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The Landau gauge solution

1

2𝑚
Ƹ𝑝 − 𝑞 Ԧ𝐴 Ԧ𝑟, 𝑡

2
+ 𝑞𝜑 Ԧ𝑟, 𝑡 + 𝑈 Ԧ𝑟, 𝑡 𝜓 Ԧ𝑟, 𝑡 = 𝑖ℏ

𝑑

𝑑𝑡
𝜓 Ԧ𝑟, 𝑡

Landau gauge: magnetic field 𝐵 = 0,0, 𝐵𝑧 ⇒ 𝐵𝑧 =
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦

Ԧ𝐴 = 0, 𝐵𝑧𝑥, 0 czyli 𝐴𝑦 = 𝐵𝑧𝑥 ≝ 𝐵𝑥

(unfortunately distinguishes
direction)

1

2𝑚
−ℏ2

𝜕2

𝜕𝑥2
+ −𝑖ℏ

𝜕

𝜕𝑦
+ 𝑒𝐵𝑥

2

− ℏ2
𝜕2

𝜕𝑧2
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

−
ℏ2

2𝑚
𝛻2 −

𝑖𝑒ℏ

𝑚
𝐵𝑥

𝜕

𝜕𝑦
+

𝑒𝐵𝑥 2

2𝑚
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟Which gives:

The evidence of the Lorentz force Parabolic potential!

We assume that in a plane 𝑥𝑦
there is no other potential

𝑞 = −𝑒
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−
ℏ2

2𝑚
𝛻2 −

𝑖𝑒ℏ

𝑚
𝐵𝑥

𝜕

𝜕𝑦
+

𝑒𝐵𝑥 2

2𝑚
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

Vector potential does not depend on 𝑦, we can assume the function of the form: 

𝜓 Ԧ𝑟 = 𝑤 𝑧 𝑢 𝑥 exp 𝑖𝑘𝑦𝑦

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+
1

2
𝑚 𝜔𝑐

2 𝑥 +
ℏ𝑘𝑦

𝑒𝐵

2

𝑢 𝑥 = 𝜀𝑢 𝑥 𝜔𝑐 =
𝑒𝐵

𝑚
𝑅𝑐 =

𝑣

𝜔𝑐
=

2𝑚𝐸

𝑒𝐵

Cyclotron radius (gyroradius)Cyclotron frequency

The parabolic potential of the form of 𝑥𝑘 = −ℏ𝑘𝑦/𝑒𝐵

𝑘𝑦 wave vector. What interesting in 𝜀 THERE IS NO 𝑘𝑦. 
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−
ℏ2

2𝑚
𝛻2 −

𝑖𝑒ℏ

𝑚
𝐵𝑥

𝜕

𝜕𝑦
+

𝑒𝐵𝑥 2

2𝑚
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+
1

2
𝑚 𝜔𝑐

2 𝑥 +
ℏ𝑘𝑦

𝑒𝐵

2

𝑢 𝑥 = 𝜀𝑢 𝑥 𝜔𝑐 =
𝑒𝐵

𝑚
𝑅𝑐 =

𝑣

𝜔𝑐
=

2𝑚𝐸

𝑒𝐵

Magnetic length: 𝑙𝐵 =
ℏ

𝑚𝜔𝑐
=

ℏ

𝑒𝐵
does not depend on mass 𝑚, but ONLY on magnetic

field 𝐵!

The typical value for 𝐵 = 1.0 T is 𝑙𝐵 = 26 nm.

Solutions 𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 (does not depend on 𝑘𝑦).

𝜙𝑛𝑘 𝑥, 𝑦 ∝ 𝐻𝑛−1
𝑥 − 𝑥𝑘
𝑙𝐵

exp −
𝑥 − 𝑥𝑘

2

2𝑙𝐵
2 exp 𝑖𝑘𝑦𝑦

𝑛 = 1, 2, 3… they are subsequent Landau levels.

Vector potential does not depend on 𝑦, we can assume the function of the form: 

𝜓 Ԧ𝑟 = 𝑤 𝑧 𝑢 𝑥 exp 𝑖𝑘𝑦𝑦
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Solutions 𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 + 𝐸𝑛 (does not depend on 𝑘𝑦; 𝐸𝑛- is any 2D energy).

𝜙𝑛𝑘 𝑥, 𝑦 ∝ 𝐻𝑛−1
𝑥 − 𝑥𝑘
𝑙𝐵

exp −
𝑥 − 𝑥𝑘

2

2𝑙𝐵
2 exp 𝑖𝑘𝑦𝑦

Wave functions are the functions of the oscillator (along 𝑥, of the order of 𝑙𝐵/ 2) and travelling 
waves (along 𝑦) – weird, right? Why?

The energy does not depend on 𝑘 vector – states of different 𝑘 have the same energy, so they 
are degenerated (therefore any combination of them does not change the energy).

The density of states is reduced from the constant
𝑚

𝜋ℏ2
to a series of discrete values 𝛿

given by the equation of 𝜀𝑛𝑘 - they are called Landau levels.

