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Summary of the lecture

1. Introduction — semiconductor heterostructures
Revision of solid state physics: Born-Oppenheimer approximation, Hartree-Fock method and
one electron Hamiltonian, periodic potential, Bloch states, band structure, effective mass.

2. Nanotechnology

Revision of solid state physics: tight-binding approximation, Linear Combination of Atomic
Orbitals (LCAQO).

Nanotechnology. Semiconductor heterostructures. Technology of low dimensional structures.
Bandgap engineering: straddling, staggered and broken gap. Valence band offset.

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Quantum well in heterostructures:
finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)

Harmonic potential (parabolic well). Triangular potential. Wentzel — Krammers — Brillouin
(WKB) method.

Band structure in 3D, 2D. Coulomb potential in 2D
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Summary of the lecture

5. Quantum dots, Quantum wells in 1D, 2D and 3D
Quantum wells in 1D, 2D and 3D. Quantum wires and quantum dots. Bottom-up approach for
low-dimensional systems and nanostructures. Energy gap as a function of the well width.

6. Optical transitions in nanostructures
Time-dependent perturbation theory, Fermi golden rule, interband and intraband transitions in

semiconductor heterostructures

7. Work on the article about quantum dots
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions.

Discussion.
8. Carriers in heterostructures

Density of states of low dimensional systems. Doping of semiconductors. Heterojunction, p-n
junction, metal-semiconductor junction, Schotky barrier
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Summary of the lecture

9. Tunneling transport
Continuity equation. Potential step. Tunneling through the barrier. Transfer matrix approach.
Resonant tunneling. Quantum unit of conductance.

10. Quantized conductance
Quantized conductance. Coulomb blockade, one-electron transistor.

11. Work on the article about the tunneling or conductance
Students have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions.
Discussion.

12. Electric field in low-dimensional systems

Scalar and vector potentials. Carriers in electric field: scalar and vector potential in Schrodinger
equation. Schrodinger equation with uniform electric field. Local density of states. Franz-
Kieldysh effect.
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Summary of the lecture

13. Magnetic field in low-dimensional systems
Carriers in magnetic field. Schrodinger equation with uniform magnetic field — symmetric
gauge, Landau gauge. Landau levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systems

Schrodinger equation with uniform electric and magnetic field. Hall effect. Shubnikov-de Haas
effect. Quantum Hall effect. Fractional Quantum Hall Effect. Hofstadter butterfly. Fock-Darvin
spectra

15. Revision
Revision and preparing for the exam.
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Summary of the exercises

1. Introduction — semiconductor heterostructures
Schrodinger equation. Wave packet, Gaussian wavepacket .

2. Nanotechnology
Tight-binding approximation: graphene bandctructure.

3. Quantum wells (1)
Infinite square quantum well. Finite square quantum well. Finite square well with different
effective masses in the well and barriers.

4. Quantum wells (2)
Harmonic potential (parabolic well). Triangular potential. Wentzel — Krammers — Brillouin

(WKB) method.

5. Double quantum wells. Quantum dots.
Double quantum wells. Quantum dots (2D and 3D harmonic potential)

2016-08-08 6



Summary of the exercises

6. Optical transitions in nanostructures
Interband and intraband transitions in semiconductor heterostructures. Continuity equation.

7. Carriers in heterostructures (1)
Transfer matrix approach. Potential step.

8. Carriers in heterostructures (2)
Tunneling through the barrier.

9. Resonant tunneling
Resonant tunneling.

10. Quantized conductance
Quantized conductance. Coulomb blockade.

11. Local density of states
Local density of states.
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Summary of the exercises

12. Electric field in low-dimensional systems
Carriers in electric field: scalar and vector potential in Schrodinger equation.

13. Magnetic field in low-dimensional systems
Schrodinger equation with uniform magnetic field — symmetric gauge, Landau gauge. Landau
levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systems
Schrodinger equation with uniform electric and magnetic field. Conductivity and resistivity

tensors

15. Hall effect. Fock-Darvin spectrum
Hall effect. Fock-Darvin spectrum.
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Assessment criteria:

Homeworks

Discussion of scientific papers

Tests to check the effective use of the skills acquired during the lecture
Exam: final test and oral exam

e sSMALLER 1T ALl GETS, THe:
BlGGER WE GET."
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Periodic potential
Bloch theorem O O O
® & ¢

0, (P = u (F) e O @l al al
n,k n,k . . . . .
Bloch wave, Bloch amplitude, .k) .U .U .U

Bloch function Bloch envelope

@ 9 @
The solution of the one-electron Schréodinger equation for a . . .
periodic potential has a form of modulated plane wave: » .U .U .U

2 1 () = w5 (7 + R)

We introduced coefficient n for different solutions corresponding to the same k (index). k-
vector is an element of the first Brillouin zone.

