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Homogenous magnetic field

The Landau gauge solution

{% [ — q 4G D] +qo @ 0) + UG, t)}zp(?, t) = ih%l[)(ﬁ t)

04y, A, (unfortunately distinguishes

Landau gauge: magnetic field B = (0,0,B,) = B, = ox oy direction)
A= [0, B,x, 0] czyli A, = B,x = Bx q=—e We assume that in a plane xy
/ there is no other potential
1 Gk 9 ’ GE
2 . 2 - _ -
{% [—h EP) + (—lh@ + eBx) —h 3,2 + U(z)}t,b(r) = EY(7)
h? ieh 0 (eBx)?
Which gives: ——VF? — B U r) = EY(r
ich gives [ . -~ X 3y + o + U(2) | () Y(7)
The evidence of the Lorentz force Parabolic potential!
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Homogenous magnetic field

2 ; 2
[—h—vz leh g 0 g BT, U(z)]t/)(F) = Ep(#)

2m m dy 2m
Vector potential does not depend on y, we can assume the function of the form:

Y(#) = w(2)u(x) exp(ikyy)

h? d? 1 hky\* eB v V2mE
4= 2 Y — — = _ —
[ gz T3 mwe (x + eB) u(x) = eu(x) W, c =%~ [eB|

[\

Cyclotron frequency | | Cyclotron radius (gyroradius)

k, wave vector. What interesting in € THERE IS NO k,,.

The parabolic potential of the form of x;, = —hk,, /eB
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Homogenous magnetic field

2 ; 2
[—h—vz leh g 0 g BT, U(z)]t/)(F) = Ep(#)

2m m dy 2m
Vector potential does not depend on y, we can assume the function of the form:

Y(#) = w(2)u(x) exp(ikyy)

h? d* 1 hk,, eB v V2mE
2 _ _
[_%W +E m wé (x +—> u(x) = su(x) W, = |— .= o — 2B
Magnetic length: does not depend on mass m, but ONLY on magnetic
ma |eB field B!

The typical value for B =1.0Tis [z = 26 nm.

Solutions &, = (n — 1) hw. (does not depend on k).

_ 2
Gnx(x,y) < Hy_q (x ; xk) exp[ b - le ) exp(ikyy)
B

n =1, 2,3 ... they are subsequent Landau levels.
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Homogenous magnetic field

The 2D case: .
Solutions &, = (n — —) hw, + E, (does not depend on k,,; Ey- is any 2D energy).

x—xk> (x—x)

n=123..

Bric (x,y) & Hy,_ 1( exp |— exp(ikyy)

lp

Wave functions are the functions of the oscillator (along x, of the order of Iz /v/2) and travelling
waves (along y) — weird, right? Why?

The energy does not depend on k vector — states of different k have the same energy, so they
are degenerated (therefore any combination of them does not change the energy).

The density of states is reduced from the constant % to a series of discrete values §

given by the equation of ¢, - they are called Landau levels.

Full energy (including binding potential in z direction): E,
1
E=Ez+enk=EZ+<n—§>hwc E,

n=123.. >
B
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Homogenous magnetic field

The 3D case (no U(z) potential)

Solution: 1 A2k 2
Enk =|n—=)hw. + n =1,2,3 ... are subsequent Landau levels.
2 2m*
Elk] E DOS reminds 1D because it is possible
A A to move only in the direction z

v -

kz D[E]

http://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/mag/

2017-06-05 6




Homogenous magnetic field

The solution in the symmetric gauge:

{% [ — q 4G D] +qo @ 0) + UG, t)}zp(?, t) = ih%l[)(ﬁ t)

The symmetric gauge: field B = (0,0,B,) = Ag = %Br, A =0A4,=0

h? 62+16+1 ik iheBa_I_eszrz_l_U() (r.6.2) = E(r.6.2)
2m|(0r?  ror r?06°2 m 06 8m z)(P(r,0,z) = EP(r,0,z

This time a rotation angle @ is the invariant, which can be associated with angular momentum
and the function in the form of exp(ilf)

ew=(n+3l+3lll-)ho, n=123. [=0+14+243.,

2 2
P (r,0) o< exp(ilf) exp [ lzl r'”L(”D <2l2>

The symmetrical potential also has its

drawbacks - where is the origin of ALL

cyclotron orbits?

What are the solutions with negative sign?
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Homogenous magnetic field

In a magnetic field, we cannot forget about spin!

. h : :
Electron spin: ugp = % (Bohr magneton = magnitude of the magnetic moment of the electron
0

on the orbit of the total angular momentum 1h)

—

H' = uzBg$

[

In general g-factor may be the tensor

In the case of free electron g = 2,0023 ..., but in the solid state it may have very different
values (eg. g = —0.44 in GaAs and g = +0.4 in Al, ;Ga, ;As).
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Homogenous magnetic field

We return to the Landau gauge:

Solutions &, = (n — %) hw. + E, (does not depend on k,,; E- is any 2D energy).

x—x G-x)? _
¢nk(x; )’) X Hn—l ( lB k) exp [— lek exp(lkyy) n=123..
B

Question: for a given n (i.e. Landau level) how many different states ¢, (x, y) of the same
energy there are —i.e. what is the degeneration of the Landau levels?

Let's calculate how many different functions of quantum numbers k,, (only k,, counts, because

in Landau gauge x depends only on k,,) — similar considerations can be worked out in an
arbitrary gauge.
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Homogenous magnetic field

We return to the Landau gauge:

Solutions &, = (n — %) hw. + E, (does not depend on k,,; E- is any 2D energy).

x—x G-x)? _
¢nk(x; 3’) X Hn—l ( lB k) exp [— lek exp(lkyy) n=123..
B

Question: for a given n (i.e. Landau level) how many different states ¢, (x, y) of the same
energy there are —i.e. what is the degeneration of the Landau levels?

Let's calculate how many different functions of quantum numbers k,, (only k,, counts, because
in Landau gauge x depends only on k,,) — similar considerations can be worked out in an
arbitrary gauge.

What is the number of states per one level? The sample S = Ly X Ly, in the Landau gauge for y
coordnate we have plane wave condition k = (27T/Ly)ny (where n,, is an integer number).

How many states of different n,, there are?

: o : hk
For x coordinate the wavefunction is centered in x; = —— = —(27Tfmy/eBLy).

If n,, is too large then xj can be outside the sample — no harmonic force, no harmonic solution.

2017-06-05
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Landau levels

The solution of the Schrodinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = L, X L,, in the Landau gauge for y

coordnate we have plane wave condition k = (Zn/Ly)ny (where n,, is an integer number).

: . . hk
For x coordinate the wavefunction is centered in x;, = — 5 —(anmy/eBLy).

The condition for xj, to be in the sample (rather than outside):

27‘[fmy . eB
eBL, <0 czyli 0 <ny <—=LyLy =npS (the absolute value)

—L, <

There is no factor 2 associated with the degeneracy of the
spin (because spin in the magnetic field is not degenerated)

: : eB . :
The dimension of ng = — s "amount" per unit area

_eB  The degeneration of Landau levels — is the number of allowed states for each of
Np = h  the Landau level per unit area — it increases with increasing field B
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Landau levels

The solution of the Schrodinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = L, X L,, in the Landau gauge for y

coordnate we have plane wave condition k = (Zn/Ly)ny (where n,, is an integer number).