Full energy (including binding potential in 𝑧 direction): 

𝑛 = 1, 2, 3…

𝐵

𝐸

𝐸1

𝐸2

𝐸 = 𝐸𝑧 + 𝜀𝑛𝑘 = 𝐸𝑧 + 𝑛 −
1

2
ℏ𝜔𝑐

𝑛 = 1, 2, 3…

The 2D case:
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𝑛 = 1, 2, 3… are subsequent Landau levels.
Solution:

The 3D case (no 𝑈(𝑧) potential)

𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 +

ℏ2𝑘𝑧
2

2𝑚∗

DOS reminds 1D because it is possible 
to move only in the direction 𝑧

𝑘𝑧
http://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/mag/
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The solution in the symmetric gauge:

1

2𝑚
Ƹ𝑝 − 𝑞 Ԧ𝐴 Ԧ𝑟, 𝑡

2
+ 𝑞𝜑 Ԧ𝑟, 𝑡 + 𝑈 Ԧ𝑟, 𝑡 𝜓 Ԧ𝑟, 𝑡 = 𝑖ℏ

𝑑

𝑑𝑡
𝜓 Ԧ𝑟, 𝑡

The symmetric gauge: field 𝐵 = 0,0, 𝐵𝑧 ⇒ 𝐴𝜃 =
1

2
𝐵𝑟, 𝐴𝑟 = 0, 𝐴𝑧 = 0

−
ℏ2

2𝑚

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2
𝜕2

𝜕𝜃2
−
𝑖ℏ𝑒𝐵

𝑚

𝜕

𝜕𝜃
+
𝑒2𝐵2𝑟2

8𝑚
+ 𝑈 𝑧 𝜓 𝑟, 𝜃, 𝑧 = 𝐸𝜓 𝑟, 𝜃, 𝑧

This time a rotation angle 𝜃 is the invariant, which can be associated with angular momentum 
and the function in the form of exp 𝑖𝑙𝜃

𝜀𝑛𝑙 = 𝑛 +
1

2
𝑙 +

1

2
𝑙 −

1

2
ℏ𝜔𝑐

𝜙𝑛𝑘 𝑟, 𝜃 ∝ exp 𝑖𝑙𝜃 exp −
𝑟2

4𝑙𝐵
2 𝑟 𝑙 𝐿𝑛−1

𝑙 𝑟2

2𝑙𝐵
2

Associate Laguerre polynomial

The symmetrical potential also has its 
drawbacks - where is the origin of ALL 
cyclotron orbits? 
What are the solutions with negative sign?

𝑛 = 1, 2, 3… 𝑙 = 0,±1, ±2, ±3…
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Electron spin: 𝜇𝐵 =
𝑒ℏ

2𝑚0
(Bohr magneton = magnitude of the magnetic moment of the electron 

on the orbit of the total angular momentum 1ℏ)

In general g-factor may be the tensor

In the case of free electron 𝑔 = 2,0023…, but in the solid state it may have very different 
values (eg. 𝑔 = −0.44 in GaAs and 𝑔 = +0.4 in Al0.3Ga0.7As).

𝐻′ = 𝜇𝐵𝐵𝑔 መ𝑆

In a magnetic field, we cannot forget about spin!
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We return to the Landau gauge:

Question: for a given 𝑛 (i.e. Landau level) how many different states 𝜙𝑛𝑘 𝑥, 𝑦 of the same 
energy there are – i.e. what is the degeneration of the Landau levels?

Let's calculate how many different functions of quantum numbers 𝑘𝑦 (only 𝑘𝑦 counts, because

in Landau gauge 𝑥𝑘 depends only on 𝑘𝑦) – similar considerations can be worked out in an 

arbitrary gauge.

𝑛 = 1, 2, 3…

Solutions 𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 + 𝐸𝑛 (does not depend on 𝑘𝑦; 𝐸𝑛- is any 2D energy).

𝜙𝑛𝑘 𝑥, 𝑦 ∝ 𝐻𝑛−1
𝑥 − 𝑥𝑘
𝑙𝐵

exp −
𝑥 − 𝑥𝑘

2

2𝑙𝐵
2 exp 𝑖𝑘𝑦𝑦
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We return to the Landau gauge:

Question: for a given 𝑛 (i.e. Landau level) how many different states 𝜙𝑛𝑘 𝑥, 𝑦 of the same 
energy there are – i.e. what is the degeneration of the Landau levels?

Let's calculate how many different functions of quantum numbers 𝑘𝑦 (only 𝑘𝑦 counts, because

in Landau gauge 𝑥𝑘 depends only on 𝑘𝑦) – similar considerations can be worked out in an 

arbitrary gauge.

𝑛 = 1, 2, 3…

Solutions 𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 + 𝐸𝑛 (does not depend on 𝑘𝑦; 𝐸𝑛- is any 2D energy).

𝜙𝑛𝑘 𝑥, 𝑦 ∝ 𝐻𝑛−1
𝑥 − 𝑥𝑘
𝑙𝐵

exp −
𝑥 − 𝑥𝑘

2

2𝑙𝐵
2 exp 𝑖𝑘𝑦𝑦

What is the number of states per one level? The sample S = 𝐿𝑥 × 𝐿𝑦, in the Landau gauge for 𝑦

coordnate we have plane wave condition 𝑘 = 2𝜋/𝐿𝑦 𝑛𝑦 (where 𝑛𝑦 is an integer number). 

How many states of different 𝒏𝒚 there are?

For 𝑥 coordinate the wavefunction is centered in 𝑥𝑘 = −
ℏ𝑘

𝑒𝐵
= − 2𝜋ℏ𝑛𝑦/𝑒𝐵𝐿𝑦 .