5 () = D Cy_geid
:
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Tight-Binding Approximation

1

- N N Only the vicinity of ﬁ_n
E(k) ~ N<c1>jfc(r) H|CI>].}(7*)> — y/ L

= explik(R, — Fn)] f @i (7 — Bo)[E; + V'(7 — Ro))o; (7 — Ry) dv

nm

-

Only diagonal terms f(’)n = Ry, in E;

When the atomic states ¢; (17 — ﬁn) are spherically symmetric (s-states), then overlap
integrals depend only on the distance between atoms:

En(K) ~ By — 4; = B ) expik(Ry — R
m
4 == | 0 = RV G = Rl (7 — Ry) av

B=—| oj(- ﬁ,,‘l)\[V’(F— R)loj(F - Ry) av

Restricted to only the nearest neighbours of I_?)n
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Tight-Binding Approximation

For sc structure: }_fn — }_?)m = (+a, 0,0); (0, +a, 0); (0,0, +a);

Rp)[V'(7 — Rn)|o;(7 — Ry) AV

-
r_

@=—fﬁ(
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En(l_é) ~ E; — Aj — 2B; [cos kya + coskya + cos kza]
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a b c

Fig. 7.8 a—c. Qualitative illustration of the result of a tight-binding calculation for a primi-
tive cubic lattice with lattice constant a. (a) Position of the energy levels E; and E> in the
potential ¥(r) of the free atom. (b) Reduction and broadening of the levels E; and E» as
a function of the reciprocal atomic separation r~'. At the equilibrium separation a the
mean energy decrease is 4 and the width of the band is 12 B. (¢) Dependence of the one-
electron energy E on the wave vector k (1,1, 1) in the direction of the main diagonal [111]

H. Ibach, H. Llth, Solid-State Physics
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Tight-Binding Approximation

For sc structure: }_fn — ﬁm = (+a, 0,0); (0, +a, 0); (0,0, +a);
En(l_é) ~ E; — Aj — 2B; [cos kya + coskya + cos kza]
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Tight-Binding Approximation
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"k E k,

FIGURE 2.17. Valence bands constructed from p orbitals. (a) Lattice of p- orbitals. (b) Band
structure of the p. orbitals only; the band is ‘light’ along £, to the night and ‘heavy™ along &, tor
k) to the [eft. (c) Total bands from all three p orbitals, showing a doubly degenerate “heavy ™ band
and a single ‘light” band.
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k-p perturbation theory — effective mass

Expanding En(l_c)) = (En _h

2016-08-08

close bands

2k
- ) around an extreme point, e.g. k = 0:
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Landolt-Boernstein
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Tight-Binding Approximation

E-E(T )(eV) E-E, (eV)

like for free

3
I
“=Density of states |
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" electrons! :
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F1G. 2. Density of states of Al. The states responsible for structure are indicated by letters denoting their irreducible
representations. The arrows at 1.4, 2.4, 5.5, and 13 eV indicate the location of structure in the experimental K absorption in

Ref. 6. Michat Baj

Szmulowicz, F., Segall, B.: Phys. Rev. B21, 5628 (1980).
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Infinite square quantum well

Inside the quantum well:

Y(x, t) = \/%sin(knx ) e~ ilwt kn
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Infinite square quantum well

Inside the quantum well:

2 .
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Bandgap engineering

W jaki sposdb mozemy zmieniac€ strukture pasmowg heterostruktury:

I wybierajgc materiat

e kontrolujac sktad
* kontrolujgc naprezenie

Conduction Band (CE)

Valence Band (VEB)

Straddling Gap Staggered Gap Eroken Gap
(type ) (type I (type Il

2016-08-08
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Giacomo Scalari

Basic design concept

a) { ~one period

Active region Relaxation/Injection

Requirements:
- establish population inversion —  Active region

- prevent domain formation
- cool electron distribution

J. Faist, F. Capasso, C. Sirtoni, D. L. Sivco, A L. Hutchinson, AY. Cho, Science 264, 477 (1994)

— Injection region

22
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Giacomo Scalari _

Two phonons

e W
D)

t ‘. ' ’,"r’
2 ¢Tisb esc ‘
® 1
1
ITwo phonon resonance
Double resonant phonon extraction and high injection efficiency

(D. Hofstetter et al., APL 2001)
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Giacomo Scalari

THz photonic wire laser

Waveguide width:
15 pym/5 pm for the wide/narrow
region

Wavelength in the material
An ~30 dm

Amanti et al. Optics Express, 18, 6390 (2010)

