Materia skondensowana

Podziękowania za pomoc w przygotowaniu zajęć: Prof. dr hab. Paweł Kowalczyk Prof. dr hab. Dariusz Wasik

Uniwersytet Warszawski

Rodzaje wiązań orbitals

Półprzewodniki

Energia wiązania na atom:

C (diament)	7.30 eV
Si	4.64 eV
Ge	3.87 eV

Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

Półprzewodniki

II	III	IV	V	VI
Be	В	С	Ν	0
Mg	AI	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те

Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

http://www.weltderphysik.de/de/4245.php?ni=423&pi=428

Wiązanie jonowe

Elektroujemność (ozn. **c**) - zdolność atomu w cząsteczce do przyciągania (przyłączania) elektronu. W skrajnym przypadku, gdy elektroujemności obu pierwiastków bardzo się różnią (np. Li i F), dochodzi do pełnego przeskoku elektronów na bardziej elektroujemny atom, co prowadzi do powstania wiązania jonowego ($\Box\Box \ge 1,7$).

Tablica 2.4. Wartości elektroujemności (wg Paulinga) dla kilku ważniejszych pierwiastków (dla H przyjęto 2,1)

1	II	III	IV	V		VI	VII
Li	Ве	В	С	Ν		0	F
1,0	1,5	2,0	2,5	3,	0	3,5	4,0
Na	Mg	AI	Si	Ρ		S	Cl
0,9	1,2	1,5	1,8	2,	1	2,5	3,0
К	Са	Ga	Ge	A	5	Se	Br
0,8	1,0	1,6	1,7	2,	0	2,4	2,8
Rb			Sn				J
0,8			1,7				2,4
	Joi	nowość			Jonov	NOŚĆ	

Wiązanie jonowe

Elektroujemność (ozn. c) - zdolność atomu w cząsteczce do przyciągania (przyłączania) elektronu. W skrajnym przypadku, gdy elektroujemności obu pierwiastków bardzo się różnią (np. Li i F), dochodzi do pełnego przeskoku elektronów na bardziej elektroujemny atom, co prowadzi do powstania wiązania jonowego ($\Box \Box \ge 1,7$).

Umownie:

$0,4 \leq \Box \Box$

GaN (0001)

Wiązanie jonowe

Elektroujemność (ozn. **c**) - zdolność atomu w cząsteczce do przyciągania (przyłączania) elektronu. W skrajnym przypadku, gdy elektroujemności obu pierwiastków bardzo się różnią (np. Li i F), dochodzi do pełnego przeskoku elektronów na bardziej elektroujemny atom, co prowadzi do powstania wiązania jonowego ($\Box \Box \ge 1,7$).

Wiązanie jonowe

W kryształach jonowych jest niemożliwe, żeby elektrony poruszały się prawie swobodnie pomiędzy jonami, chyba że dostarczymy dużą energię. Dlatego ciała stałe o wiązaniach jonowych są nieprzewodzące. W wysokich temperaturach – przewodnictwo jonowe.

Energia wiązania na parę jonów:

NaCl7.95 eVNal7.10 eVKBr6.92 eV

Rozkład gęstości ładunku w płaszczyźnie podstawowej NaCl na podst. badań rentgenowskich.

Wiązanie metaliczne

Wiązanie chemiczne w metalach, utworzone w wyniku elektrodynamicznego oddziaływania między dodatnio naładowanymi rdzeniami atomowymi, które znajdują się w węzłach sieci krystalicznej, a ujemnie naładowaną **plazmą elektronową** (**elektronami zdelokalizowanymi, gazem elektronowym**). Podobne do wiązania kowalencyjnego, ale elektrony tworzące wiązanie są wspólne dla wielkiej liczby atomów.