: . . hk
For x coordinate the wavefunction is centered in x;, = — 5 —(anmy/eBLy).

The condition for xj, to be in the sample (rather than outside):

Znhny

_ eB
¢BL, <0 czyli 0<n, <—1LyLy=ngs =

h

—L, <

h
flux &, = 5= 4135667516 x 107> Wb  [Wb]=[T m?]
The magnetic flux quantum (pol. flukson) (In a superconductor h/2e, so this is not a ,quantum”)

® = BS the total magnetic flux in the sample S = L, X L,

0 < nydy < d

The amount of allowed states is related to the amount of magnetic flux quanta passing through
the sample!
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Local density of states

The density of states (in general) can be defined as:

N(E) = Z 5(E — &)

After integration

N'P(E) = ) 6(E —e() = JE,(k) 5k — k') 2 dk = % %m
k

N2 (E) = ) 6(E — &) = j E,tk) 5k — k) 2k dke = —
k

N3P (E) = Z 5(E — e(k)) = j E,ik) 5(k — k') 4mk? dk = i

k
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Landau levels

N?P(E) = —2 Broadening of levels due to the scattering T’ = #/7;

T; this is single-particle

(c) 4 (or quantum) lifetime —
this is NOT the same time,

n which we discussed with

ho, Drude model (transport

ol lifetime)

ho, 2heo, g O  he, 2f, FE

o4 C

AGURE 6.7. Density of states in a magnetic field, neglecting spin splitting. (a) The states in cach
range ke, are squeezed into a §-function Landau level. (b) Landau levels have a non-zero width T
i a more realistic picture and overlap if fiw, < T. (c) The levels become distinct when /i, > T

2eB  2mw, m

Counting 2 spins: 2n, = = Aw
7 h  2mh  mwh? ¢
Each of the states on the Landau level occupies an area % = 2ml L / ho ,L
B™ Imw, ~ |leB|
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Landau levels

_eB  The degeneration of Landau levels — is the number of allowed states for each of

Mp = "h the Landau level per unit area — it increases with increasing field B

The carrier concentration in 2D: n,p —on how many Landau levels these carriers can be hold?

Filling factor v (wspodfczynnik wypetnienia) — usually this is not an integer

V= = = 2nlgn,p (taking into account the spin degeneracy)

Increasing the magnetic field we are successively filling the Landau levels. You can completely
fill n-th level (v = n) and then B,, = hn,p/en, until we reach n = 1, i.e. all electrons are at the
same Landau level (ie. the quantum limit).

For v < 1 nteresting things happens (which'll be right back!)
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Landau levels

_eB  The degeneration of Landau levels — is the number of allowed states for each of
Mp = h  the Landau level per unit area — it increases with increasing field B

The carrier concentration in 2D: n,p —on how many Landau levels these carriers can be hold?

Filling factor v (wspodfczynnik wypetnienia) — usually this is not an integer

V= =3 B - 2nlgnyp (taking into account the spin degeneracy)

(a) 4 (b) 4 (c) 4

EP o4

FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, shawing
how the Fermi level moves (o maintain a constant density of electrons. The fields are in the ratio

2:3:4andgivev:4,%.and2.
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Landau levels

The Fermi level lies between Landau levels -
there is no DOS, change of Er does not change
DOS —incompressible states (stany niescisliwe)

The Fermi level lies inside the Landau level —

large DOS, change of E strongly affects the DOS
— compressible states (stany Scisliwe)

(a) 4 (b) 4 (c) 4

n(k)

EP E EF E

FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, shawing

how the Fermi level moves (o maintain a constant density of electrons. The fields are in the ratio
2:3:4and givev =4, %.and 2.
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Landau levels

The Fermi level in the magnetic field: V= = oB = B = 2mlgnyp

20

0 4 8 12
B/T

FIGURE 6.9. Variation of the Fermi level as a function of magnetic field for a two-dimensional

clectron gas in GaAs with Eg = 10 meV before the field was applicd. Spin splitting is neglecied,
The fan of thin lines shows the Landan levels, while the discontinuous thick line 1s Efp.
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Landau levels

The Fermi level in the magnetic field: V= = = 2mlgnyp

Fig. 16. Landau level fan diagram for the magnetic
2DEG sample described in Fig. 15. Solid (dashed)
lines correspond to spin-down (spin-up) states. The
dark solid line shows the variation of the Fermi
energy with magnetic field. Parameters used in this
calculation are: E.=7 meV at B=0, and T=360 mK. The
spin-splitting parameters used are obtained by fitting
the magneto-optical data in Fig. 3: T,=2.1 Kand a
saturation conduction band spin splitting of 12.9
meV.

Ep{meV)

0 4 ! 12 |6
Bi(T)

Spin dynamics and quantum transport in magnetic semiconductor quantum structures
D.D Awschalom, N. Samarth, Journal of Magnetism and Magnetic Materials 200 (1999) 130-147

2017-06-05
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http://www.sciencedirect.com/science/article/pii/S0304885399004242
http://www.sciencedirect.com/science?_ob=MiamiCaptionURL&_method=retrieve&_eid=1-s2.0-S0304885399004242&_image=1-s2.0-S0304885399004242-gr16.gif&_ba=&_fmt=full&_orig=na&_issn=03048853&_pii=S0304885399004242&_acct=C000013398&_version=1&_urlVersion=0&_userid=11058710&md5=29edc6dc2a7f01228b581d67b1715bf2

Shubnikov-de Haas effect

Shubnikov-de Haas effect

9.4.1 Types of quantum oscillation

As the electronic density of states at Ep determines most of a metal’s properties, virtually all properties
will exhibit quantum oscillations in a magnetic field. Examples include”

e oscillations of the magnetisation (the de Haas—van Alphen effect);

¢ oscillations of the magnetoresistance (the Shubnikov—de Haas effect);
e oscillations of the sample length;

e ocillations of the sample temperature;

e oscillations in the ultrasonic attenuation;

e oscillations in the Peltier effect and thermoelectric voltage;

e oscillations in the thermal conductivity.

SHowever, open orbits do lead to a very interesting quantum phenomenon which has recently been observed in high-
frequency experiments; see A. Ardavan et al., Phys. Rev. B 60, 15500 (1999); Phys. Rev. Lett. 81, 713 (1998).

"Some pictures of typical data are shown in Solid State Physics, by N.-W Ashcroft and N.D. Mermin (Holt, Rinehart
and Winston, New York 1976) pages 266-268.

http://www?2.physics.ox.ac.uk/sites/default/files/BandMT_09.pdf
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Shubnikov-de Haas effect

Shubnikov-de Haas effect (a) 4

n(k}

Density of states oscillates - falls to 0 for v = n and

- 1 :
is highest forv = n + i the easiest measurement :
is the magnetoresistance R,,. Ee

(b)

E

{e) &

-

EF‘ E EF E

FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, showing
how the Fermi level moves to maintain a constant density of electrons. The fields are in the ratio

Oscillations depend on the ratio of the Fermi energy 2:3:4smdgivev—4.% ma2.