If 𝑛𝑦 is too large then 𝑥𝑘 can be outside the sample – no harmonic force, no harmonic solution.
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The solution of the Schrödinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = 𝐿𝑥 × 𝐿𝑦, in the Landau gauge for 𝑦

coordnate we have plane wave condition 𝑘 = 2𝜋/𝐿𝑦 𝑛𝑦 (where 𝑛𝑦 is an integer number). 

For 𝑥 coordinate the wavefunction is centered in 𝑥𝑘 = −
ℏ𝑘

𝑒𝐵
= − 2𝜋ℏ𝑛𝑦/𝑒𝐵𝐿𝑦 .

The condition for 𝑥𝑘 to be in the sample (rather than outside):

−𝐿𝑥 <
2𝜋ℏ𝑛𝑦

𝑒𝐵𝐿𝑦
< 0 czyli 0 < 𝑛𝑦 <

𝑒𝐵

ℎ
𝐿𝑥𝐿𝑦 = 𝑛𝐵𝑆

There is no factor 2 associated with the degeneracy of the 
spin (because spin in the magnetic field is not degenerated)

The dimension of 𝑛𝐵 =
𝑒𝐵

ℎ
is "amount" per unit area

𝑛𝐵 =
𝑒𝐵

ℎ

The degeneration of Landau levels – is the number of allowed states for each of 
the Landau level per unit area – it increases with increasing field 𝐵

(the absolute value)
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The solution of the Schrödinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = 𝐿𝑥 × 𝐿𝑦, in the Landau gauge for 𝑦

coordnate we have plane wave condition 𝑘 = 2𝜋/𝐿𝑦 𝑛𝑦 (where 𝑛𝑦 is an integer number). 

For 𝑥 coordinate the wavefunction is centered in 𝑥𝑘 = −
ℏ𝑘

𝑒𝐵
= − 2𝜋ℏ𝑛𝑦/𝑒𝐵𝐿𝑦 .

The condition for 𝑥𝑘 to be in the sample (rather than outside):

−𝐿𝑥 <
2𝜋ℏ𝑛𝑦

𝑒𝐵𝐿𝑦
< 0 czyli

Φ0 =
ℎ

𝑒
= 4.135667516 × 10−15 Wb

The magnetic flux quantum (pol. flukson) (In a superconductor ℎ/2𝑒, so this is not a „quantum”)

Φ = 𝐵𝑆 the total magnetic flux in the sample S = 𝐿𝑥 × 𝐿𝑦

[Wb]=[T m2]

0 < 𝑛𝑦Φ0 < Φ

The amount of allowed states is related to the amount of magnetic flux quanta passing through 
the sample!  

flux

0 < 𝑛𝑦 <
𝑒𝐵

ℎ
𝐿𝑥𝐿𝑦 = 𝑛𝐵𝑆 =

𝑒

ℎ
𝐵𝑆 =

Φ

Φ0
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The density of states (in general) can be defined as:

𝑁 𝐸 =෍

𝑛

𝛿 𝐸 − 𝜀𝑛

After integration

න
𝐸1

𝐸2

𝑁 𝐸 𝑑𝐸 = න
𝐸1

𝐸2

෍

𝑛

𝛿 𝐸 − 𝜀𝑛 𝑑𝐸 =෍

𝑛

න
𝐸1

𝐸2

𝛿 𝐸 − 𝜀𝑛 𝑑𝐸

For instance:

𝑁1𝐷 𝐸 =෍

𝑘

𝛿 𝐸 − 𝜀 𝑘 = න
1

𝐸′ 𝑘
𝛿 𝑘 − 𝑘′ 2 𝑑𝑘 =

1

𝜋

2𝑚

𝐸

𝑁2𝐷 𝐸 =෍

𝑘

𝛿 𝐸 − 𝜀 𝑘 = න
1

𝐸′ 𝑘
𝛿 𝑘 − 𝑘′ 2𝜋𝑘 𝑑𝑘 =

𝑚

𝜋ℏ2

𝑁3𝐷 𝐸 =෍

𝑘

𝛿 𝐸 − 𝜀 𝑘 = න
1

𝐸′ 𝑘
𝛿 𝑘 − 𝑘′ 4𝜋𝑘2 𝑑𝑘 =

1

2𝜋2
2𝑚

ℏ2

3/2

𝐸
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Each of the states on the Landau level occupies an area 
ℎ

𝑒𝐵
= 2𝜋𝑙𝐵

2

2𝑛𝐵 =
2𝑒𝐵

ℎ
=
2𝑚𝜔𝑐
2𝜋ℏ

=
𝑚

𝜋ℏ2
ℏ𝜔𝑐

𝑙𝐵 =
ℏ

𝑚𝜔𝑐
=

ℏ

𝑒𝐵

Counting 2 spins:

𝑁2𝐷 𝐸 =
𝑚

𝜋ℏ2
Broadening of levels due to the scattering Γ = ℏ/𝜏𝑖

𝜏𝑖 this is single-particle
(or quantum) lifetime –

this is NOT the same time, 
which we discussed with
Drude model (transport

lifetime)
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𝑛𝐵 =
𝑒𝐵

ℎ

The carrier concentration in 2D: 𝑛2𝐷 – on how many Landau levels these carriers can be hold? 

Filling factor 𝜈 (współczynnik wypełnienia) – usually this is not an integer

𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷 (taking into account the spin degeneracy)

Increasing the magnetic field we are successively filling the Landau levels. You can completely
fill 𝑛-th level (𝜈 = 𝑛) and then 𝐵𝑛 = ℎ𝑛2𝐷/𝑒𝑛, until we reach 𝑛 = 1, i.e. all electrons are at the 
same Landau level (ie. the quantum limit).

