w2. In R4, with Y the real counterpart ofw, this gives rise to the standard inner prod-
uct 〈〈X, Y〉〉 = R〈z,w〉 ≡ XTY and an anti-symmetric non-degenerate bilinear form
Φ(X, Y) := I〈z,w〉 ≡ R〈iz,w〉 = 〈〈JX, Y〉〉. In terms ofX, the unit sphere isXTX = 1,
and the fibers of the Hopf bundle—the inverse images of the points ofS2 under the Hopf
map—turn out to be linked great circles onS3: the orbit ofzunder the U(1) action,α �→ zeiα,
is in real termsα �→ X cosα+ JX sin α, whereX andJXare orthogonal unit vectors. We
note that the tangent to the fiber atz is given by iz, thus in real terms atX by JX. The linkage

13 We will write dimensions as subscripts except where they at the same time can be read as Cartesian powers;
it should be clear from the context whether a real or a complex dimension is meant.
14 Likewise, one hasC2 \ {0} as a (holomorphic) principal fiber bundle overCP1 with structure groupC×.
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can be visualized by stereographic projection of the 3-sphere to its equatorial 3-plane: one
obtains one family of Villarceau circles on each torus of a system of nested coaxial con-
centric tori orthogonal to the unit 2-sphere in that 3-plane; see, e.g.,[48] and works quoted
there for detailed illustration, and[4, pp. 227–239], for more on linking. The linking of the
fibers was used by Hopf to compute the homotopy groupπ3(S2) ∼= Z, while nowadays this
is done using the machinery of the exact homoptopy sequence of fiber bundles ([4, p. 209];
[5, Section 16.30, Ex. 5,6]).

It should be noted that this linking of the fibers isnot in conflict with the local triviality of
the bundle. Since it is needed in one of our applications, we make this explicit with respect
to a bundle atlas consisting of two charts. LetU+ = S2 \ {south pole} andU− = S2 \
{north pole} be the open subsets whereζ andζ′ are well defined, respectively; together, they
cover the 2-sphere. Then an explicit fiber-preserving diffeomorphism fromπ−1(U±) to the
product bundlesU±×U(1)—in which the fibers are not linked—is given by( z1 z2 )

T �→
(z2/z1, z1/|z1|) for U+ and( z1 z2 )

T �→ (z1/z2, z2/|z2|) for U− with respective inverses
(ζ,eiα1) �→ (1+|ζ|2)−1/2 eiα1( 1 ζ )T and(ζ′,eiα2) �→ (1+|ζ′|2)−1/2 eiα2( ζ′ 1 )T. The
usual polar coordinatesθ, φ centered at the north pole of the 2-sphere are related to the
complex stereographic coordinateζ by ζ = tan(θ/2)eiφ (projecting from the south pole to
the equatorial plane). Takingα1 = 0 andα2 = 0 we get cross-sectionss+ ands− of the
Hopf bundle overU+ andU− given by

s+(ζ) = (1+ |ζ|2)−1/2

(
1

ζ

)
=




cos
θ

2

sin
θ

2
eiφ




and

s−(ζ′) = (1+ |ζ′|2)−1/2

(
ζ′

1

)
=




cos
θ

2
e−iφ

sin
θ

2


 ,

respectively, which onU+ ∩ U− are related bys+ = eiφs− with the transition function
eiφ.15 Instead ofθ, φ, α1 or θ, φ, α2 one may also useθ, φ, ψ := α1 + α2 or θ, α1, α2 as
convenient coordinates on the bundle manifoldS3:16

z1 = cos
θ

2
eiα1 = cos

θ

2
ei((ψ−φ)/2), z2 = sin

θ

2
eiα2 = sin

θ

2
ei((ψ+φ)/2).