Er to the cyclotron frequency hAw, = eB/m”.
Oscillations are periodicin 1/B.

= Nyp hn,p . Dynyp — 27120
= = = = 2D
Np eB B B g

From SdH we can determine the effective mass m*
and quantum time 7,. The amplitude of oscillation is

B tps i) DT
PsdH = %P0 COS ATV sinh(f(T)) exp W T

§(T) = 212kT [hw, /'

Temperature dependence gives m*, damping .

05/06/2017

BIKG]

http://groups.physics.umn.edu/zudovlab/content/sdho.htm
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Shubnikov-de Haas effec

Shubnikov-de Haas effect

Density of states oscillates - falls to 0 for v = n and
- 1 :
is highest forv = n + i the easiest measurement

is the magnetoresistance R,,..

Oscillations depend on the ratio of the Fermi energy

Er to the cyclotron frequency hAw, = eB/m”.
Oscillations are periodicin 1/B.

_ hn;p _ Donzp
Np eB B

= 2mlén,p

From SdH we can determine the effective mass m*
and quantum time 7,. The amplitude of oscillation is

given by

§(T)

Apsay = 4pd cos(4mv)

E(T) = 2m%kT /hw,

Temperature dependence gives m*, damping .

05/06/2017
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Shubnikov-de Haas effec

Shubnikov-de Haas effect

| ImAsZnm |
Ing Al 5Sb dnm

Aly,Ga, ,5b 21nm
Ing 4,58, eo5h 7.50m

A—r

Al,,Gag ;5b 1.5um

51 Gafs substrate

AlGazh

In&s Z2nm

Ing 0l 4Sb 4nm

AlAs,Sb, , 10.50m

GaSh 7.5/10nm
AlAs Sk, , 10.50m

AlAs Sk, 1um

AlSD 0. dum

| Gahs 0,1pm

51 GaAs substrate

AsSh [AlAs)
Superlattice

_1 . Superiattice of

Alds B AlSE
BE&E periods

Fig. 1. Cross-section showing the layer details in a quantum well heterostrocture
with (A) InxGai_x5b and (B} Gash channel. The AlAsySh_x layers are composed of
Alsb/AlAs short-period superlattices. Also shown are high resolution TEM images

around the channel region.
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In{Ap, fp,)

All plots using
m* = 0.096m,

=20 -1.5 -1.0 0.5 0.0

In(E/sinh(E))
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06F
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01
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Fig. 3. (a) Effective hole mass is calculated using the temperature dependence of
the oscillations as the value for which a gradient of unity is obtained in the plot of

In (ﬁpﬂ) vs. In (Smh,) (b) Dingle plot: Slope of line is —7z/u where « is the ratio /1,

of the transport time t to the quantum lifetime 1,

E(T) = 21°T Jw,
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Shubnikov-de Haas effect

Shubnikov-de Haas effect

2017-06-05

0 5 10 15
magnetic field (T)
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= 3 3
c = =
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5 I 15 period multiple
~ l qguantum well structure
L 2 , composed of a 50A thick
o P lattice matched InGaAs
= >0 3 quantum well and a
& 50A thick InP barrier.
Lico]
C
@
o
C
3
2w

0 5 W0 130 200
magnetic field (T)

Figure 1. Shubnikov-de Haas oscillations (a) and its Fourier
transform (b} measured at 4.2K for sample No.326.

Henriques et al. Brazil. J. of Phys. 29, 707 (1999)
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Shubnikov-de Haas effect

Shubnikov-de Haas effect (@ 4 (b) (0 *

n(k}

Density of states oscillates - falls to 0 for v = n and

- 1 :
is highest forv = n + i the easiest measurement

-

; ; E E E

is the magnetoresistance R,.,. FE PoE PoE
FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, showing
how the Fermi level moves to maintain a constant density of electrons. The fields are in the ratio
2:3:4andgivev=4.% and 2.

(a) (b) .
. : LI L LI l LI L l LI L} | LI l rTrrrorerrrTy
2D electron grating g T U,=-24V
channel gate © 2.0V
] _’.W‘_ 5 A6V
—> 2 v
2 _ _ o= 0.4V
= AIO_ZGaO_aN : Si, 28 nm T ? /\/\/\/\.,m.—— 0.0
? ° 2 T4 U =24V
GaN, 1.4 um, undoped 2 f : 20V
1.6V
AIN buffer layer, 100 nm D ' -1.2V
S 0.8V
g "‘ 0.4V
S ‘ 0.0
< 0.10 0.12 0.14 0.16
Inverse of Magnetic Field, T K. Nogajewski et al.,

Appl. Phys. Lett. 99, 213501 (2011)
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Shubnikov-de Haas effect

Shubnikov-de Haas effect (@ 4 (b) (0 *

n(k}

Density of states oscillates - falls to 0 for v = n and

- 1 :
is highest forv = n + i the easiest measurement

-

; ; E E E

is the magnetoresistance R,.,. o PoE roE
FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, showing
how the Fermi level moves to maintain a constant density of electrons. The fields are in the ratio

i : | T — 3.0 o

30 -

|
125

22.05

T

115 &

11.0

105

RIS s

1 0.0

FIGURE 6.10. Longitudinal and transverse (Hall) resistivity, Ry, and R, of a two-dimensions”
electron gas of density nap = 2.6 x 10" nm~? as a function of magnetic field. The measuremeos
were made at 7 = 1.13 K. The inset shows 1/ R, divided by the quantum unit of conduchﬂ"*‘

e?/h as a function of the filling factor v. [Data kindly supplied by Dr A. R. Long, University
2017-06-05 Glasgow. ]




Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states

the Hall resistance (opodr hallowski) is quantized

P 1h
_ - &
H™ ) e2 3.0
25 X
~
15 &
7
1.0 =
] B
{ 0.5 g

‘ ’ 1 0.0
6 8 10 12
B/T

FIGURE 6.10. Longimdinal and transverse (Hall) resistivity, Ry, and R, of a two-dimensiona %

electron gas of density #2p = 2.6 x 10" nm™2 as a function of magnetic field. The measuremecots
were made at T = 1.13 K. The inset shows 1/ R, divided by the quantum unit of conductance::

e?/ h as a function of the filling factor v. [Data kindly supplied by Dr A, R. Long, Unwemtytf g;
2017-06-05 GE asgow.] %‘
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Quantum dots

10

Energy / meV
3y

0 L | L , 1
0 1 2 3 4
B/T

RGURE B.16. Energy levels in 2a magnetic field of a GaAs dot with a parabolic contining potential
gving hwg = 2 meV.

2017-06-05

29



Harmonic potential 2D

1 :
E} = hwg <nx + 5) in the x-direction and the same in y 2D disk shaped dot

r
y 1 —
ETL = h(l)o ny + E

Degeneracyl l
Ey = EX + EY = hao(N + 1) - \ /I
Degeneracy? N=n,+n do \U/ | g
. y 2 ... 1
_-.r

Fig. 5. Schematic model for the vertical dot with a harmonic lat-
eral potential. The single-particle states are laterally confined
into discrete equidistant 0D levels whose degeneracies are 2, 4,
6, 8, - - including spin degeneracy from the lowest level.