Wiązanie metaliczne

Wiązanie chemiczne w metalach, utworzone w wyniku elektrodynamicznego oddziaływania między dodatnio naładowanymi rdzeniami atomowymi, które znajdują się w węzłach sieci krystalicznej, a ujemnie naładowaną **plazmą elektronową** (**elektronami zdelokalizowanymi, gazem elektronowym**). Podobne do wiązania kowalencyjnego, ale elektrony tworzące wiązanie są wspólne dla wielkiej liczby atomów.

1A]				K	ey:	2021									7A	8A
<u>(n</u>)_	2A (2)					Met Nor	als nmeta	ls				3A (13)	4A (14)	5A (15)	6A (16)	H	He
Li	Ве					_ Met	alloid	S				в	С	N	0	F	Ne
Na	Mg	3B (3)	4B (4)	5B (5)	6B (6)	7B (7)	(8)	- 8B - (9)	(10)	1B (11)	2B (12)	AI	Si	Р	s	CI	Ar
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115	110		
		7															
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
		Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Wiązanie van der Waalsa

Ne, Ar, Kr, Xe – oddziaływanie wyindukowanych momentów dipolowych.

Kryształy

$$\vec{T} = n_1 \vec{t_1} + n_2 \vec{t_2} + n_3 \vec{t_3}$$
wektory translacji prymitywnych

 $V(\vec{r}) = V(\vec{r} + \vec{T})$

 Sieć (węzły sieci) jest regularnym i periodycznym układem punktów w przestrzeni. Jest ona matematyczna abstrakcją; ze strukturą krystaliczną mamy do czynienia jedynie wtedy, gdy baza atomów jest przyporządkowana jednoznacznie do każdego węzła sieci.

Kryształ

Ciało amorficzne

0

Kryształy

 $\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$ wektory translacji prymitywnych

Kryształy

 $\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$ wektory translacji prymitywnych

Kryształy

•Wektory translacji prymitywnych nie są wybrane jednoznacznie!

Kryształy

•Wektory translacji prymitywnych nie są wybrane jednoznacznie!

Kryształy

- Można na wiele sposobów wybrać komórkę elementarną.
 Zwykle chcemy, żeby komórka taka: miała możliwie najwyższą symetrię, najmniejszą objętość
- Komórka prosta: komórka elementarna o najmniejszej objętości

Komórka prosta

Kryształy

Kryształy

Bazą może być pojedynczy atom, jon, zbiór atomów, np. dla białek 10⁵.

Bazą może być pojedynczy atom, jon, zbiór atomów, np. dla białek 10⁵.

$$B'A' = CD = t_1(1 - 2\cos\varphi)$$
$$\cos\varphi = (1 - n)/2$$

n	$\cos \varphi$	φ	Obrót
-1	1	0°	ε
0	1/2	60°	C ₆
+1	0	90°	C4
+2	-1/2	120°	<i>C</i> ₃
+3	-1	180°	<i>C</i> ₂

Sieci Bravais

Dwa sposoby wyboru komórki elementarnej w sieci kubicznej centrowanej na ścianach: a) komórka o wysokiej symetrii, b) komórka prosta

Sieci Bravais

Istnieje 14 możliwych sieci wypełniających przestrzeń. Sieci te noszą nazwę **sieci Bravais**.

Tworzą one 7 układów krystalograficznych

Auguste Bravais 1811-1863

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Sieci Bravais

Oznaczenie węzłów

Kryształy

Oznaczenie węzłów

Kryształy

Oznaczenie kierunków

Kryształy

Wskaźniki kierunków:

 $\begin{bmatrix} u \ v \ w \end{bmatrix}$

Zbiór najmniejszych liczb całkowitych względnie pierwszych u, v, w, które mają się do siebie tak, jak rzuty wektora równoległego do danego kierunku na osie krystaliczne.

 $[n_1\vec{a}_1, n_2\vec{a}_2, n_3\vec{a}_3]$

Wskaźniki węzła

 $n_1 n_2 n_3$

Oznaczenie kierunków

Kryształy

Wskaźniki kierunków:

 $\begin{bmatrix} u \ v \ w \end{bmatrix}$

Zbiór najmniejszych liczb całkowitych względnie pierwszych *u*,*v*,*w*, które mają się do siebie tak, jak rzuty wektora równoległego do danego kierunku na osie krystaliczne.