2016-08-08 24




Finite potential well — square well

a a

_E<Z<E

) = (En — Ew)y(2)

Inside the well:

h?  d?
- 2momy, dz2 Yz

PY(z,t) =C {Cos(knz ) g=itont

sin(k,,z)
The barrier:
h2ic?
— —FE =R
2mmg ° ™

Y(z) = D exp(tk,z)

Matching conditions:
1 dy B 1 dy
mB dZ Z_E - mW dZ
=2

_a
2=3

—sin (ka3 )
Ck —SIin nE __% a
My Cos(kng) - mBexp(kn )
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Finite potential well — square well

THE DIFFERENT mass in the well and in the barrier:

0-8‘! ' N LA | : | . !
06T e | | w2 -
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0.2 i |
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0.2 + i ' ".’ I
04 + | I“' ' | L
I i i
-0.6 ) { 1 N -
-8 -4 4 8

2/ nm

FIGURE 3.22. Wave function for the lowest state in a 6 nm quantum well in a heterostructure,
including the Bloch functions. The thin curve is an approximate envelope function joining the
peaks of the full wave function. [Redrawn from Burt (1994).]

2016-08-08
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Harmonic potential

2
[_;‘—md— + V(z)] P(2) = ep(2) V(z) = %Kz2 = %mw%zz €n = (" - —) hwo

E / meV

FIGURE 4.4. Potential well ¥(z). energy levels, and wavilfdanctions of a harmonic oscillator, The
potential is generated by a magnetic field of 1 T acting on electrons in GaAs.

2016-08-08
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Quantum harmonic oscillator

Pump1 Pump?2 <
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Figure 1| Spatially mapped polariton-condensate wavefunctions. a, Experimental scheme with two 1um-diameter pump spots separated by 20 pm
focused on the planar microcavity. The effective potential V (red) produces multiple condensates (grey image shows ngyo =3 mode). b, Real-space
spectra along line between pump spots. ¢, Tomographic images of polariton emission (repulsive potential seen as dark circles around pump spots).
Labelled according to nsyp assigned fromd. d, Extracted mode energies versus quantum number. e, Hermite-Gaussian fit of VI;:S(X) to image
cross-section, dashed in c.

Nat. Phys. 8, 190, (2012)
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Triangular well

h? d?
[_%@ + eFZ] Y(z) = eP(2)

0.2 , , - ] : : !
V(z) =elFz
b
@
= n=23
0.1 bemme e el T i
n=2
----------------- n= ]_
0.0 — ' . | - l . !
0 10 20 30 40 50
z/nm

AGURE 4.6. Triangular potential well V'(2) = ¢ Fz, showing the energy levels and wave functions,
The scales are for electrons in GaAs and a field of SMV m~L.
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WKB approximation A

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly varying potential

V(x) : A

P(x)

carrier energy

2 [ xk Ny T
I/J(x)~\/mcos_LL (x") x—Z], x> xp
Y(x)~ ! ex _— fxic(x’)dx’] X K x

JVE(x) P XL ’ L
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Coulomb potential in 2D
W(r) =R(r)®(0) Radial therm:

| (di +limﬁ+g)ﬁ(r):ER(r)

2\dr2 T rdr 2y

O! joj-joj-joj! (some substitutions, derivations nad equations):
N(n)

N n
Rym(p)=c¢ 2 J;} anj(2|m|—|-j) ||+
Finally:
v et B e
Amerey) 2h%? 24meperay  \mg) €2 B= &\
E, = _L*Z For Hydrogen Ry = 13.6 eV and ag = 0.053 nm
(n B %) For GaAs semiconductor Ry* =~ 5 meV and ag = 10 nm
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Polaritons

=

=
J’ Ircident phogn
\/

toe ()
OElectr

Exciton

a4 0t 2 3 9 2 4 0 1 2 3

In-plane wave vector (10°cm )

http://www.stanford.edu/group/yamamotogroup/research/EP/EP_main.html
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Time-dependent perturbation theory

Time-dependent Schrodinger equation:

i = Ho +V(2) Y0 = Y Ay(O)@a(x)e Ent/h
dt ~
By analogy A

Time-independent potential

h* 9° iEt/h
H = ——— x,t) = Ap(x)e L
0= —g—o5 UG Y = Ap()
Time-irdependent potential H=H,+V(t)
: dla0<t<rt
The simplest case: W (t =" =
P V(t)={ (()) dlat<0it>t
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Summary —Fermi golden rule

The probability of transition per unit time:

W) =w _ Wmn 2T 2

Transitions are possible only for states, for which E,,, = E,

W(t) = wietiot w 21 z
0<ts<rt Pam = —= = - |(nlw*[m)| 8(En = By + i)