Jpn. J. Appl. Phys. Vol. 36 (1997) pp. 3917-3923
Part 1, No. 6B, June 1997
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Harmonic potential 2D

1 :
E} = hwg <nx + 5) in the x-direction and the same in y 2D disk shaped dot

r
: 1 —
ETL = h(l)o ny + E

Degeneracyl l
8 ...
E, = EX + E) = hwy(N + 1) 6o\ /
4o /
Degeneracy? N =n, +n, 5 ... \v/ ;F"“n
IN = N+1 i
(n n ) Fig. 5. Schematic model for the vertical dot with a harmonic lat-
a4 eral] potential. The single-particle states are laterally conﬁneq
0 (0,0) into discrete equidistant 0D levels whose degeneracies are 2, 4,
6, 8, - - including spin degeneracy from the lowest level.
1 (1,0)(0,1) Jpn. J. Appl. Phys. Vol. 36 (1997) pp. 3917-3923
Part 1, No. 6B, June 1997
2 (2,0) (1,1) (0,2)
3 (3,0) (2,1) (1,2) (0,3)

2017-06-05




Harmonic potential 2D |

CA

S 5
Ve )
L‘E - Harmonic oscillator
N e Y
Yo 4 A .TII'.:'
|

3 2 1 0 1 2 3
Angular Momentum -L

Energy [eV]

n,m=0,1,2...

L =n —m (elektron)

Adam Babinski
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Homogenous magnetic field

The solution in the symmetric gauge:

{% [ — q 4G D] +qo @ 0) + UG, t)}zp(?, t) = ih%l[)(ﬁ t)

The symmetric gauge: field B = (0,0,B,) = Ag = %Br, A =0A4,=0

h? 62+16+1 ik iheBa_I_eszrz_l_U() (r.6.2) = E(r.6.2)
2m|(0r?  ror r?06°2 m 06 8m z)(P(r,0,z) = EP(r,0,z

This time a rotation angle @ is the invariant, which can be associated with angular momentum
and the function in the form of exp(ilf)

ew=(n+3l+3lll-)ho, n=123. [=0+14+243.,

2 2
P (r,0) o< exp(ilf) exp [ lzl r'”L(”D <2l2>

The symmetrical potential also has its
drawbacks - where is the origin of ALL
cyclotron orbits?

What are the solutions with negative sign?

Associate Laguerre polynomial

2017-06-05
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Quantum dots

2017-06-05

2
1 1
E,;=QQn+|ll-1) [(hwy)? + <§ ha)c> + (E ha)C)l

n=123. [=0%1+243..

10

Energy / meV
3y

0 L | L , 1
0 1 2 3 4
B/T

RGURE B.16. Energy levels in 2a magnetic field of a GaAs dot with a parabolic contining potential
gving hwg = 2 meV.
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Quantum dots

Phys. Scr. T149 (2012) 014056 (4pp) doi:10.1088/0031-8949/2012/T149/014056

Fock-Darwin spectrum

Interband optical absorption in a circular
graphene quantum dot

M Gruji¢!, M Zarenia’, M Tadi¢! and F M Peeters’

(a) IMBC,

Figure 1. The electron states of a circular graphene quantum dot as
a function of external magnetic field g for the K (blue solid curves)
and K’ (red dashed curves) valleys with R = 70 nm for (a) the
IMBC and (b) the ZZBC. The green dashed line in panel (b)
displays zero-energy level for the case of ZZBC.

T T

10 20
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Hofstadter butterfly

- Nl-‘

http://www.deanlab.com/pages/5244e30adca8c90200000009

http://physics.technion.ac.il/~odim/hofstadter.html

The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in two-
dimensional periodic potential under the influence of a perpendicular magnetic field. The
horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the
periodic potential. The flux is a dimensionless number when measured in quantum flux units
(will call it @). It is an example of a fractal energy spectrum. When the flux parameter a is
rational and equal to p/q with p and g relatively prime, the spectrum consists of g non-
overlapping energy bands, and therefore g+1 energy gaps (gaps number 0 and q are the regions
below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set.
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Hofstadter butterf!

The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in two-
dimensional periodic potential under the influence of a perpendicular magnetic field. The
horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the
periodic potential. The flux is a dimensionless number when measured in quantum flux units
(will call it @). It is an example of a fractal energy spectrum. When the flux parameter a is
rational and equal to p/q with p and g relatively prime, the spectrum consists of g non-
overlapping energy bands, and therefore g+1 energy gaps (gaps number 0 and q are the regions
below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set.

http://physics.technion.ac.il/~odim/hofstadter.ht
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Hofstadter's butterfly

http://en.wikipedia.org/wiki/Hofstadter%27s_butterfy
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Hofstadter's butterfly
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Hofstadter's butterfly
LETTER

Hofstadter’s butterfly and the fractal quantum Hall
effect in moiré superlattices

C.R.Dean', L. Wang?, P. Maher®, C. Forsythe®, F. Ghahari®, Y. Gao?, J. Katoch*, M. Ishigami®, P. Moon®, M. Koshino®,
T. Taniguchi®, K. Watanabe®, K. L. Shepard’, J. Hone? & P. Kim®

doi:10.1038/nature12186

a
Graphene

2017-06-05




Hofstadter's butterfly

Figure 3 | Fractal gaps. a, Landau fan diagrams similar to those in Fig. 2 but a o (eZ/h) 12 0 12 n/f10
measured from a separate device. Here the zero-field satellite peak position wd oam -4-20 2 4
indicates a moire period of 11.6 nm, indicating that the superlattice unit cell was
approximately 1.5 times smaller in this device than in the one used in Fig. 2.
Significantly more structure is observed here than in Fig. 2. b, Bottom: the

a 2/h) 103 _10° 108
o, (€%/h)
1/2
0.8
1/3
0.6 1/4
1/5
&
3 04 .
428 21 0 1 2 B8 4
n/n
0.2} ’ - 0
Figure 4 | Recursive structure. a, R,, Wannier diagram for the device used in
Fig. 3. White solid lines label ¢/¢, values corresponding to the pure cases,
¢/, = 1/m. Inset: data replotted against ¢,/¢, illustrating that the main
—4 e 0 2 4 experimental features exhibit a 1/B periodicity. b, Longitudinal conductivity,
n/n,
2017-06-05
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Shubnikov-de Haas effect

Shubnikov-de Haas effect (@ 4 (b) (0 *

n(k}

Density of states oscillates - falls to 0 for v = n and

- 1 :
is highest forv = n + i the easiest measurement

-

; ; E E E

is the magnetoresistance R,.,. o PoE roE
FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, showing
how the Fermi level moves to maintain a constant density of electrons. The fields are in the ratio

i : | T — 3.0 o
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|
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22.05