For 𝜈 < 1 nteresting things happens (which'll be right back!)

The degeneration of Landau levels – is the number of allowed states for each of 
the Landau level per unit area – it increases with increasing field 𝐵
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𝑛𝐵 =
𝑒𝐵

ℎ

The carrier concentration in 2D: 𝑛2𝐷 – on how many Landau levels these carriers can be hold? 

Filling factor 𝜈 (współczynnik wypełnienia) – usually this is not an integer

𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷 (taking into account the spin degeneracy)

The degeneration of Landau levels – is the number of allowed states for each of 
the Landau level per unit area – it increases with increasing field 𝐵
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The Fermi level lies between Landau levels -
there is no DOS, change of 𝐸𝐹 does not change
DOS –incompressible states (stany nieściśliwe)

The Fermi level lies inside the Landau level –
large DOS, change of 𝐸𝐹 strongly affects the DOS 
– compressible states (stany ściśliwe)
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𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷The Fermi level in the magnetic field:
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𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷

Fig. 16. Landau level fan diagram for the magnetic 
2DEG sample described in Fig. 15. Solid (dashed) 
lines correspond to spin-down (spin-up) states. The 
dark solid line shows the variation of the Fermi 
energy with magnetic field. Parameters used in this 
calculation are: EF=7 meV at B=0, and T=360 mK. The 
spin-splitting parameters used are obtained by fitting 
the magneto-optical data in Fig. 3: T0=2.1 K and a 
saturation conduction band spin splitting of 12.9 
meV.

Spin dynamics and quantum transport in magnetic semiconductor quantum structures
D.D Awschalom, N. Samarth, Journal of Magnetism and Magnetic Materials 200 (1999) 130-147

The Fermi level in the magnetic field:

http://www.sciencedirect.com/science/article/pii/S0304885399004242
http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_eid=1-s2.0-S0304885399004242&_image=1-s2.0-S0304885399004242-gr16.gif&_ba=&_fmt=full&_orig=na&_issn=03048853&_pii=S0304885399004242&_acct=C000013398&_version=1&_urlVersion=0&_userid=11058710&md5=29edc6dc2a7f01228b581d67b1715bf2
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Shubnikov-de Haas effect

http://www2.physics.ox.ac.uk/sites/default/files/BandMT_09.pdf
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Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.

http://groups.physics.umn.edu/zudovlab/content/sdho.htm

Oscillations depend on the ratio of the Fermi energy 
𝐸𝐹 to the cyclotron frequency ℏ𝜔𝑐 = 𝑒𝐵/𝑚∗. 
Oscillations are periodic in 1/𝐵. 

𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷

From SdH we can determine the effective mass 𝑚∗

and quantum time 𝜏𝑞. The amplitude of oscillation is 

given by
Δ𝜌𝑆𝑑𝐻 = 4𝜌0𝛿 cos 4𝜋𝜈

𝜉 𝑇

sinh 𝜉 𝑇
exp −

𝜋

𝜔𝑐𝜏𝑞

𝜉 𝑇 = 2𝜋2𝑘𝑇/ℏ𝜔𝑐

Temperature dependence gives 𝑚∗, damping 𝜏𝑞.
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Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.

Oscillations depend on the ratio of the Fermi energy 
𝐸𝐹 to the cyclotron frequency ℏ𝜔𝑐 = 𝑒𝐵/𝑚∗. 
Oscillations are periodic in 1/𝐵. 

𝜈 =
𝑛2𝐷
𝑛𝐵

=
ℎ𝑛2𝐷
𝑒𝐵

=
Φ0𝑛2𝐷
𝐵

= 2𝜋𝑙𝐵
2𝑛2𝐷

From SdH we can determine the effective mass 𝑚∗

and quantum time 𝜏𝑞. The amplitude of oscillation is 

given by
Δ𝜌𝑆𝑑𝐻 = 4𝜌0𝛿 cos 4𝜋𝜈

𝜉 𝑇

sinh 𝜉 𝑇
exp −

𝜋

𝜔𝑐𝜏𝑞

𝜉 𝑇 = 2𝜋2𝑘𝑇/ℏ𝜔𝑐

Temperature dependence gives 𝑚∗, damping 𝜏𝑞.
A. Nainani et al. Solid-State Electronics 62 (2011) 138–141
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Shubnikov-de Haas effect

Aneesh Nainani et al. Solid-State Electronics 62 (2011) 138–141
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Shubnikov-de Haas effect

Aneesh Nainani et al. Solid-State Electronics 62 (2011) 138–141

𝜉 𝑇 = 2𝜋2𝑇/𝜔𝑐
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Shubnikov-de Haas effect

Henriques et al. Brazil. J. of Phys. 29, 707  (1999)

15 period multiple 
quantum well structure 
composed of a 50Å thick 
lattice matched InGaAs
quantum well and a 
50Å thick InP barrier.