С

000

В

Kryształy

Należy podać trzy odcinki *A*, *B*, *C*, które płaszczyzna odcina na osiach sieci. Odcinki te wyrażamy w jednostkach osiowych i zapisujemy *1/A*, *1/B*, *1/C* i sprowadzamy do najmniejszego wspólnego mianownika *D*.

$$(h k l)$$
 $h = \frac{D}{A}, k = \frac{D}{B}, l = \frac{D}{C}$

Np.: *A*=2, *B*=3, *C*=6, płaszczyzna (3,2,1)

W domu: obliczyć odległości między kolejnymi płaszczyznami o symbolu (h,k,l).

С

000

[321]

В

Kryształy

Należy podać trzy odcinki *A*, *B*, *C*, które płaszczyzna odcina na osiach sieci. Odcinki te wyrażamy w jednostkach osiowych i zapisujemy *1/A*, *1/B*, *1/C* i sprowadzamy do najmniejszego wspólnego mianownika *D*.

$$(h k l)$$
 $h = \frac{D}{A}, k = \frac{D}{B}, l = \frac{D}{C}$

Np.: *A*=2, *B*=3, *C*=6, płaszczyzna (3,2,1)

W domu: obliczyć odległości między kolejnymi płaszczyznami o symbolu (*h*,*k*,*l*).

Kryształy

Należy podać trzy odcinki *A*, *B*, na osiach sieci. Odcinki te wyra: osiowych i zapisujemy *1/A*, *1/B*, najmniejszego wspólnego mian

$$(h k l) \quad h = \frac{D}{A}, k$$

Np.: *A*=2, *B*=3, *C*=6, płaszczyzna (3,2,1)

W domu: obliczyć odległości między kolejnymi płaszczyznami o symbolu (h,k,l).

Rys. 1.27. Kilka rodzin płaszczyzn (hk0) i ich odległości międzypłaszczyznowe d_{hk0} w rzucie na płaszczyznę (001) prostokątnej sieci przestrzennej

Kryształy

Należy podać trzy odcinki *A*, *B*, *C*, które płaszczyzna odcina na osiach sieci. Odcinki te wyrażamy w jednostkach osiowych i zapisujemy *1/A*, *1/B*, *1/C* i sprowadzamy do najmniejszego wspólnego mianownika *D*.

$$(h k l)$$
 $h = \frac{D}{A}, k = \frac{D}{B}, l = \frac{D}{C}$

Kryształy

Kryształy

Strukturę krystaliczną badamy za pomocą dyfrakcji fotonów, neutronów, elektronów lub innych lekkich cząsteczek

Kryształy

1912 – Max von Laue zauważył, że długości fali promieniowania X są porównywalne z odległościami międzyatomowymi w krysztale. Sugestia ta została szybko potwierdzona przez Waltera Friedricha i Paula Knippinga

Max von Laue 1879 - 1960

Model kryształu. Zbiór odbijających równoległych płaszczyzn o odległościach między płaszczyznowych *d*

 $2d\sin\theta = n\lambda$

np. λ =1,54 Å, a = 4 Å, kryształ o symetrii regularnej, pierwszy refleks θ = 11°

P. Atkins

Metoda Lauego

- Kryształ oświetlony jest światłem białym.
- W wyniku rozproszenia fale o różnych długościach zostają rozproszone w różnych kierunkach. Otrzymujemy na kliszy różne punkty dla różnych kolorów (długości fali).
- Układ plamek ma symetrię taką jak kierunek w krysztale, wzdłuż którego pada fala

Metoda Debaye'a-Scherera

Peter Joseph Debye 1884 – 1966

Paul Scherrer 1890 - 1969

Typowy debajogram

Metoda Debaye'a-Scherera

Badanym ośrodkiem jest proszek z chaotyczna orientacją kryształów w przestrzeni. Oświetla się go falą monochromatyczną. Rozproszenie na różnie zorientowanych kryształach powoduje powstanie na kliszy łuków odpowiadających płaszczyznom, na których możliwe było ugięcie promienia

Typowy debajogram

Czynnik atomowy

Obie sole mają tę samą strukturę krystaliczną, dlaczego dyfraktogramy różnią się?