A.2. Clifford parallels

Clifford parallelismin real projective 3-space with the elliptic version of non-Euclidean
geometry may be described as the following instruction to “draw” “parallels” to a given

15 Similarly, one has local trivializations of the bundle mentioned in the previous footnote using the holomorphic
local sectionsζ �→ ( 1 ζ )T andζ′ �→ ( ζ′ 1 )T with transition functionζ.
16 Note that the latter are notbundlecoordinates. The former are, being essentially Euler angles when the 3-sphere

is interpreted as the group SU(2) as below and thus as the covering group of the rotation group SO(3).
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straight line�. The geometry being specified by an “absolute” quadric of signature++++,
thus having no real points but defining a real polarity, one complexifies� and intersects it
with the complexified quadric. This gives the complex-conjugate pointsP andP̄ . Through
them there pass complex-conjugate generatorsg and ḡ, both taken from the same of the
two families of straight lines (=generators) carried by the complexified absolute. (Due to
the present signature, each family is invariant under complex conjugation.) Any complex
line joining a pointP ′ on g with its complex-conjugatēP ′ on ḡ is the complexification of
a real line�′, which is then called aClifford parallel of �. Depending on which of the two
families of generators is being used, one has a right and a left Clifford parallelism. One can
show that Clifford parallels are skew and equidistant in the sense of elliptic geometry and
may be defined without using complexification[3, p. 200 et seq.].

We now indicate the relation of the Hopf fibration to Clifford parallels. We stated above
that whenC2 with its Hermitian form〈·, ·〉 of signature++ is realified, i.e., regarded as
R4, the latter comes with the quadratic form〈〈·, ·〉〉 and the complex structureJ . One now
complexifies theR4 to becomeC4 and extendsJ and the bilinear form corresponding to
〈〈·, ·〉〉 linearly and bilinearly, respectively, denoting the extensions by the same symbols.
FromJ2 = −1 it follows that iJ has eigenvalues±1, the corresponding two-dimensional
eigenprojectors being12(1 ± iJ). The eigenspaces are complex-conjugates of each other,
check to be totally null with respect to〈〈·, ·〉〉 due to the relation〈〈JX, JY〉〉 = 〈〈X, Y〉〉, and
to belong, due to signature++++, to thesamefamily of 2-spaces contained in the null cone
defined by〈〈·, ·〉〉 (their Plücker tensors are both selfdual). Given nowz ∈ C2, we have its
realificationX; we can formJX and the 2-space span(X, JX). Then the two null directions
contained in the complexification of the latter are parallel toX ± iJX, thus belonging to
the eigenspaces just introduced. Projectivizing everything we see that the projectivized
spaces span(X, JX) are indeed Clifford-parallel straight lines ofRP3 = P(R4) with the
projectivized〈〈·, ·〉〉 for its absolute. (Note that one gets a system of Clifford parallels for
anyJ sharing the properties just written. Also remember that the process of projectivization
identifies anti-podal points onS3.)

A.3. Symmetry group

The Hopf fibration has a symmetry group: the action of the unitary group U(2) onC2

leaves the 3-sphere invariant and carries fibers into fibers, as it commutes with the U(1)
action; it thus descends to an action on the 2-sphere by ordinary rotations. This gives
nothing but the well-known covering homomorphism SU(2) → SO(3), as will transpire
from the quantum mechanical interpretation inSection 2. The difference between U(2) and
SU(2) is ineffective on the 2-sphere due to the factoring out of the structure group U(1).

A.4. Group theoretic definition

It will be useful for our purposes to give a slightly modified description of the fibering
of the 3-sphere. To the columnsz we attach their unitary perpendiculars to form the 2× 2

matrices U(z) =
(
z1 −z̄2
z2 z̄1

)
: if z†z = 1, they make up the group SU(2) ∼= S3. (If z is left
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arbitrary, one obtains a matrix ring isomorphic to the skew field of quaternions.) The U(1)
action onz can be replaced here by multiplying on the right by diag(λ, λ−1) ∈ SU(2), so
that the Hopf fibers are just left cosets of a U(1) subgroup in SU(2) embedded as indicated,
and we now have the 2-sphere as the coset space SU(2)/U(1). The above-mentioned U(2)
symmetry of the fibration corresponds to left multiplication by SU(2) matrices in addition
to right multiplication by the U(1) subgroup elements.17 One can also consider right cosets
of that U(1) subgroup, resulting in theanti-Hopf fibration—its stereographic projection
gives the second family of Villarceau circles on the tori mentioned above, with the opposite
sense of linking. Embedding U(1) into SU(2) byλ = eiα �→ exp(iαnkσk) (where theσk are
the Pauli matrices; these subgroups are all conjugate to the one above) one gets all other
systems of Clifford parallels, one for each pair±n of real unit vectors.