Shubnikov-de Haas effect

2017-06-05 26

Shubnikov-de Haas effect

K. Nogajewski et al.,
Appl. Phys. Lett. 99, 213501 (2011)

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.
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Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.
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Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized

𝑅𝐻 =
1

𝜈

ℎ

𝑒2
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Harmonic potential 2D
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𝐸𝑛
𝑥 = ℏ𝜔0 𝑛𝑥 +

1

2
in the 𝑥-direction and the same in 𝑦

𝐸𝑛
𝑦
= ℏ𝜔0 𝑛𝑦 +

1

2

𝐸𝑛 = 𝐸𝑛
𝑥 + 𝐸𝑛

𝑦
= ℏ𝜔0 𝑁 + 1

Degeneracy? 𝑁 = 𝑛𝑥 + 𝑛𝑦
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𝐸𝑛
𝑥 = ℏ𝜔0 𝑛𝑥 +

1

2

𝐸𝑛
𝑦
= ℏ𝜔0 𝑛𝑦 +

1

2

𝐸𝑛 = 𝐸𝑛
𝑥 + 𝐸𝑛

𝑦
= ℏ𝜔0 𝑁 + 1

𝑵 (𝒏𝒙, 𝒏𝒚)

0 (0,0)

1 (1,0) (0,1)

2 (2,0) (1,1) (0,2)

3 (3,0) (2,1) (1,2) (0,3)

𝑔𝑁 = 𝑁 + 1

𝑁 = 𝑛𝑥 + 𝑛𝑦

in the 𝑥-direction and the same in 𝑦

Degeneracy?
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-3 -2 -1 0 1 2 3

 d-  d
0
  d+ 

 p-  p+ 

 s 

E
n
e
rg

y
 [
e
V

]
Angular Momentum -L

n, m = 0,1,2...

L = n - m (elektron)

Adam Babiński
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The solution in the symmetric gauge:

1

2𝑚
Ƹ𝑝 − 𝑞 Ԧ𝐴 Ԧ𝑟, 𝑡

2
+ 𝑞𝜑 Ԧ𝑟, 𝑡 + 𝑈 Ԧ𝑟, 𝑡 𝜓 Ԧ𝑟, 𝑡 = 𝑖ℏ

𝑑

𝑑𝑡
𝜓 Ԧ𝑟, 𝑡

The symmetric gauge: field 𝐵 = 0,0, 𝐵𝑧 ⇒ 𝐴𝜃 =
1

2
𝐵𝑟, 𝐴𝑟 = 0, 𝐴𝑧 = 0

−
ℏ2

2𝑚

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+
1

𝑟2
𝜕2

𝜕𝜃2
−
𝑖ℏ𝑒𝐵

𝑚

𝜕

𝜕𝜃
+
𝑒2𝐵2𝑟2

8𝑚
+ 𝑈 𝑧 𝜓 𝑟, 𝜃, 𝑧 = 𝐸𝜓 𝑟, 𝜃, 𝑧

This time a rotation angle 𝜃 is the invariant, which can be associated with angular momentum 
and the function in the form of exp 𝑖𝑙𝜃

𝜀𝑛𝑙 = 𝑛 +
1

2
𝑙 +

1

2
𝑙 −

1

2
ℏ𝜔𝑐

𝜙𝑛𝑘 𝑟, 𝜃 ∝ exp 𝑖𝑙𝜃 exp −
𝑟2

4𝑙𝐵
2 𝑟 𝑙 𝐿𝑛−1

𝑙 𝑟2

2𝑙𝐵
2

Associate Laguerre polynomial

The symmetrical potential also has its 
drawbacks - where is the origin of ALL 
cyclotron orbits? 
What are the solutions with negative sign?

𝑛 = 1, 2, 3… 𝑙 = 0,±1, ±2, ±3…
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𝐸𝑛𝑙 = 2𝑛 + 𝑙 − 1 ℏ𝜔0
2 +

1

2
ℏ𝜔𝑐

2

+
1

2
ℏ𝜔𝑐 𝑙

𝑛 = 1, 2, 3… 𝑙 = 0, ±1,±2, ±3…
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Quantum dots
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Fock-Darwin spectrum



Hofstadter butterfly
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The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in two-
dimensional periodic potential under the influence of a perpendicular magnetic field. The 
horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the 
periodic potential. The flux is a dimensionless number when measured in quantum flux units 
(will call it a). It is an example of a fractal energy spectrum. When the flux parameter a is 
rational and equal to p/q with p and q relatively prime, the spectrum consists of q non-
overlapping energy bands, and therefore q+1 energy gaps (gaps number 0 and q are the regions 
below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set. 
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Hofstadter butterfly
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The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in two-
dimensional periodic potential under the influence of a perpendicular magnetic field. The 
horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the 
periodic potential. The flux is a dimensionless number when measured in quantum flux units 
(will call it a). It is an example of a fractal energy spectrum. When the flux parameter a is 
rational and equal to p/q with p and q relatively prime, the spectrum consists of q non-
overlapping energy bands, and therefore q+1 energy gaps (gaps number 0 and q are the regions 
below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set. 
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Hofstadter's butterfly

2017-06-05 39

http://en.wikipedia.org/wiki/Hofstadter%27s_butterfy
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http://en.wikipedia.org/wiki/Hofstadter%27s_butterfy
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Hofstadter's butterfly
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Shubnikov-de Haas effect
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Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.



Integer Quantum Hall Effect (IQHE)

2017-06-05 44

Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized

𝑅𝐻 =
1

𝜈

ℎ

𝑒2



Integer Quantum Hall Effect (IQHE)
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈

ℎ

𝑒2

Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized



Conductivity tensor
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𝑚∗
𝑑 Ԧ𝑣

𝑑𝑡
+
Ԧ𝑣

𝜏
= 𝑞𝐸 + 𝑞 Ԧ𝑣 × 𝐵

Conductivity 𝜎 = 𝑛 𝑒 𝜇

current density: Ԧ𝑗 = 𝜎𝐸 - generally 𝜎 can be a tensor:

Ԧ𝑗𝑥 = 𝑞 𝑛 Ԧ𝑣𝑥 and Ԧ𝑣𝑥 =
𝑞𝜏

𝑚
𝐸𝑥 = 𝜇 𝐸𝑥

In general e.g. 𝑗𝑥 = 𝜎𝑥𝑥 𝐸𝑥 and 𝑗𝑦 = 𝜎𝑦𝑥𝐸𝑥 etc.