Czynnik atomowy

dlaczego dyfraktogramy różnią się?

Czynnik atomowy

- •K⁺ i Cl⁻ mają taką samą liczbę elektronów. Podobnie rozpraszają.
- •Dla pewnych kierunków występuje interferencja destruktywna (całkowite wygaszenie)
- •Na⁺ i Cl⁻ ponieważ fale są różnie rozpraszane przez różne atomy, brak jest całkowitego wygaszania.
- Pojawia się więc czynnik atomowy

Rys. 8.2. Dyfrakcja fali elektromagnetycznej przez chmurę gęstości ładunku elektronów w atomie

Rozpraszanie na gazie atomowym. Rozprasza chmura elektronowa.

$$\left|\vec{k}\right| = \left|\vec{k}'\right| = k$$

Rys. 8.3. Oznaczenia używane w obliczeniach

Fala rozproszona

Rys. 8.3. Oznaczenia używane w obliczeniach

$$\Psi = \frac{A}{r} \exp[i(\vec{k}\vec{r} - \omega t)] \int \rho_e(\vec{\xi}) \exp(-i\Delta \vec{k}\vec{\xi}) d^3\xi$$

Atomowy czynnik rozpraszania

$$f = -\frac{1}{e} \int \rho_e(\vec{\xi}) \exp(-i\Delta \vec{k}\vec{\xi}) d^3\xi$$

Dla małych kątów rozproszeń $\Delta k \xi
ightarrow 0$ f = -Z

Atomowy czynnik rozpraszania

$$f = -\frac{1}{e} \int \rho_e(\vec{\xi}) \exp(-i\Delta \vec{k}\vec{\xi}) d^3\xi$$

Dla małych kątów rozproszeń $\Delta k \xi \rightarrow 0$ f = -Z

Atomowy czynnik rozpraszania *f* oznacza stosunek amplitudy promieniowania rozproszonego przez **rzeczywisty rozkład elektronów** w atomie do amplitudy promieniowania rozproszonego przez **jeden elektron punktowy**.

Czynnik atomowy

Dla małych kątów rozpraszania ef = Q (całkowity ładunek)

Atomowy czynnik rozpraszania

$$f = -\frac{1}{e} \int \rho_e(\vec{\xi}) \exp(-i\Delta \vec{k}\vec{\xi}) d^3\xi$$

Geometryczny czynnik strukturalny

Fala rozproszona na jednym atomie:

$$\Psi = A e^{i\left(\vec{k}\,'\vec{r} - \omega t\right)} f$$

Fala rozproszona na wszystkich atomach:

$$\Psi = A \sum_{n} \sum_{j} f_{j} e^{i(\vec{k}'\vec{r} - \omega t)} e^{-i\Delta \vec{k}\vec{R}_{nj}}$$

$$\sum_{j} f_{j} e^{-i\Delta \vec{k} \, \vec{R}_{0j}}$$

Baza $\vec{R}_{nj} = \vec{R}_{0j} + \vec{T}$

Geometryczny czynnik strukturalny

Fala rozproszona na jednym atomie:

$$\Psi = A e^{i\left(\vec{k}\,'\vec{r} - \omega t\right)} f$$

Fala rozproszona na wszystkich atomach:

$$\Psi = A \sum_{n} \sum_{j} f_{j} e^{i(\vec{k}'\vec{r} - \omega t)} e^{-i\Delta \vec{k}\vec{R}_{nj}}$$