T
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11.0

105

RIS s

1 0.0

FIGURE 6.10. Longitudinal and transverse (Hall) resistivity, Ry, and R, of a two-dimensions”
electron gas of density nap = 2.6 x 10" nm~? as a function of magnetic field. The measuremeos
were made at 7 = 1.13 K. The inset shows 1/ R, divided by the quantum unit of conduchﬂ"*‘

e?/h as a function of the filling factor v. [Data kindly supplied by Dr A. R. Long, University
2017-06-05 Glasgow. ]




Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states

the Hall resistance (opodr hallowski) is quantized

P 1h
_ - &
H™ ) e2 3.0
25 X
~
15 &
7
1.0 =
] B
{ 0.5 g

‘ ’ 1 0.0
6 8 10 12
B/T

FIGURE 6.10. Longimdinal and transverse (Hall) resistivity, Ry, and R, of a two-dimensiona %

electron gas of density #2p = 2.6 x 10" nm™2 as a function of magnetic field. The measuremecots
were made at T = 1.13 K. The inset shows 1/ R, divided by the quantum unit of conductance::

e?/ h as a function of the filling factor v. [Data kindly supplied by Dr A, R. Long, Unwemtytf g;
2017-06-05 GE asgow.] %‘
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Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opodr hallowski) is quantized

R, — l i St-u?::s‘mm Hall Probe
H™ ) e2 Drain
25+ 25 nt 1
Gate
> 20+ >E' 2 Surface “\L_ pptential l
% £ Channel  probe
S5 15 3515
10+
5 L
ol | y,
10 20
Magnetic Field (Tesla)

Figure 7. Left panel: original data of the discovery of the integral quantum Hall effect (IQHE) by
Klaus von Klitzing in 1980 in the two-dimensional electron system of a silicon MOSFET transistor.
Instead-of a smooth curve he observed plateaus in the Hall voltage (U};) and found concomitant
deep minima in the magneto resistance (Ug,). The horizontal axis represents gate voltage (V)
which varies the carrier density, n. The right panel shows equivalent data taken on a two-dimen-
sional electron system in GaAs/AlGaAs. Since these data are plotted versus magnetic field they Stromer, Nobel Lecture

can directly be compared to Edwin Hall’s data of Fig. 6. Rather than the linear dependence of
PNt the Hall resistance on magnetic field of Fig. 6, these data show wide plateaus in Ry, and in addi-
tion deep minima in R.



Conductivity tensor

Conductivityo =neu

current density: J = oF - generally o can be a tensor:
szqnﬁxandﬁxz% Ex = U Ey

In general e.g. jy = dxx Ex and j,, = gy, Ey etc.

dv v S .
Drude model with magnetic field: m {dt ;} =qE +qvV XB

T — momentum relaxation time (scattering time)

dvx
m* It + . =qu+quB

dv, v
m {dty+ y}=qu—qva

2017-06-05

http://www?2.physics.ox.ac.uk/sites/default/files/BandMT_11.pdf




Hall effect |

> —

Lorentz force: F = qu X B

) D

Drude model: m* {E + —} =qE +qu XB
T

T — momentum relaxation time (scattering time)

http://www?2.physics.ox.ac.uk/sites/default/files/Band MT_11'?E)"df

dt T
We get:
2.2 qt
v {1+ wite} = - (Ey — w.TEy)

05/06/2017



Hall effect |

Neglecting w272 « 1 and taking into account conductivity of electrons n and holes p :

Jjy=0= ZQinvjiz
[

Ey{nuc + pun} = ExBlpuf, — nu?}

We get so-called Hall constant: j"/

oo By _ 1 pup—mid
"7 B lel (e + pun)?
E.g.forp =0 weget Ry = -1

en

2017-06-05
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Hall effect

Taking Op=neu=n 82 T/m Gx) — (O-XX O-xy) (Ex)
y

Oyx Oyy

In case of the Hall effect E = [E,, 0,0]:

Jx = OxxEx Jy = 0yxEx
o = —O-O

1+ wle? <
Opy = ——

Y1+ w?r? I/

Conductivity tensor:

g = = -
Oyx  Oxx or 0y 1+ wit2\—w,r 1

http://www?2.physics.ox.ac.uk/sites/default/files/Band MT_11'?E)"df

Resisitivity tensor:  p = ;(gL _GUT) — l( 1 _al)cT)
T L O \WT

2017-06-05




Hall effect

The full coductivity tensor

1 —S
1+s%2 1+ s2

o = neu S 1
1+s%2 1+ s2

0 0

The full resistivity tensor

) 1 1 s 0
p=0 =—||—-s 1 0

e . . I, B L, B—p I,B
N neu xy = ByW =""2 "2 W =—""""0 = Ryp—~
E=p/=| j.B wd ne dne d
- 1
ne — — Hall constant
0 R ne

2017-06-05




Hall effect

The full coductivity tensor 0.3 L B B —
1 —S 0 02 i
1+s2 1+s?
0O = neu S 1 0.1 )
1+s?2 1+4s5s?
0 0 1 |

The full resistivity tensor

» 1 1 S 0 [ _
p=ot=rm| s 1 0 : T
0 0 1 0 2 4 6 8 10

Magnetic field (T)

1
-
[—

Resistivity (Qcm)
=
€=

I
=
o

For the different conductivity channels:

o= Z O; Muti-carrier transport — we analyse the tensor o

i

Roman Stepniewski

05/06/2017




Hall effect

The full coductivity tensor
1 —S

0
1+s%2 1+ s2
o = neu S 1
1+s%2 1+ s2
0 0 1

The full resistivity tensor

9 1 1 s O
p=a0 =@ —-s 1 0

0 0 1

For the different conductivity channels:

o= Z 0; Muti-carrier transport

2017-06-05

L} S
N\

B(T)
n = (1.483+.004)10"° |1 = (1361.+ 5) cm'/Vs
n, = (4.60+.02)10"” | = (4622.69.5) cm'/Vs
p=(1.77+.06) 10" | =(255.+7) am'/Vs

Roman Stepniewski




Hall effect
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Roman Stepniewski

Multi-carrier transport in graphene (M. Gryglas-Borysiewicz)
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Hall effect

(a) Hall bar (b) van der Pauw sample (c¢) Corbino disc

FIGURE 6.5. Samples commonly used for measuring the conductivity of semiconductors: (a) Hall
bar, (b) van der Pauw sample, and (c) Corbino disc. The dark areas ate the contacts for measuring
voltage or current, and the light areas are the active regions of the sample.

1 —S 0 eBt
1+s2 1+ s2 S=m*=wcT
o =neu S 1 0
1+s%2 1+ s2 M:er
0 0 1 m*

2017-06-05




Hall effect

2017-06-05

(aB=0 Equipotential lines
AN

YY1V

Current flows along electric field /

(b) Large B Field lines
i/ AN

YYVYY

Current flows along equipotentials /

FIGURE 6.8. Electric field, current flow, and equipotentials inside a long rectangular sample with
contacts across each end. (a) In the absence of an electric field the current is uniform throughout

the sample and runs along the electric field. (b) In a strong magnetic ficld, where |oT| > o, e
current runs along equipotentials.