𝑚∗
𝑑𝑣𝑥
𝑑𝑡

+
𝑣𝑥
𝜏

= 𝑞𝐸𝑥 + 𝑞𝑣𝑦𝐵

𝑚∗
𝑑𝑣𝑦

𝑑𝑡
+
𝑣𝑦

𝜏
= 𝑞𝐸𝑦 − 𝑞𝑣𝑥𝐵

Drude model with magnetic field:

𝜏 − momentum relaxation time (scattering time)
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𝑚∗
𝑑 Ԧ𝑣

𝑑𝑡
+
Ԧ𝑣

𝜏
= 𝑞𝐸 + 𝑞 Ԧ𝑣 × 𝐵

Lorentz force: Ԧ𝐹 = 𝑞 Ԧ𝑣 × 𝐵

𝑚∗
𝑑𝑣𝑥
𝑑𝑡

+
𝑣𝑥
𝜏

= 𝑞𝐸𝑥 + 𝑞𝑣𝑦𝐵

𝑚∗
𝑑𝑣𝑦

𝑑𝑡
+
𝑣𝑦

𝜏
= 𝑞𝐸𝑦 − 𝑞𝑣𝑥𝐵

Drude model:

𝜏 − momentum relaxation time (scattering time)

𝑣𝑦 1 + 𝜔𝑐
2𝜏2 =

𝑞𝜏

𝑚∗ 𝐸𝑦 − 𝜔𝑐𝜏𝐸𝑥

𝜔𝑐 =
𝑞𝐵

𝑚∗ 𝜇 =
𝑞𝜏

𝑚∗

We get:

𝑗𝑦 = 0 =෍

𝑖

𝑞𝑖𝑛𝑣𝑦
𝑖
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We get so-called Hall constant:

Neglecting 𝜔𝑐
2𝜏2 ≪ 1 and taking into account conductivity of electrons 𝑛 and holes 𝑝 :

𝑗𝑦 = 0 =෍

𝑖

𝑞𝑖𝑛𝑣𝑦
𝑖

𝐸𝑦 𝑛𝜇𝑐 + 𝑝𝜇ℎ = 𝐸𝑥𝐵 𝑝𝜇ℎ
2 − 𝑛𝜇𝑐

2

𝑅𝐻 =
𝐸𝑦

𝑗𝑥𝐵
=

1

𝑒

𝑝𝜇ℎ
2 − 𝑛𝜇𝑐

2

𝑛𝜇𝑐 + 𝑝𝜇ℎ 2

E.g. for 𝑝 = 0 we get 𝑅𝐻 = −
1

𝑒𝑛
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Taking 𝜎0 = 𝑛 𝑒 𝜇 = 𝑛 𝑒2 𝜏/𝑚

𝑗𝑥 = 𝜎𝑥𝑥𝐸𝑥 𝑗𝑦 = 𝜎𝑦𝑥𝐸𝑥

𝜎𝑥𝑥 =
𝜎0

1 + 𝜔𝑐
2𝜏2

𝜎𝑦𝑥 =
𝜎0𝜔𝑐𝜏

1 + 𝜔𝑐
2𝜏2
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𝐽𝑥
𝐽𝑦

=
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑦𝑥 𝜎𝑦𝑦

𝐸𝑥
𝐸𝑦

𝜎 =
𝜎𝑥𝑥 −𝜎𝑦𝑥
𝜎𝑦𝑥 𝜎𝑥𝑥

=
𝜎𝐿 −𝜎𝑇
𝜎𝑇 𝜎𝐿

=
𝜎0

1 + 𝜔𝑐
2𝜏2

1 𝜔𝑐𝜏
−𝜔𝑐𝜏 1

Conductivity tensor:

In case of the Hall effect 𝐸 = 𝐸𝑥 , 0,0 :