Atomy w bazie

$$\sum_{j} f_{j} e^{-i\Delta \vec{k} \, \vec{R}_{0j}}$$

Baza
$$\vec{R}_{nj} = \vec{R}_{0j} + \vec{T}$$

 $\sum_{i} f_{j} e^{-i\Delta \vec{k} \, \vec{R}_{0j}}$

Geometryczny czynnik strukturalny

Fala rozproszona na jednym atomie:

$$\Psi = A e^{i\left(\vec{k} \cdot \vec{r} - \omega t\right)} f$$

Fala rozproszona na wszystkich atomach:

$$\Psi = A \sum_{n} \sum_{j} f_{j} e^{i(\vec{k}'\vec{r} - \omega t)} e^{-i\Delta \vec{k}\vec{R}_{nj}}$$

Atomy w bazie
Period sieci

Baza
$$\vec{R}_{nj} = \vec{R}_{0j} + \vec{T}$$

Geometryczny czynnik strukturalny

Fala rozproszona na jednym atomie:

$$\Psi = A e^{i\left(\vec{k}\,'\vec{r} - \omega t\right)} f$$

Fala rozproszona na wszystkich atomach:

$$\Psi = A \sum_{n} \sum_{j} f_{j} e^{i(\vec{k}'\vec{r} - \omega t)} e^{-i\Delta \vec{k}\vec{R}_{nj}} =$$

$$A e^{i(\vec{k}'\vec{r} - \omega t)} \left[\sum_{j} f_{j} e^{-i\Delta \vec{k}\vec{R}_{0j}} \right] \left[\sum_{n} e^{-i\Delta \vec{k}(n_{1}\vec{t}_{1} + n_{2}\vec{t}_{2} + n_{3}\vec{t})} \right] =$$

$$A e^{i(\vec{k}'\vec{r} - \omega t)} \left[\sum_{j} f_{j} e^{-i\Delta \vec{k}\vec{R}_{0j}} \right] \left[\sum_{n_{1}} e^{-i\Delta \vec{k}n_{1}\vec{t}_{1}} \right] \left[\sum_{n_{2}} e^{-i\Delta \vec{k}n_{2}\vec{t}_{2}} \right] \left[\sum_{n_{3}} e^{-i\Delta \vec{k}n_{3}\vec{t}_{3}} \right]$$

Geometryczny czynnik strukturalny

$$\sum_{n_1} e^{-i\Delta \vec{k} n_1 \vec{t}_1} \left\| \sum_{n_2} e^{-i\Delta \vec{k} n_2 \vec{t}_2} \right\| \sum_{n_3} e^{-i\Delta \vec{k} n_3 \vec{t}_3}$$

Czynnik ten osiąga maksymalną wartość gdy:

$$e^{-i\Delta \vec{k}\vec{t}_j} = 1$$

Są to warunki Lauego, równoważne warunkowi Bragga

$$\Delta \vec{k} \vec{t}_1 = 2\pi h$$
$$\Delta \vec{k} \vec{t}_2 = 2\pi k$$
$$\Delta \vec{k} \vec{t}_3 = 2\pi l$$

Geometryczny czynnik strukturalny

Wygodnie jest wprowadzić 3 wektory niewspółpłaszczyznowe $\vec{g}_{j}\vec{t}_{i}=2\pi\delta_{ij}$

$$\vec{g}_1 = 2\pi \frac{\vec{t}_2 \times \vec{t}_3}{\vec{t}_1(\vec{t}_2 \times \vec{t}_3)}$$
$$|g_i| = \frac{2\pi}{a_i}$$

$$\Delta \vec{k} \vec{t}_1 = 2\pi h$$
$$\Delta \vec{k} \vec{t}_2 = 2\pi k$$
$$\Delta \vec{k} \vec{t}_3 = 2\pi l$$

Dowolny wektor: $\vec{G} = h\vec{g}_1 + k\vec{g}_2 + l \vec{g}_3$ spełnia warunki Lauego, Zatem, refleksy występują gdy: $\Delta \vec{k} = \vec{G}$