Transitions are possible only for states, for which  E,, = E,, + hw

The perturbation in a form of an electromagnetic wave:

3

3,2
Wpm™€ - 2 da wpm - 2
= —— = |\mjrjn = 0 mi|rin
s mlFm) 2 = == =2 (m i)

Anm

Pim = Apm6(E, — By £ hw)

2016-08-08 34




Selction rules in condensed matter

Proof sketch
Bloch function of a carrier in the crystal:

W) = ) Cnttn (e

nk

For the electron:

V)~ ) eaptr o @e® = ur o)

k
For the hole:
BD= Y G, (e = ury 1, I ()
Jz=13/2,£1/2,k Jz=+3/2,+1/2,k

Intersubband dipole optical transitions:

(P DBy, (D) = (ury 00 |ur,,;, OINFDB|F;, 7)) + (ury,0 )|Blur,;, NFE)|F,E)

N
o
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Opticial transitions

Er final energy Ef = E; + hcQ energy conservation rule
E; initial energy K; = K; + Q momentum conservation rule

Photon momentum Aw = hcQ. For hw = 1 eV we got Q = 107m™1. The size of the Brillouin

zone is about = ~ —— = 10'%m 1. Therefore K = K; + Q = K;
a 0.5nm

(b)

r K I K I K

FIGURE 2.20. Optical absorption across the band gap in different types of semiconductor. (a) Ab-
sorption across a direct band gap at I'. (b) Absorption across an indirect band gap is forbidden but
vertical transitions occur for all K. {¢) Transition across an indirect band gap with absorption of
both a phonon and a photon.
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Opticial transitions

9 nm 6nm 4nm 2nm
- - - -

12 — ——— =
251202 [ (@)
_ rGaAs h mng 10 - N
Cene — E¢ M. 2 -
07%e S 8| (b 4@
=
|
= !
=
S 4 F -
(c)
2.2.2 2r (d) i
GaAs nem Ny (&)
0'"*h 650 700 Th0 800

wavelength / nm

FIGURE 1.4. Photoluminescence as a function of wavelength for a sample with four quantum
wells of different widths, whose conduction and valence bands are shown on the right. The barriers

between the wells are much thicker than drawn. [Data kindly supplied by Prof. E. L. Hu. University
of California at Santa Barbara.]

) EGaAs 4 h*m?n® (1 + 1 pGads h?m?n?
Wy = Eon, — & = =
" e o 7 szaZ me, Mmp g 2momeha2
: : 1 1 1
Optical effective mass — 4+
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Magnetophotoluminescence study of intershell exchange interaction in CdTe/ZnTe quantum dots
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Low dimensional structures

The particle moves in the well which potential depends on k, in fact k = | k|

h? d?

T t () = £t (2)
h?  d?

- zmo mB dZZ + Tl(Z) = gun(z)

o \Mp My

o= (55 — By + e (-
- B w m

E.g. in GaAs-AlGaAs heterostructure

The particle gains partially the effective mass of the barrier: My > myy thus the well gets , shallow”
2k2 hZ k2
E, (k) =¢,(k) + ~ &, (k=0)+
energy of the bound state depends on k meff ~ mW,?W + mBPTB

the probability of finding a particle
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Quantum wire |

Vi,mn (X6, Y, 2) = U n(x,y) exp(ik,z) = albo np. = uy,; (1, 0) exp(ik,z)

h2k§
2m

En(ke ky) = €mn +

1-d: Quantum Wire +E
! : 39 mode
2"d mode
1st mode
L,
X >
y Lx < >
kz

Marc Baldo MIT OpenCourseWare Publication May 2011
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Quantum wire

Vi,mn (X6, Y, 2) = U n(x,y) exp(ik,z) = albo np. = uy,; (1, 0) exp(ik,z)

En(ke ky) = €mn +
Square quantum well 2D Ly Ly, infinite potential:

Uk, mn(%,Y,2) = Uy n(x,y) exp(ik,z) = exp(iky,x) exp(ik,y) exp(ik,z)

With boundary conditions Lyk,, = n,m and Ly k,, = n,m (dicrete spectrum)

1-d: Quantum Wire +E
. | | 3d mode
_ 1 _ 2nd mode
i 1st mode
. N\
X -
e
y L, < "

z

Marc Baldo MIT OpenCourseWare Publication May 2011
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Quantum wire |

Rectangular wire (a X b) — solutions like: h?m? (n,zc njz,)
Enen, = 2 2
Ty 2m \Ly L5

http://wn.com/2d_and_3d_standing_wave
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Cylindrical well

low temperature scanning tunneling
microscope (STM)
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Quantum wells 2D and'3D

. . 48 Atom Ring
Cylindrical well 0.01 V

—

Height (A)

low temperature scanning tunneling
microscope (STM)

http://www.almaden:tbm.com/vis/stm/corral. htnjii: {3
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Harmonic potential 2D

1 ,
E} = hw, (nx + E) in the x-direction and the same in y 2D disk shaped dot

r
y : —
ETL = h(,l)o ny + E

Deganeracy‘ l
E, = EX + EY = hwg(N + 1) o \\ /l ;
? N=n,+n g o
Degeneracy: x y D ..