Resisitivity tensor: 𝜌 =
1

𝜎𝐿
2 + 𝜎𝑇

2

𝜎𝐿 −𝜎𝑇
𝜎𝑇 𝜎𝐿

=
1

𝜎0

1 −𝜔𝑐𝜏
𝜔𝑐𝜏 1

𝑑

𝑎
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𝜎 = 𝑛𝑒𝜇

1

1 + 𝑠2
−𝑠

1 + 𝑠2
0

𝑠

1 + 𝑠2
1

1 + 𝑠2
0

0 0 1

𝑠 =
𝑒𝐵𝜏

𝑚∗
= 𝜔𝑐𝜏

𝜇 =
𝑒𝜏

𝑚∗

𝜌 = 𝜎−1 =
1

𝑛𝑒𝜇

1 𝑠 0
−𝑠 1 0
0 0 1

The full coductivity tensor

The full resistivity tensor

𝐸 = 𝜌Ԧ𝑗 =

𝑗𝑥
𝑛𝑒𝜇

−
𝑗𝑥𝐵

𝑛𝑒
0

𝑈𝑥𝑦 = 𝐸𝑦𝑤 =
𝐼𝑥
𝑤𝑑

𝐵

𝑛𝑒
𝑤 =

𝐼𝑥
𝑑𝑛𝑒

𝐵 = 𝑅𝐻
𝐼𝑥𝐵

𝑑

𝑑

𝑅𝐻 =
1

𝑛𝑒

𝑎

Hall constant



Hall effect

05/06/2017 51

𝜎 = 𝑛𝑒𝜇

1

1 + 𝑠2
−𝑠

1 + 𝑠2
0

𝑠

1 + 𝑠2
1

1 + 𝑠2
0

0 0 1

𝜌 = 𝜎−1 =
1

𝑛𝑒𝜇

1 𝑠 0
−𝑠 1 0
0 0 1

Magnetic field (T)
R

es
is

ti
vi

ty
(Ω
𝑐𝑚

)

𝜎 =෍

𝑖

𝜎𝑖

For the different conductivity channels:

Muti-carrier transport – we analyse the tensor 𝜎
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The full coductivity tensor

The full resistivity tensor
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𝜎 = 𝑛𝑒𝜇

1

1 + 𝑠2
−𝑠

1 + 𝑠2
0

𝑠

1 + 𝑠2
1

1 + 𝑠2
0

0 0 1

𝜌 = 𝜎−1 =
1

𝑛𝑒𝜇

1 𝑠 0
−𝑠 1 0
0 0 1

𝑅𝐻 =
1

𝑛𝑒

𝜎 =෍

𝑖

𝜎𝑖 Muti-carrier transport
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For the different conductivity channels:

The full coductivity tensor

The full resistivity tensor
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Multi-carrier transport in graphene (M. Gryglas-Borysiewicz) R
o

m
an
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𝜎 = 𝑛𝑒𝜇

1

1 + 𝑠2
−𝑠

1 + 𝑠2
0

𝑠

1 + 𝑠2
1

1 + 𝑠2
0

0 0 1

𝑠 =
𝑒𝐵𝜏

𝑚∗ = 𝜔𝑐𝜏

𝜇 =
𝑒𝜏

𝑚∗
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Shubnikov-de Haas effect
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Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for 𝜈 = 𝑛 and 

is highest for 𝜈 ≈ 𝑛 +
1

2
- the easiest measurement 

is the magnetoresistance 𝑅𝑥𝑥.
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Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized

𝑅𝐻 =
1

𝜈

ℎ

𝑒2



Integer Quantum Hall Effect (IQHE)
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈

ℎ

𝑒2

Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized
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Quantum Hall Effect
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Quantum Hall Effect
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Horst Stormer, Nobel Lecture

Integer Quantum Hall effect (IQHE) 
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Horst Stormer, Nobel Lecture
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𝜌 = 𝜎−1 =
1

𝑛𝑒𝜇

1 −𝑠 0
𝑠 1 0
0 0 1

Conductivity tensor

Full resistivity tensor

𝜎 =
𝜎𝐿 −𝜎𝑇
𝜎𝑇 𝜎𝐿

=
𝜎0

1 + 𝜔𝑐
2𝜏2

1 𝜔𝑐𝜏
−𝜔𝑐𝜏 1

thus 𝜌~𝜎𝐿 !

𝜌 =
1

𝜎𝐿
2 + 𝜎𝑇

2

𝜎𝐿 −𝜎𝑇
𝜎𝑇 𝜎𝐿

=
1

𝜎0

1 −𝜔𝑐𝜏
𝜔𝑐𝜏 1

For large magnetic fields 𝜎𝑇 ≫ 𝜎𝐿

𝜌 =
1

𝜎𝐿
2 + 𝜎𝑇

2

𝜎𝐿 −𝜎𝑇
𝜎𝑇 𝜎𝐿

≈
𝜎𝐿/𝜎𝑇

2 −1/𝜎𝑇
1/𝜎𝑇 𝜎𝐿/𝜎𝑇

2
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𝑒2

ℎ
= 38,7 𝜇𝑆𝐺 =

𝑑𝐼

𝑑𝑈
=
2𝑒2

ℎ
න
𝐸𝐿

∞𝜕𝑓 𝐸, 𝜇

𝜕𝐸
𝑇 𝐸 𝑑𝐸 ≈

2𝑒2

ℎ
𝑇 𝜇 = 𝐺0𝑇 𝜇

𝐺 = 𝐺0෍

𝑛

𝑇𝑛 𝜇

B. J. van Wees et al. Quantized conductance of point contacts in a two-dimensional electron gas 
Phys. Rev. Lett. 60, 848–850 (1988) 
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B. J. van Wees et al. Quantum ballistic and adiabatic 
electron transport studied with quantum point 
contacts Phys. Rev. B 43, 12431–12453 (1991)

𝐺 =
2𝑒2

ℎ
𝑇 𝜇 = 𝐺0𝑇 𝜇
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Motion of the electron in crossed fields: electric 𝐸 = 𝐸, 0,0 and magnetic 𝐵 = 0,0, 𝐵 is
encircled by cycloid :

𝑥 𝑡 = −
𝑚𝐸

𝑒𝐵2
1 − cos𝜔𝑐𝑡

𝑦 𝑡 = −
𝑚𝐸

𝑒𝐵2
(𝜔𝑐𝑡 − sin𝜔𝑐𝑡)

Details of the movement depends on the initial conditions

𝑣𝑑 =
𝐸

𝐵
Prędkość dryfu w polu B:
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−
ℏ2