Geometryczny czynnik strukturalny

Wygodnie jest wprowadzić 3 wektory niewspółpłaszczyznowe

$$e^{-i\Delta \vec{k}\vec{t}_{j}} = e^{-i\vec{G}\vec{t}_{j}}$$

$$\vec{G}\vec{t} = (h\vec{g}_{1} + k\vec{g}_{2} + l \vec{g}_{3})(n_{1}\vec{t}_{1} + n_{2}\vec{t}_{2} + n_{3}\vec{t}_{3})$$

$$\vec{G}\vec{t} = 2\pi(n_{1}h + n_{2}k + n_{3}l)$$

Geometryczny czynnik strukturalny

$$F(hkl) = \sum_{j} f_{j} \exp(-i2\pi(n_{1}h + n_{1}k + n_{1}l))$$

 $\vec{G} = h\vec{g}_{1} + k\vec{g}_{2} + l \vec{g}_{3}$

$$\overline{g}_{j}t_{i} = 2\pi\delta_{ij}$$

$$g_{1} = 2\pi \frac{\overline{t}_{2} \times \overline{t}_{3}}{\overline{t}_{1}(\overline{t}_{2} \times \overline{t}_{3})}$$
Geometryczny czynnik strukturalny

 $r_1 = (0,0,0)$

 $r_2 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$

Przykład: Dla kryształu Li i kryształu TlBr (sieci typu bcc – regularna przestrzennie centrowana) znaleźć możliwe wartości geometrycznego czynnika strukturalnego.

 $F(hkl) = \sum_{j} f_{j} \exp(-i2\pi(n_{1}h + n_{2}k + n_{3}l))$ $F_{Li}(hkl) = f_{Li} \exp(-i2\pi(0 + 0 + 0)) + f_{Li} \exp\left(-i2\pi\left(\frac{1}{2}h + \frac{1}{2}k + \frac{1}{2}l\right)\right)$ $F_{TIBr}(hkl) = f_{TI} \exp(-i2\pi(0 + 0 + 0)) + f_{Br} \exp\left(-i2\pi\left(\frac{1}{2}h + \frac{1}{2}k + \frac{1}{2}l\right)\right)$

Geometryczny czynnik strukturalny

 $r_1 = (0,0,0)$

 $r_2 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$

Przykład: Dla kryształu Li i kryształu TlBr (sieci typu bcc – regularna przestrzennie centrowana) znaleźć możliwe wartości geometrycznego czynnika strukturalnego.

$$F(hkl) = \sum_{j} f_{j} \exp(-i2\pi(n_{1}h + n_{2}k + n_{3}l))$$

$$F_{Li}(hkl) = f_{Li} \exp(-i2\pi(0 + 0 + 0)) + f_{Li} \exp\left(-i2\pi\left(\frac{1}{2}h + \frac{1}{2}k + \frac{1}{2}l\right)\right)$$

nieparzyste

$$F_{Li}(hkl) = f_{Li}(1 + \exp i\pi(h+k+l))$$

parzyste

Geometryczny czynnik strukturalny

 $r_1 = (0,0,0)$

 $(1 \ 1 \ 1)$

Przykład: Dla kryształu Li i kryształu TlBr (sieci typu bcc – regularna przestrzennie centrowana) znaleźć możliwe wartości geometrycznego czynnika strukturalnego.

$$r_{2} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

$$F(hkl) = \sum_{j} f_{j} \exp(-i2\pi(n_{1}h + n_{1}k + n_{1}l))$$

$$F_{TlBr}(hkl) = f_{Tl} \exp(-i2\pi(0 + 0 + 0)) + f_{Br} \exp\left(-i2\pi\left(\frac{1}{2}h + \frac{1}{2}k + \frac{1}{2}l\right)\right)$$

$$F_{Li}(hkl) = f_{Tl} + f_{Br} \exp(\pi(h + k + l))$$

Neutrony

Neutrony – generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 eV a energia ta odpowiada λ = 1 Å