The standard metric ds2 = dz1 dz̄1+dz2 dz̄2 of S3 can also be written as ds2 = det dU =
detΩ, whereΩ is the left or right invariant Maurer–Cartan matrix on SU(2),U−1 dU or
(dU)U−1, and where the products of differentials are symmetric tensor products as usual.Ω

takes values in the matrix Lie algebra of SU(2) which consists of traceless anti-Hermitian
matrices. If it is decomposed asΩ = (−i/2)ωkσk, theωk constitute a basis of left- or
right-invariant 1-forms on the group manifold. They are used inSection 4. In terms of
them, one gets ds2 = 1

4δjkω
jωk, so that theωk/2 form an orthonormal (co)basis and the

Riemannian volume form is given by−1
8ω

1∧ω2∧ω3. (The sign has been chosen so as to
conform with the standard orientation of the 3-sphere as embedded intoR4 as we have it
here.) For the left-invariant forms one hasd ∧Ω = −Ω∧Ω, implying the Maurer–Cartan
relationsd ∧ ω� = −1

2ε�jkω
j ∧ ωk. In particular, forω3 = 2i(z̄1 dz1 + z̄2 dz2) = 2iz† dz

one has dω3 = −ω1 ∧ ω2, so that the volume element also equals1
8ω

3 ∧ d ∧ ω3.
The exterior 2-form globally defined onR3 by R · dR× dR restricts to the usual surface

elementΣ on the unit 2-sphere with its standard orientation (locally,Σ = sin θ dθ ∧ dφ
in polar coordinates).Σ is trivially closed but not exact, as its integral overS2 is 4π �= 0.
When pulled back toS3 by the Hopf mapz �→ R(z), some computation (usingz†z = 1)
yields the 2-form 2i(dz1 ∧ dz̄1 + dz2 ∧ dz2) ≡ d ∧ (−ω3), which is manifestly exact on
S3. Generally, for a smooth mapf : S3 → S2, the pullbackf ∗((4π)−1Σ) = d ∧ α is exact
since it is closed as the pullback of a closed form and since all closed 2-forms onS3 are
exact. The integral

∫
S3
α ∧ d ∧ α is called the Hopf invariant off ; it can be shown[4] to

be an integer equal to the linking number of the inverse images of any two points inS2
underf . For the Hopf map, this number becomes(4π)−2

∫
S3
ω3 ∧ d ∧ ω3 = (2π2)−1 ·

volume(S3) = 1.
Note in this context that for any 1-formα the (non)vanishing of the integrandα ∧ d ∧ α

is the Frobenius criterion18 for the local (non)existence of 2-surfaces on whichα restricts
to zero or which are orthogonal to the flow lines of the vector field metric-related toα. In
case of non-existence, the vector field is said to betwisting.

Locally, using the parametrization byψ, θ, φ, the left-invariant 1-formz† dz equals
(i/2)(dψ − cosθ dθ), and the Hopf map is(ψ, θ, φ) → (θ, φ) (so that locally it is

17 So the symmetry group seems to be SU(2) × U(1), but the action has a kernelZ2 consisting of(1, 1) and
(−1,−1); the quotient is isomorphic to U(2).
18 For the interesting history of this criterion and its generalization, see[39].
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immediate that the surface element of the 2-sphere pulls back to the exterior derivative
of −ω3, but notice the dangers of sloppy notation!). It will be met again below.

A.5. Associated line bundles: lens spaces

We will encounter complex line bundles associated to the Hopf bundle, the basic one
being thetautological line bundle overCP1.19 This isC2 with its origin “blown up”, i.e.,
the subset of the trivial rank 2 vector bundleCP1 × C2 consisting of those pairs(P, z),
wherez belongs to the one-dimensional subspace ofC2 determined by the equivalence
classP ∈ CP1. The others will be tensorial powers of it or of its dual (“negative” tensorial
powers; the zeroth power is defined to be the trivial line bundleCP1 × C). Equivalently,
these are associated to the Hopf bundle in the sense of forming(S3×C)/U(1), where U(1)
acts on the “standard fiber”C by some of its one-dimensional representationsλ �→ λn,
n ∈ Z ([5, Section 16.14.7]; [7, Section 4.4.5]; [9, p. 54]).