2𝑚
𝛻2 −

𝑖𝑒ℏ

𝑚
𝐵𝑥

𝜕

𝜕𝑦
+

𝑒𝐵𝑥 2

2𝑚
+ 𝑈 𝑧 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

Vector potential does not depend on 𝑦, we can assume the function of the form: 

𝜓 Ԧ𝑟 = 𝑤 𝑧 𝑢 𝑥 exp 𝑖𝑘𝑦𝑦

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+
1

2
𝑚 𝜔𝑐

2 𝑥 +
ℏ𝑘𝑦

𝑒𝐵

2

𝑢 𝑥 = 𝜀𝑢 𝑥 𝜔𝑐 =
𝑒𝐵

𝑚
𝑅𝑐 =

𝑣

𝜔𝑐
=

2𝑚𝐸

𝑒𝐵

Cyclotron radius (gyroradius)Cyclotron frequency

The parabolic potential of the form of 𝑥𝑘 = −ℏ𝑘𝑦/𝑒𝐵

𝑘𝑦 wave vector. What interesting in 𝜀 THERE IS NO 𝑘𝑦. 
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−
ℏ2

2𝑚
𝛻2 −

𝑖𝑒ℏ

𝑚
𝐵𝑥

𝜕

𝜕𝑦
+

𝑒𝐵𝑥 2

2𝑚
+ 𝑒𝐸𝑥 𝜓 Ԧ𝑟 = 𝐸𝜓 Ԧ𝑟

Vector potential does not depend on 𝑦, we can assume: 𝜓 Ԧ𝑟 = 𝑤 𝑧 𝑢 𝑥 exp 𝑖𝑘𝑦𝑦

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+
1

2
𝑚 𝜔𝑐

2 𝑥 +
ℏ𝑘𝑦

𝑒𝐵
+

𝐸𝑒

𝑚𝜔𝑐
2

2

−
ℏ𝑘𝐸

𝐵
−
𝑚𝐸2

2𝐵2
𝑢 𝑥 = 𝜀𝑢 𝑥

Factors „added” in order to get 𝑒𝐸 after expanding … 2

Parabolic potential shifted by

𝑥𝑘 = −
ℏ𝑘𝑦

𝑒𝐵
+

𝐸𝑒

𝑚𝜔𝑐
2 =

𝑚𝑣𝑑 − ℏ𝑘

𝑒𝐵

𝑣𝑑 =
𝐸𝑥
𝐵𝑧

𝜀𝑛𝑘 = 𝑛 −
1

2
ℏ𝜔𝑐 −

ℏ𝑘𝐸

𝐵
−
𝑚𝐸2

2𝐵2
=

= 𝑛 −
1

2
ℏ𝜔𝑐 − 𝑒𝐸𝑥𝑘 −

1

2
𝑚𝑣𝐷

2

𝐽𝑦 = −𝑒𝑛2𝐷𝑣𝐷 = 𝑒𝑛2𝐷
𝐸𝑥
𝐵𝑧

⇒ 𝜎𝑥𝑥 = 𝜎𝐿 = 0 𝜌𝑇 = 1/𝜎𝑇 = 𝐵𝑧/𝑒𝑛2𝐷 (classical Hall effect)
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𝑣𝑑 =
𝐸

𝐵

Parabolic potential depends
on magnetic field and 𝑘𝑦
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𝑣𝑑 =
𝐸

𝐵

Parabolic potential depends
on magnetic field and 𝑘𝑦
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Parabolic potential depends
on magnetic field and 𝑘𝑦
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Clive Emary
Theory of Nanostructures nanoskript.pdf
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈

ℎ

𝑒2

Yu, Cardona

Integer Quantum Hall effect (IQHE) – for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opór hallowski) is quantized
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈∗
ℎ

𝑒2

Fractional Quantum Hall Effect (FQHE) – for 2D gas 𝜈 ≤ 1: if the Fermi level is located in 
localized states the Hall resistance (opór hallowski) is quantized
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈∗
ℎ

𝑒2

Fractional Quantum Hall Effect (FQHE) – for 2D gas 𝜈 ≤ 1: if the Fermi level is located in 
localized states the Hall resistance (opór hallowski) is quantized
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𝑅𝐻 =
1

𝜈

ℎ

𝑒2
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Fractional Quantum Hall Effect (FQHE) – for 2D gas 𝜈 ≤ 1: if the Fermi level is located in 
localized states the Hall resistance (opór hallowski) is quantized
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Stromer, Nobel Lecture

𝑅𝐻 =
1

𝜈∗
ℎ

𝑒2

Fractional Quantum Hall Effect (FQHE) – for 2D gas 𝜈 ≤ 1: if the Fermi level is located in 
localized states the Hall resistance (opór hallowski) is quantized
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Stromer, Nobel Lecture

Fractional Quantum Hall Effect (FQHE) – composite fermions, fractionally charged quasiparticles



De Haas – van Asphen

2017-06-05 81

www.itp.phys.ethz.ch/education/lectures_fs10/Solid/Notes.pdf
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Moment magnetyczny czystego monokryształu metalu oscyluje w zmiennym polu 
magnetycznym 

1/𝐵
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Ashcroft, Mermin



De Haas – van Asphen

2017-06-05 83

Moment magnetyczny czystego monokryształu metalu oscyluje w zmiennym polu 
magnetycznym 

Ashcroft, Mermin
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Ashcroft, Mermin
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Ashcroft, Mermin
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