Shubnikov-de Haas effect

Shubnikov-de Haas effect (@ 4 (b) (0 *

n(k}

Density of states oscillates - falls to 0 for v = n and

- 1 :
is highest forv = n + i the easiest measurement

-

; ; E E E

is the magnetoresistance R,.,. o PoE roE
FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, showing
how the Fermi level moves to maintain a constant density of electrons. The fields are in the ratio
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FIGURE 6.10. Longitudinal and transverse (Hall) resistivity, Ry, and R, of a two-dimensions”
electron gas of density nap = 2.6 x 10" nm~? as a function of magnetic field. The measuremeos
were made at 7 = 1.13 K. The inset shows 1/ R, divided by the quantum unit of conduchﬂ"*‘

e?/h as a function of the filling factor v. [Data kindly supplied by Dr A. R. Long, University
2017-06-05 Glasgow. ]




Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states

the Hall resistance (opodr hallowski) is quantized
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FIGURE 6.10. Longimdinal and transverse (Hall) resistivity, Ry, and R, of a two-dimensiona %

electron gas of density #2p = 2.6 x 10" nm™2 as a function of magnetic field. The measuremecots
were made at T = 1.13 K. The inset shows 1/ R, divided by the quantum unit of conductance::

e?/ h as a function of the filling factor v. [Data kindly supplied by Dr A, R. Long, Unwemtytf g;
2017-06-05 GE asgow.] %‘ 57
--1

SRR
7 ST T At
B LR W




Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opodr hallowski) is quantized

R, — l i St-u?::s‘mm Hall Probe
H™ ) e2 Drain
25+ 25 nt 1
Gate
> 20+ >E' 2 Surface “\L_ pptential l
% £ Channel  probe
S5 15 3515
10+
5 L
ol | y,
10 20
Magnetic Field (Tesla)

Figure 7. Left panel: original data of the discovery of the integral quantum Hall effect (IQHE) by
Klaus von Klitzing in 1980 in the two-dimensional electron system of a silicon MOSFET transistor.
Instead-of a smooth curve he observed plateaus in the Hall voltage (U};) and found concomitant
deep minima in the magneto resistance (Ug,). The horizontal axis represents gate voltage (V)
which varies the carrier density, n. The right panel shows equivalent data taken on a two-dimen-
sional electron system in GaAs/AlGaAs. Since these data are plotted versus magnetic field they Stromer, Nobel Lecture

can directly be compared to Edwin Hall’s data of Fig. 6. Rather than the linear dependence of
PNt the Hall resistance on magnetic field of Fig. 6, these data show wide plateaus in Ry, and in addi-
tion deep minima in R.



Quantum Hall Effect

The Nobel Prize in Physics 1985
Klaus von Klitzing

The Nobel Prize in Physics 1985 v
Mobel Prize Award Ceremony v
Klaus von Klitzing v

Klaus von Klitzing

The Nobel Prize in Physics 1985 was awarded to Klaus von Klitzing "for the
discovery of the quantized Hall effect”.
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Quantum Hall Effect

The Nobel Prize in Physics 1998
Robert B. Laughlin, Horst L. Stérmer, Daniel C. Tsui

The Nobel Prize in Physics 1998
Nobel Prize Award Ceremony
Robert B. Laughlin

Horst L. Stormer

Daniel C. Tsui

Robert B. Laughlin Horst L. Stérmer Daniel C. Tsui

The Nobel Prize in Physics 1998 was awarded jointly to Robert B. Laughlin, Horst
L. Stérmer and Daniel C. Tsui "for their discovery of a new form of quantum fluid
with fractionally charged excitations”.

2017-06-05 60



Quantum Hall Effect

Integer Quantum Hall effect (IQHE)

Figure 1 a). Schematic drawings of a silicon Metal Oxide Semiconductor Field Effect Transistor
(MOSFET). The two-dimensional electron system (2DES) resides at the interface between silicon
and silicon oxide. Electrons are held against the oxide by the clectric field from the gate metal.
b) Schematic drawings of 2 modulation-doped gallium arsenide/aluminum gallium arsenide
(GaAs/AlGaAs) heterojunction. The 2DES resides at the interface between GaAs and AlGaAs.
Electrons are held against the AlGaAs by the electric ficld from the charged silicon dopants (+)
in the AlGaAs. c). Energetic condition in the modulation-doped structure (very similar to the
condition in the MOSFET). Energy increases 1o the left. Electrons are trapped in the triangular-
shaped quantum-well at the interface. They assume discrete energy states in the z-direction
(black and horizontally striped). At low temperatures and low electron concentration only the
lowest (black) electron state is occupied. The electrons are totally confined in the z-direction but
can move freely in the x-y-planc.

Horst Stormer, Nobel Lecture

2017-06-05
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Quantum Hall Effect
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Quantum Hall Effect

VoLuME 45, NUMBER 6 PHYSICAL REVIEW LETTERS 11 AucusT 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance

K. v, Klitzing
Physikalisches Institut dev Universildt Wiivzburg, D-8700 Wiiveburg, Federal Republic of Germany, and
Hochfeld-Magnetlabor des Max-Flanck -Instituts fiir Festkorperforschung, F-38042 Grenoble, France

and

G, Dorda
Forschungslaboratorien der Siemens AG, D-8000 Miinchen, Fedeval Republic of Germany

and

M. Pepper
Cavendish Labovatory, Cambridge CB3 OHE, United Kingdom
(Received 30 May 1980)
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Quantum Hall Effect

VoLuME 45, NUMBER 6 PHYSICAL REVIEW LETTERS 11 AucusT 1980

Conductivity tensor

New Method for High-Accuracy Determination of the Fine-Structure Constant

Based on Quantize(? Hall Resistance O-L _O-T O-O 1 CUCT
K. v, ghtszv_ Fedeval B O' = _—-—m
FPhysikalisches Institut dev Universitidt Wiivzburg, D-8700 Wiirgburg, Federal Republic of Gevmany, and -
Hochfeld-Magnetlabor des Max-Planck -Instituts fiir Festkirperforschung, F-38042 Grenoble, France O-T O-L 1 + wcz T 2 - a)c T 1
and
G. Dorda ictivi
Forschungslaboratorien der Siemens AG, D-8000 Miinchen, Fedeval Republic of Germany F u I I res I St I Vlty te n So r
and
M. Pepper 1 1 - S O
Cavendish Labovatory, Cambridge CB3 OHE, United Kingdom 1
(Received 30 May 1980) p—
p=0 =—V s 1 0

3+ 0O 0 1
] 5= (O'L —O'T) _ i( 1 —wcr)
l ol +cZ\0r O oo \w, T 1

For large magnetic fields |o| > o}

-—
-— N

r|05F b= 1 (UL —UT)z o./of —1/or
or 0L 1/or  o,/0%

- 2 2
o; + orf

]
0 10 20 thus p~a; !
Magnetic Field (Tesla)
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Hall Effect

2017-06-05

(aB=0 Equipotential lines
AN

YY1V

Current flows along electric field /

(b) Large B Field lines
i/ AN

YYVYY

Current flows along equipotentials /

FIGURE 6.8. Electric field, current flow, and equipotentials inside a long rectangular sample with
contacts across each end. (a) In the absence of an electric field the current is uniform throughout

the sample and runs along the electric field. (b) In a strong magnetic ficld, where |oT| > o, e
current runs along equipotentials.
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Quantized conductance

2
dIl  2e? (®of(E,n) 2e? e
G=—= j ———T(E)dE = —T(u) = GoT(w) ——=387us
v~ h ),  OE h n
15 T T ! T T T —
S0t - =
L =
[ =T
Z O
[*p] ]
Lt
[
oL J . N L . -2 18  -16 -14 -12 -1
-2 -1.8 -16 -1.4 -1.2 -1 -0.8 -068 GATE VOLTAGE  [V)
GATE VOLTAGE (V) FIG. 2. P.oint-contact conductanc-e as a_funas Df. gate
voltage, obtained from the data g action of
FIG. 1. Point-contact resistance as a function of gate volt- the lead resistance. der at multi-
age at 0.6 K. Inset: Point-contact layout. ples of e %/rh.