_-.r

Fig. 5. Schematic model for the vertical dot with a harmonic lat-
eral potential. The single-particle states are laterally confined
into discrete equidistant 0D levels whose degeneracies are 2, 4,
6, 8, - - - including spin degeneracy from the lowest level.

Jpn. J. Appl. Phys. Vol. 36 (1997) pp. 3917-3923
Part 1, No. 6B, June 1997
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Harmonic potential 2D

1 ,
E} = hw, (nx + E) in the x-direction and the same in y 2D disk shaped dot

r
, 1 —
ETL = h(,l)o ny + E

Deganeracy‘ l
8 ... \
E, = EX +E) = hwy(N + 1) 6o\ /!
4o\ /1
Degeneracy? N =n, +n, 5 ... \v/ g
IN = N+1 .
(n n ) Fig. 5. Schematic model for the vertical dot with a harmonic lat-
a4 eral potential. The single-particle states are laterally conﬁnedr
0 (0,0) into discrete equidistant 0D levels whose degeneracies are 2, 4,
6, 8, - - - including spin degeneracy from the lowest level.
1 (1,0) (0,1)
Jpn. J. Appl. Phys. Vol. 36 (1997) pp. 3917-3923
Part 1, No. 6B, June 1997
2 (2,0) (1,1) (0,2)
3 (3,0) (2,1) (1,2) (0,3)
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Density of states

Density Of states Number of states per unit energy p™ (E) depends on the dimension

1 n
The density of states in k-space of n dimension (and the unite volume) p,’ch =2 (2—>
T
3D case
s L Y
p?’D(E)dE = p,%Ddl_c) =2 (—) Attk?dk
21 : ST T T O N T N T
Fermi sphere [ | |
For a spherical and parabolic band: T=0 K
1 [2mym
3D _ 0'"c [
& <E>—2nz( 2 ) E-E St
N 3/2 LN
1 (2mym NG
3D _ 0'"*h N
Py (E) = w( 2 ) By —F TR
.- J{ _____________________________
E 1\ _______________ > e 21
i L,
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Density of states — 2D

lpkx,ky,n(xr y,z) = exp(ikyx) eXp(ikyY) un(z) = l/)k,n(r: z) = exp(ik - r) up,(2)

h? k2 hzkf, h2 k>
En(kx, ky) =&, + Zy + y E,(k)=¢, + o

{c) :

o
S

NS
1
L

o EfeVp
(=]
" T
]
)
|
|
é
T
S
Il
ml
I
I
|
)
0
i
1
e
|
T {
i
]
!
I
|
|
I

|

0 10 -1 0 1 0 1
k/nm™? n(F)/eV-! nm-2

FIGURE 4.7. (a) Potential well with energy levels, (b) total energy including the transverse kinetic
energy for each subband, and (c) steplike density of states of a quasi-two-dimensional system. The
example is an infinitely deep square well in GaAs of width 10 nm. The thin curve in {(c) is the
parabolic densily of states for unconfined three-dimensional electrons.
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Density of states — 1D

1D density of states for a spherical and parabolic band:

1
1
p*P(E)dE = p;de_2< ) 2 dk

ay

E E o .
mom* o |
PP (E)dE = / 0 E x) dE .
dxdy E Eq.a R IR

3 mode
2nd mode

15t mode

Density of states

Fig. 2.13. The first four modes of the quantum wire. Since in this example, L, > L, the Energy
ny= 2, ny= 1 mode has lower energy than the n,= 1, n, = 2 mode.
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The Fermi-Dirac distribution

The probability that a state of the energy E will be occupled

N

— ' I o.
Er- — chemical potential 1 Y
f = X 8 8

0 E-Er - ™M To}

kgT =

e + 1 S

“!

o

0.05
Energia (eV)

-
2
-y
e

L v O
=
£

Lo

| 9

o

1

AR

o

Wave vector k

Occupation probability
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Electrons statistics in crystals

The case of a semiconductor, in which both the electron gas and hole gas are far from the
degeneracy:

the probability of filling of the electronic states:

Eg Ee . §
fe ~ e 2kgT kpgT  kgT

and of holes f;, =1 —f,

EG _Epn ¢
fh ~ e 2kgT kpgT kgT

oo

T
J Vxe ™ dx = g
0
Thus:
. 3/2 o
mikeT Eg § (Ec=$)
n(¢) = 2( erffz ) e 2kgT .ekgT = N.(T)e ksT
* 3/2 e
mpkgT Eg § (§—Ey)
p(§) = ( 2’;;2 > e 2kBT .¢ kT = N (T)e ksT
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The occupation of impurity levels

The ratio of the probability of finding dopant / defect of n + 1 electrons and of n electrons:

—-B|Ei—(n+1)¢&
Pn+1 Nns1/Neotar Zi=nj=n+1 € % ! _ In+1 o~ Bl(Eny1—En)—¢€]
Pn Ny /Niotai Zk;nk=n e ~BlE-n¢] In
////7/2/////_5_///// Y:n N, = N — impurity (dopants) concentration
R \____\ ) \_@
- — @) & L""_- E, 411 Ey —the lowest of all subsystem energies E;

(0/+)

os | with n + 1 and n electrons respectively

06 | Successive impurity energy levels are filled with the

increase of the Fermi level.

Energy [eV]

oy | == (o] E™1/™ _so-called energy level of the impurity/

0z 1 defect ,numbered” by charge statesn + 1 and n

- -

O S 77777777 9n+1s Gn — SO-Called degeneration of states of
T 4 ¢, M, Fe. subsystem of n + 1 and n electrons

Valence band

Fig. 15. Energy levels of interstitial 34 metals in silicon (fuli lines), see
Table 3, compared with the results of X, calculations of Del.eo et al.
ri53 (broken lines)




Dopants, impurities and defects

Doping

Electron energy

conduction band

vallence band

2016-08-08

The carrier concentration in extrinsic
semiconductor (niesamoistny)
Consider a semiconductor, in which:

N, — concentration of acceptors

Np — concentration of donors

P, — concentration of neutral acceptors
Np — concentration of neutral donors

N, — concentration of electrons in conduction
band
p, — concentration of holes in valence band

From the charge neutrality of the crystal:

N.+(Np-Pa)=py + (Np-np)
N+ Np = (Np-Np)+ P, +Pa




Dopants, impurities and defects
Equation of Charge Neutrality

T(K)
A e (=
s2g 8 8 ° :
10" E T T I
>~ conduction band E p Si
&04 :|, D E /r_ (?A 1016 3 ND =10150m 3
3] [ —— . "Y4E :
) donor level 'f = E
>
S 2 10°F
el TTTmmTmmmmEmmmmmmm—m—— "“'b"' 2 383
+ 5 e Freeze-out
T g oy range
= > F 8381
L acceptor level ‘LEA SR S e 2kgT
_ 1 A
3 |
vallence band 3 ||
Tofie (2 SO TR TRt 27 ofe | ROST) N
0 4 8 12 16 20
1000/T(K ™)
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The construction of energy band diagrams

Zt3cze metal-metal

. Suppose, that ¢, — p; = 1 eV
Estimate the number of electrons that
o pass from one metal to another to
create equilibrium potential difference.
Assume that the distance between the

: . metalsis 5 x 107 1%m.

A A Electric field: E = e 2x%x10 —
6,— 0 The surface charge: 0 = gy E
27 ¥l The concentration: n?P = % =1.12 x 1013cm=2
) 4 . .
A | - The concnetration in metal
n3P =5 x 10%%2¢m=3
¢ | n?P =1.5x 105cm=2
| Within the width of 1 lattice parameter ~1% of charge
25 Er.
/ /ﬁ Electrical properties of materials Solymar, Walsh (6.11)
Pg. 143
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The doping of semiconductors

A Net charge densities

From the Maxwell equations: p | n
VD = ps - net charge density Xp 4
>
R _ Xn
E=-V¢p=-VU
VD = gye VE = —gye V2¢ & —eAU = p, Ny Np
Ao
Charge conservation
eNyx, = eNpxy, = 0 Poisson equation: Xp Xn S
d?U 11 N
dx2 s T o =—1Q
max €
Thus the electric field in the range (xp, O):
R dUu 1 1
E = —a = EeNA(x + C) = EBNA(X - xp)

Similarly for (0, x;,):

= du 1 1
E = Errie EeND(x +C) = EeND(x—xn)
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The doping of semiconductors

Charge conservation Depletion regions A Net charge densities
eNyx, = eNpx, = Q pln
Xp 4+
The total width of the depletion region w X >
— n
W=X,— X, =
n p e(NA‘l‘ND) ND NA NA ND
Ao