The circle bundles formed by their unit vectors—the Hopf bundle is just the bundle of
unit vectors, in the sense of〈·, ·〉, of the tautological one—are so-calledlens spacesL(3, n)
(employing the notation of[4]—we warn the reader that there are other notations for them,
depending on the generalizations envisaged). A related construction of L(3, n) (cf. [42])
is by first considering the circle bundleS2n+1 → CPn—defined in complete analogy to
our S3 → CP1—and then considering the circle bundle induced[9, p. 60] from there
over CP1 under the Veronese20 embeddingCP1 → CPn. The most direct definition[4,
p. 243]consists in quotientingS3 by the (free) action of the subgroupZn ⊂ U(1) generated
by exp(2πi/n): thusS3 → S3/Zn = L(3, n) is ann-fold covering, and, writing [z] for
zmod Zn, we have the U(1) action [z]λ := [zλ1/n] on L(3, n)which makes it into a principal
U(1) bundle over the 2-sphere, homomorphic[9, p. 53]to the Hopf bundle via the covering
map and the homomorphism U(1)→ U(1) given byλ �→ λn. The standard metric dz† dz
on the 3-sphere descends to a metric on L(3, n) which is thus one of the positive curvature
Clifford–Klein space forms;21 notice that the identification of points in the transition to
L(3, n) reduces theglobal isometry group of the 3-sphere to SU(2) × U(1)/{1,−1} for
L(3, n), if n > 2. The lens space L(3,2) is just real projective 3-space as we used it above
for Clifford parallelism, or, using the group description of the Hopf fibration, L(3,2) =
SU(2)/Z2 ∼= SO(3); as a bundle over the 2-sphere, it is isomorphic to the latter’s bundle
of oriented orthonormal tangent frames. The Hopf bundle is thus thespin bundleof the
2-sphere, so that the tautological bundle is also the bundle of the 2-sphere’s semispinors of
one chirality. (The other chirality corresponds to the bundle dual to the tautological one.)

We shall not need the holomorphic aspects of the line bundles above; but let it be men-
tioned that these bundles are similarly associated to the holomorphic principal bundle that
came up when we introduced the Hopf fibration, and thus are holomorphic; the square of

19 Apart from the blowing-up of the origin ofC2, the fiber over a point ofCP1 is the one-dimensional subspace of
C2 which a point ofCP1 is by definition—hence the name. Other names to be encountered are natural, canonical,
universal (cf.[4, p. 268]; [5, Section 16.16, ex. 1, 2]; [7, p. 13]; [10, p. 306]).
20 Suitably identifyingCn+1 with thenth symmetric tensorial power ofC2, one gets an isometric mapC2 → Cn+1

by assigning toz ∈ C2 its nth tensorial powerz⊗n; this descends to an embedding of the projectivized spaces.
21 These spaces are sometimes considered by cosmologists[24].
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the tautological bundle is holomorphically equivalent to the holomorphic cotangent bundle
of CP1; its positive powers admit only the zero section for holomorphic sections, while if
n ≤ 0 itsnth powers possess(−n+ 1)-dimensional spaces of holomorphic sections. (This
is best seen by series expansion using the local trivializations mentioned.)

A.6. Connections

A connectionin a principal fiber bundle is specified geometrically by choosing, in each
tangent space to the bundle manifold, a complement to the tangent space of the fiber in
such a way that the distribution of these complements (thehorizontal subspaces) is smooth
and invariant under the action of the structure group ([5, Section 20.2]; [9, p. 63]; [41]).
Equivalently, one can use theconnection formω, defined in those references, which takes
values in the Lie algebra of the structure group and annihilates the horizontal subspaces.
In the Hopf bundle, a particular and distinguished connection is obtained by taking the
horizontal subspaces to be orthogonal to the fibers; it is sometimes called the canonical
connection, and it obviously shares the full symmetry possessed by the fibration. (For
its definition in terms of the group theory description of the bundle and in terms of the
holomorphic aspects, see[9, p. 103]and[10, p. 178], respectively.)Parallel transportof
points in the bundle space over a given curve in the base space means going along a curve
in the bundle space that projects to the given one in the base and is tangent to the horizontal
subspace at each of its points. Thus for the canonical connection of the Hopf bundle these
curves are orthogonal to the Hopf circles—so their tangentsẊ at positionX must satisfy
〈〈X, Ẋ〉〉 = 0 to be tangent to the 3-sphere and〈〈JX, Ẋ〉〉 = 0 to be orthogonal to the
fiber. This gives〈z, ż〉 = 0 as the equation for parallel transport. The connection form for
the canonical connection is〈z,dz〉 ≡ z†dz; it is obviously also invariant under the full
symmetry group of the bundle.