B. J. van Wees et al. Quantized conductance of point contacts in a two-dimensional el
Phys. Rev. Lett. 60, 848—850 (1988)
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Quantized conductance

G = Z—T(M) = GoT (W)

CONDUCTANCE (2e2/h)

B. J. van Wees et al. Quantum ballistic and adiabatic
electron transport studied with quantum point e -1.8 -1.6

contacts Phys. Rev. B 43, 12431-12453 (1991) GATE VOLTAGE (V)

FIG. 6. Breakdown of the conductance quantization due to

2017_06_05 temperature averaging. The curves have been offset for clarity.



Electric and magnetic fields

Motion of the electron in crossed fields: electric E = (E, 0,0) and magnetic B = (0,0,B) is
encircled by cycloid :

mE
x(t) = ~ 52 (1 — cos w,t)
mE _
y(t) = — 52 (w .t — sin w,t)

Details of the movement depends on the initial conditions

‘ :‘ .t"“a.:- :n.-""o.:' .:.u'.".:. .: (iV)
gF| ‘ ' | ' ‘ (i11)
-.... aw By l..w.."......."...-..-‘........'.'-.,..-‘.. (ii)
JueoERaER [EEXEXEZR RN (XX LRN N (XN ENLRN SN T (XX LR X R N] YES ORI DS dbhsOerPPSEN (i)
B > driftv,=F xB/B?

- E
Predkos$¢ dryfu w polu B: v, = E

FIGURE 6.11. Classical motion of a charged particle in crossed electric and magnetic ficlds, with
B normal to the page and equal intervals of time between the symbols. The curves correspond to
different initial velocities and energies, with (iii) showing the cycloid for a particle initially at rest,

2017-06-05
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Homogenous magnetic field

2m m dy 2m
Vector potential does not depend on y, we can assume the function of the form:

Y(7) = w(z)u(x) exp(ikyy)

2
[——\72 _fehp 9 (6B +U(z)]1p(F)=E1/J(F)

h? d? 1 hky\* eB v V2mE
4= 2 Y — — = _ —
[ gz T3 mwe (x + eB) u(x) = eu(x) W, c =%~ [eB|

[\

Cyclotron frequency | | Cyclotron radius (gyroradius)

k, wave vector. What interesting in € THERE IS NO k,,.

The parabolic potential of the form of x;, = —hk,, /eB

2017-06-05



Electric and magnetic fields

h? ieh 9 (eBx)?
——V* ——B E r) = EY(7#
[ Y — xay + 5 tekbx V(@) = EY(r)
Vector potential does not depend on y, we can assume: Y(7) = w(z)u(x) exp(ikyy)
R 1 (o By Ee ° hkE  mE? () = eu()
2mdxz 2\ T B T mw? B~ 2pz |t T
Factors ,,added” in order to get eE after expanding (...)?
: : : 1 hkE mE?
Parabolic potential shifted by Enk =N —7 hw, — B T ogz
hk, Ee\ mvq— hk
X = — + > | = 1 1 2
eB  muwf eB =\n—3 hwc—eExk—Eva
Vg = BZ
Ey _ _ .
Jy = —enypvp = enzp 5 =0, =0,=0 pr=1/or =B;/en,p (classical Hall effect)
Z
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Electric and magnetic fields

Parabolic potential depends 20
on magnetic field and k (a) B=1T L \(b) B=3T
N k=0 E=0
15} ] .
)
=
10 |

-50 0 50 -60 0 50 -50 0 5

FIGURE B.13. Potential energy and lowest e1gen¢.tdte in a magnetic field for an electron wl
wave number & in a hard-walled wire of width 0.1 @tm in GaAs.
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B ——— driftv,=FxB/B?
FIGURE 6.11. Classical motion of a charged particle in crossed electric and magnetic fields, with

B normal to the page and equal intervals of time between the symbols. The curves correspond o
different initial velocities and energies, with (1ii) showing the cycloid for a particle initially at rest;
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Electric and magnetic fields
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Parabolic potential depends

on magnetic field and k,, | _
15 | I ]

F
N E_
F
i 11 L———J ]
|
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PAGURE 6.14. Encrgies e (B) of clectrons in a hard-walled wire in a magnetic field of @y 2T
. . wd(d) ST, plotied against the guiding centre (vn). For clarity. only the lowest three bands e

© P whown for B = 2'T. The dots represent some of the occopicd states and the dashed Tine is the Fermi
" -Jewel. (¢) Classical skipping orbits along the edge of a wire.
gF| " et gt et (i) E
4 . LN L] Lert e, L § T [} . —_
- -'-c"' -_'“..o ..'ﬁu.'-. (31) vd -_ B
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B ——— driftv,=FxB/B?
FIGURE 6.11. Classical motion of a charged particle in crossed electric and magnetic fields, with

B normal to the page and equal intervals of time between the symbols. The curves correspond o
different initial velocities and energies, with (1ii) showing the cycloid for a particle initially at rest;
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Electric and magnetic fields

Parabolic potential depends
on magnetic field and k,,

FIGURE 6.18. A Hall bar in a strong magnetic field, showing the propagation of edge states. A
negative bias on contact | injects extra electrons into the N edge states that leave it (only twoof
which are drawn); the elecirons depart through the other current probe (2).
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>

n(E)

localized
states

exE‘éﬁa‘ed states

FIGURE 6.18. (a) Density of states of a Landau level in a disordered system showing a band of

extended states in the centre of each level with localized states in between. (b) Edee states localized
2017-06-05

in 2 slowly varying potential, with a hill on the left and a hotlow on the right.



Electric and magnetic fields

Ry

Density ol States of a 2DEG in a Magnetic Fleld

T;HI 4 4 e

\ Hg Ly
™ a

Figure 5.5: Hall bar with five terminals each with chemical potential p,;.
The Fermi energy is set in the Quantum Hall regime such that there are two
edge-channels connecting the terminals. Picture from Ferry & Goodnick.

~If
<~
5

En

Figure 5.2: Density of states of a 2DEG in magnetic field. By comparing
the DOS with and without magnetic field. we can calculate the number of
states within each Landanu level. From Ferry & Goodnick.