If, say, Ny > Np (p-type doping)
then: Xp Xn

2eU >

— 0

W= o |, | > |xp| / 1
if the p-region is more highly doped, practically all of the Emax = —Z0
potential drop is in the n-region. The less donors are the
wider this regiF)n |s U, = £ (N, x2 + NDx,%)A--U---
(for Ny < Np, is vice-versal) 2¢
E.g. N, = 10°cm3 for typical Uy = 0.3 V ,
We have w = 180 nm. If the change from acceptor >z Naxp
impurities to donor impurities is gradual, thenw = 1 um >

2016-08-08




Heterojunction

Charge conservation
eNyx, = eNpx, = Q
TUTAJ 20151126
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The construction of energy band diagrams

(iv) depletion i accumulation
layer - \ layer (2DEG)

—re EB

E¢

EVB

nnnnnnnnnnnnnnnn

/ heterojunction

Restore E2 on side EZ and EZ on side E}', including discontinuities at the junction.
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The current and charge density

: h
Current density: J@# ) =J(@) = ﬁ (P*VY —Yry*)
In the case of de Broigle wave: W(x,t) = [A+eikx + A_e_ikx]e_i“)t

J@) = Lk (14412 = |A_|?) each wave carry current
m

In the case of the evanescent (decaying) wave: W(x,t) = [B,.e"* + B_e'*¥]e~i®t

. hqk 2hqk
=—(B,B—-B;B.))=—Im (B,.B*
J () im(+ +B_) m m (B,BZ)

(a)/\ /<
\J

FIGURE 1.5. Current carried by counter-propagating decaying waves. (a} An infinitely thick
barrier contains a single decaying exponential that carries no current. (b} A finite barrier contains
hoth growing and decaying expanentials and passes current. (The wave function is complex, so the
figure is only a rough guide.)

Only the superpositoion of +i —
amplitudes gives real current!
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Tunnelling

A eiklz C eikzz T T
- - G =0 2 G
D B T;, Ti1/\B
B e~ ikiz D e~ tk2z
= - Ty, 1
r=— t =—
Ti1 Tiy
region 1 region 2
1/t* —r*/t*
T(21)(0) — (—r/t 1//t )

—ik,d 0 ikqd 0 _
rev@ = (¢ 0 e (¢ 2) =47 @ T 4@

The other direction: (i) = 712) (Z)

712 (0) = (://tt ’iji)
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Tunnelling

Examples:
explik,2) —» — { explik,z)
r expl—ik z) -tm—m h
i V, T+R=1
Vi) =0 v
z=0
1 T Ir T T e — e
|
_ 4‘k1 kz ) ':
(ky + k3)? = | |
t
1
0.5 : -
2 !
_ (ki ks
k 1+ k ) - Quantum mechanical
--- Classical
0 L L | . | . |
0 0.2 0.4 0.6 0.8 1
E/eV
FIGURE 5.3. Transmission coefticient T (£} as a function of the energy £ ol the incident clectron
for a step 0.3 eV high in GaAs. The broken line is the classical result,
2016-08-08
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Tunnelling

Przyktady:

Viz) A

region 1 region 2 |V, region 3 .
| Anti-well energy levels!

Y
\
~af2 al2 \
\
FIGURE 5.5. Potential barricr with ¥(z) = My for |z < «/2 and 17(z) = O elsewhere. \4

1.0 :
E >V, :
21,2 = !
— 4k1 k2 . é :
B I — ’v. s
4k%k% + (k% — k%)Z Sll’l2 kza ! barrier
VZ -1 I: — o-function
= s in’ oo : --- classical ]
= 1+4E(E—VO)Sm k,a |
1
t
E <V, i
4k1 KZ 0.0 r oo
e R = 0.0 0-2 04 0_6 0'8 }"0
4k2KkZ + (k% 4+ k%)% sinh2 k,a B/ eV
2 -1

S FGURE 5.8. Transmission cocfficient F(£) as a function of encrgy E for a square potential
: barrier of height ¥4 = 0.3 €V and thickness a = 10 nm in GaAs. The thin curve is for a §-function
=1+ sinh? k,a ght /o : ction

4E (V _ E) barrier of the same strength § = My, and the broken curve is the classical result for a bamter of
0 the same height.
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Tunnelling

barrier barrier

(a) (b) -t g -
N\ Py

-unfffeserrenniang -umnﬂl{ v . \'ﬂmnm ---------- [

T T
T T, Tr 1
left lead well right lead

FIGURE 5.10. (a) A finite square potential well with a true bound state. (b) The same well but
with barriers of finite thickness, where the bound state becomes resonant or quasi-bound.

titR
1 —rrgexp2ika

t =

¢ = 2ka + p, + pg

I Tg

T — |t|2 TLTR 4‘TLTR

- 2 . 1 = =
(1-RiRg) +4/RiResin?5 ¢ ok (- JRR) (L +Te)?
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Tunnelling