Neutrony oddziaływają z :

jądrami (można wyznaczyć gęstość prawdopodobieństwa znalezienia jąder), wyznaczyć krzywe dyspersyjne fononów momentami magnetycznymi jąder.

$$E = \frac{\hbar^2}{2M\lambda^2}$$

$$M = 1,675 \times 10^{-24} \text{ g}$$

$$\lambda(A) = \frac{0,28}{\sqrt{E(eV)}}$$

1 Å dla *E*=0,08 eV

Elektrony

Elektrony mają ładunek elektryczny i oddziaływają silnie z materią, wnikają bardzo płytko. Zjawisko ugięcia elektronów pozwala na badania $E = -\frac{\hbar}{E}$

T. Stacewicz & A. Witowski

Elektrony

Elektrony mają ładunek elektryczny i oddziaływają silnie z materią, wnikają bardzo płytko.

Elektrony

Rafał Dunin-Borkowski

Magnetic domains in a thin cobalt

film The colors in the image show the different directions of the magnetic field in a layer of polycrystalline cobalt that has a thickness of only 20 nm. The field of view is approximately 200 microns

http://www.rafaldb.com/pictures-micrographs/index.html

Elektrony

Rafał Dunin-Borkowski

Magnetic nanotubes. The nanotubes were fabricated in the University of Cambridge Engineering department by Yasuhiko Hayashi, who grew them using a Cobalt-Palladium catalyst. This alloy remains present in the ends of the nanotubes, and is magnetic. The nanotubes you see here have a 70-100 nm diameter.

http://www.rafaldb.com/pictures-micrographs/index.html

Elektrony

Rafał Dunin-Borkowski

This image won First Prize in the "Science Close-Up" category in the Daily Telegraph Visions of Science competition. The image shows a multi-walled carbon nanotube, approximately 190 nm in diameter, containing a 35-nm-diameter **iron** crystal encapsulated inside it. Electron holography has been used to obtain a map of the magnetic field surrounding the iron particle, at a spatial resolution of approximately 5 nm.

http://www.rafaldb.com/pictures-micrographs/index.html

Elektrony

Rafał Dunin-Borkowski

The image shows the magnetic field lines in a single **magnetosome chains** in a **bacterial cell**. The fine white lines are the magnetic field lines in the cell, which were measured using offaxis electron holography.

http://www.rafaldb.com/pictures-micrographs/index.html

Studia li stopnia IN

Studia II stopnia na makrokierunku **"Inżynieria nanostruktur"** odbywają się w ramach trzech ścieżek kształcenia:

- Fotonika (Photonics),
- Modelowanie Natostruktur i Nowych Materiałów (MONASTR) (Modeling of Nanostructures and Novel Materials), Nanotechnologie
- Charakteryzacja Nowych Materiałów (NiChNM) (Nanotechnologies and the Characterization of Novel Materials).

Studenci mają do wyboru zajęcia profilowane na zdobycie specjalistycznego wykształcenia związanego z nanotechnologiami, zagadnieniami będącymi aktualnymi problemami naukowymi i realizacji programu studiów II stopnia we współpracy z grupami badawczymi.

Studia li stopnia IN

Po pierwszym semestrze II etapu studiów, studenci mogą wybrać ścieżkę kształcenia. W tym celu muszą udać się do opiekuna danej ścieżki, który przedstawi możliwości wykonywania prac magisterskich oraz ich opiekunów. Opiekun będzie ustalał z każdym studentem indywidualny program studiów w zakresie wybieranych przedmiotów

Nowe wyzwania - nowe kierunki. Rozwój kierunków interdyscyplinarnych dla potrzeb gospodarki opartej na wiedzy

- Stypenida 1000 zł/mies
- Wyjazdy na dowolne konferencje w Europie
- Zajęcia dokształcające i warsztaty naukowe
- Pomoc w znalezieniu zatrudnienia