Since the distribution of horizontal subspaces for a connection on the Hopf bundle is to be
invariant under the action of the structure group—and therefore under itsZn subgroups—one
can use the covering projection to the lens space L(3, n) to define a connection there; its con-
nection form is such that its pullback to the Hopf bundle via the covering projection equals
n times the connection form one started with, and the same also holds for thecurvature form
[9, p. 79]. This implies, in particular, that the Chern class[10, p. 305]of L(3, n) or the asso-
ciated line bundle isn times the one for Hopf. In particular, from the canonical connection
one gets a connection on each L(3, n) whose horizontal subspaces are again orthogonal to
the fibers in the sense of the metric mentioned above, again possessing the same symmetry
group. One can also obtain it by pulling back[9, p. 82], via the Veronese embedding[42], the
canonical connection form on the U(1) bundleS2n+1 → CPn, which is similarly defined.
The connection obtained in L(3,2) from the canonical connection on the Hopf bundle is
nothing but the Levi–Cività connection on the 2-sphere, as is clear from its symmetry; con-
versely, the canonical connection on the Hopf bundle is thespin connectionfor Levi–Cività.

A.7. CR-structure

The horizontal subspaces of the canonical connection, orthogonal to the Hopf fibers,
enjoy another property that has physical relevance mentioned inSection 4. They are the
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maximal subspaces of the tangent spaces to the 3-sphere that arecomplexsubspaces of the
embeddingC2, since being〈, 〉-orthogonal toz is a complex-linear condition. This presents
the 3-sphere as aCR-manifold; but we refer the reader to[8,46] for any further discussion
of this aspect.

A.8. Covariant differentiation: local gauges

Along with a connection in a principal bundleP comescovariant differentiation∇
of (smooth) sectionsψ of associated vector bundlesE ([5, Section 20.3]; [9, p. 113];
[41]). There are two equivalent ways of describing it invariantly and globally, one using
parallel transport in associated bundles and one using the bijective correspondence that exists
between such sections and functionsψ̃ on the principal bundle with values in the standard
fiber F of the associated one, subject to a certain equivariance condition. (We make use
of this correspondence inSection 6.22) One derives from this (cf.[41]) a description using
local trivializations (local gauge choices, in physics terminology), and that is the way we
need for comparison with the monopole situation.

Let ω be a connection form on the principal bundle spaceP , andψ cross-section of the
associated vector bundleE → M, where the structure group G acts on the standard fiber
F of the latter by the representationσ (and its Lie algebra by the representationσ̇); let
U ⊂ M be an open subset of the base spaceM ands : U→ P be a local section. Thenψ
is locally given by theF -valued functionψs := ψ̃ ◦ s onU and its covariant differential by
theF -valued 1-form dψs + Γψs onU, whereΓ := σ̇(s∗ω). In Section 7, we are interested
in G = U(1) and complex line bundles—thus in unitary representationsσ onF = C; they
are given by the charactersσ : eiα �→ einα, n ∈ Z. The formsω, s∗ω andΓ are then purely
imaginary, likeω = z†dz onS3. The local versions∂k+Γk of the covariant derivative, with
Γk = (ie/c)Ak, are used inSection 7for writing the Hamiltonian of an electrically charged
particle in a magnetic field.

The description of principal bundles in terms of local trivializations ([5, Section 16.13];
[9, p. 51]) is particularly simple in the case of the Hopf bundle (and the lens spaces derived
from it), since one needs only a covering of the basis 2-sphere by the two open subsetsU±,
containing the upper (+) and lower (−) closed hemispheresH±: over these contractible
subsets, the bundles are trivial, so sections exist, and one has only to write down the one
single transition function (“clutching function”) between them onU+ ∩U−. For Hopf and
anti-Hopf, we did this explicitly before, and we get it immediately for the lens spaces—as
we defined them—to be einφ. (Bott and Tu[4, p. 301]teach us that this already exhausts all
circle bundles and associated complex line bundles over the 2-sphere, up to isomorphism,
sincen fixes the homotopy class of the clutching function.)
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