Clive Emary
Theory of Nanostructures nanoskript.pdf
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Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states

the Hall resistance (opodr hallowski) is quantized

P _1h
H™ ) e2

Yu, Cardona

2017-06-05
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Stromer, Nobel Lecture
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Fractional Quantum Hall Effect (FQHE)

Fractional Quantum Hall Effect (FQHE) — for 2D gas v < 1: if the Fermi level is located in
localized states the Hall resistance (opdr hallowski) is quantized

Stromer, Nobel Lecture

2017-06-05 76




FILLING FACTOR »

2/3 /2 173
1 1 |
, fmm 1.00K _ .
Fractional Qu l?gz vel is located in
localized state 3F '
. 0.38
1 h Nw 2 mm
R, = —— s °r 0.48K
H™ yxe2 = {10 tka)
>

a* 1
0
o T
0 1.00K T
o fFH—A—F—+— : / '

1.65K
x 10 (kf2/D)

Q 415K
) 4,
0 7
0
o Ty L i 1t 1t bl i i gl y syl gy gr

50 100 150 200

MAGNETIC FIELD B (kG) ‘
Figure 10. First publication on the FQHE. Hall resistance data (here p_) and magneto resistan-
ce data (here p_) are from the same specimen as in Fig. 9. The filling factor, v, of the Landau St romer, Nobel Lecture
level is indicated on the top. The features at v=1,2,3.. are due to the IQHE. The features at v=1,/3
are due to the FQHE. Sample dimensions and sample temperatures are indicated.
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Fractional Quantum Hall Effect (FQHE)

Fractional Quantum Hall Effect (FQHE) — for 2D gas v < 1: if the Fermi level is located in
localized states the Hall resistance (opdr hallowski) is quantized
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Fractional Quantum Hall Effect (FQHE)

Fractional Quantum Hall Effect (FQHE) — for 2D gas v < 1: if the Fermi level is located in
localized states the Hall resistance (opdr hallowski) is quantized

— Tk
1 h .‘ ® Yy _ WY
RH —_— ——
v*e
—
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-~
G @n | anl e
R S e L .
Coulomb forces
J flux quantum attachment m=odd — boson
Figure 14. Schematic drawing of electron vortex attraction at fractional Landau level filling, m = even —= fermion

v=1/3. Now there are three times as many vortices as there are electrons. The Pauli principle is  of electrons and compasite particles. Exchange of two particles affects
hich described the quantum-mechanical behavior of the system. For ele

sauisfied by placing one vortex onto each electron (a). Placing three vortices onto each electron g by-1, identifying the particles as fermions. With the attachment of an o
reduces electron-electron (Coulomb) repulsion (b). Vortex attachment can be viewed as the at- 2 ¥ remains unchanged under exchange (multiplication by +1), identifyis

. o X < Z sons. Attachment of an even number of flux quanta returns the particles
tachment of magnetic flux quanta to the electrons ransforming them to composite particles (€).  umber of flux quanta.

Stromer, Nobel Lecture
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Composite fermions

Fractional Quantum Hall Effect (FQHE) — composite fermions, fractionally charged quasiparticles

Figure 16. Schematic representation of 1/3 charged quasiparticles. At slightly higher B fields
than at v=1/3 additional vortices are created. They represent dimples in the electron lake. In the
dimples exactly 1/3 of an clectron charge is missing. These are the fractionally charged quasi-
particles of the FQHE.

Stromer, Nobel Lecture
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De Haas — van Asphen

Fig. 3.12: Tubes of quantized electronic states in a magnetic field along the z-axis. A
mazrimum of the magnetization occurs every time a tube crosses the extremal Fermi surface
arrea as the magnetic field is increased.

www.itp.phys.ethz.ch/education/lectures_fs10/Solid/Notes.pdf
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De Haas — van Asphen

Moment magnetyczny czystego monokrysztatu metalu oscyluje w zmiennym polu
magnetycznym

Namagnesowanie

1/B

Ashcroft, Mermin
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De Haas — van Asphen

Moment magnetyczny czystego monokrysztatu metalu oscyluje w zmiennym polu
magnetycznym

Orbit of
energy £

(a) (b) ©)

Figure 14.5

(a) A Landau tube. Its cross sections by planes perpendicular to H have the same area—
(v + A) AA for the vth tube—and are bounded by curves of constant energy &,(k.) at height
k.. (b) The portion of the tube containing orbits in the energy range from & to & + € when
none of the orbits in that range occupy extremal positions on their constant-energy surfaces.
(c) Same construction as 1n (b}, except that £ is now the energy of an extremal orbit. Note
the great enhancement in the range of k_ for which the tube is contained between the constant-

energy surfaces at & and & + dE. _
Ashcroft, Mermin
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De Haas — van Asphen

Ashcroft, Mermin

2017-06-05

Figure 15.7

Indicating only a few of the surprisingly many
types of orbits an electron can pursue in k-space
when a uniform magnetic field is applied to a
noble metal. (Recall that the orbits are given by
slicing the Fermi surface with planes perpen-
dicular to the field) The figure displays (a) a
closed particle orbit; (b) 2 closed hole orbit;
(c) an open orbit, which continues in the same
general direction indefinitely in the repeated-

zone scheme.

[o10]

Plane of graph.

llOOll

[o11

=

[100]

Figure 15.8

The spectacular direction de-
pendence of the high-field
magnetoresistance in copper
that 1s characteristic of a Fermi
surface supporting open orbits.
The[001] and [010] directions
of the copper crystal are as
indicated in the figure, and the
current flows in the [100]
direction perpendicular to the
graph. The magnetic field is
in the plane of the graph. Its
magnitude is fixed at 18 kilo-
gauss, and its direction varied
continuously from [001] to
[010]. The graph is a polar
plot of

pH) — pl0)

P(0)
vs. orientation of the field. The
sample is very pure and the
temperature very low (4.2 K—
the temperature of liquid he-
lium) to insure the highest
possible value for w.. (J. R.
Klauder and J. E. Kunzler,
The Fermi Surface, Harrison
and Webt s, Wiley, New
York, 1960..




Figure 15.5
(a) In the three noble metals the free electron Sphe_re
bulges out in the {111} directions to make contact \'vxth
the hexagonal zone faces. (b) Detailed cross sections
of the surface for the separate metals. (D. Shoenberg
and D. J. Roaf, Phil. Trans. Roy. Soc. 255,85(1962))T.he
cross sections may be identified by a comparison with

(a).

(b)

Ashcroft, Mermin
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Figure 15.6

De Haas-van Alphen oscillations in silver. (Courtesy of A. S.
Joseph.) The magnetic field is along a {111} direction. The two
distinct periods are due to the neck and belly orbits indicated in
the inset, the high-frequency oscillations coming from the larger
belly orbit. By merely counting the number of high-frequency
periods in a single low-frequency period (i, between the two
arrows) one deduces directly that A,,,(belly)/4;,,(neck) = 5I.
(Note that it 1s not necessary to know either the vertical or hori-
zontal scales of the graph to determine this fundamental piece of
geometrical information!)
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