14— :
(a)

0.8 - 1x10°}
_ 06 = 1x102
g

04 | ] 1x1073

02 B 1x10™

0.0 'J"["‘. : L 10

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

E/eV E/eV’

AGURE 5.11. Transmission coefficient of a resonant-tunnclling structure on (a) linear and (b log-
- anthmic scales. The barriers are §-functions of strength 0.3 eV x 5 nm scparated by i0om. The
- solid curve is T E) for the whole structure, the dashed curve shows the square of T(E) for a single
* barrier and would apply Lo the double-barrier structure if there were no resonance. and the chai
- gurve is the Lorentzian approximation to the lowest resonance.

T, Tg

T =|t|* = ~ : _— T, Tr _ ATTR
(1=RiRz) +4JR,Resin5 ¢ - yRR), Tt Te)?
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Tunnelling

1.0 —rgr——1— 1
(a)
0.8 |- 1x10°!
_ 06| 1x10°%
g
04 | 1x10°3
0.2 | 1x107
0-0 . ) J"‘["’. N 1 T T ; lxlo-.’_'.i
0.0 0.1 0.2 0.1 0.2 0.3

EleV E/eV

AGURE 5.11. Transmission coefficient of a resonant-tunnclling structure on (a) linear and (b log-
- anthmic scales. The barriers are §-functions of strength 0.3 eV x 5 nm scparated by i0om. The
- solid curve is T E) for the whole structure, the dashed curve shows the square of T(E) for a single
* barrier and would apply Lo the double-barrier structure if there were no resonance. and the chai
- gurve is the Lorentzian approximation to the lowest resonance.

(. T, Tr AT, Th

2 profil Lorentza Tt =

2~ 2
14+ 15_¢ (1 — JR.RR) (T, +Tr)
5 ®o o =T, + Tg

~
{
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Quantized conductance

For metals u; = u +%eUiuR = U —%eU:
fp =™=—7>=—=—71 T T =" Hr fCE, u) — f(E, ug) 7 ) (B0
EL ER ~ af E,‘Ll _ af E,‘Ll

eU o eU 3E
2e?U [ of(E,
~}6U I = /€ “)T(E)dE
| U N A h EL 0E
& r l’;}; dl  2e? (®of(E, ) 2e?
G=—= —T(E)dE ~ —T
aw=n ), og & p T
\ Resistance is finite even for the ideal conductor!
HL ..................................... 2 h
el A — = 25,8 kQ)
E, _____$___MR n 38,7 uS o2
Eg

Quantized conductance (S — Simens)
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Triangular well

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly varying potential

2DEG
conduction band
fermi level

z-direction
http://www.phys.unsw.edu.au/QED/research/2D_scattering.htm

E, = En(n __> ] [( eFh) ]’
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Quantized conductance

dl 2e? [(©Jf(E, 2e?
G = = .I~ _;i};__!f2.71(l;)61l; ~ ——
dU h Jg oE h
L
15 . . : : : ) ~
S 10} .
D I i i i T 1 1
-2 -1.8 -1868 -1.4 -1.2 -1 -0.8 -0 6

GATE VOLTAGE (V)

FIG. 1. Point-contact resistance as a function of gate volt-
age at 0.6 K. Inset: Point-contact layout.

2
e
T(u) = GoT(u) = 38,7 uS

-2 -1 8 -156 -1 4 -1 2 -1

GATE VOLTAGE (V)

FIG. 2. Point-contact conductance as a function of gate
voltage, obtained from the data of Fig. 1 after subtraction of
the lead resistance. The conductance shows plateaus at multi-
ples of e?/nh.

B. J. van Wees et al. Quantized conductance of point contacts in a two-dimensional electron gas

Phys. Rev. Lett. 60, 848—-850 (1988)
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Quantized conductance

6 =227 = GoT(w)

CONDUCTANCE (2e2/h)

B. J. van Wees et al. Quantum ballistic and adiabatic
electron transport studied with quantum point -c -1.8 -1.6

contacts Phys. Rev. B 43, 12431-12453 (1991) GATE VOLTAGE (V)

FIG. 6. Breakdown of the conductance quantization due to

2016-08-08 temperature averaging. The curves have been offset for clarity.




Quantized conductanc

Simulatons of
electron flow

2DEG

CONDUCTANCE (e2/h) &

I 1 1
-1.2 -11 -10 -0.9

_ GATE VOLTAGE (mV)
Physica E 24 (2C
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Quantized core

Experiment

:
e L3 S

500 nm

M. A. Topinka et al.
Nature 410, 183 (2001)
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Coulomb blockade |

2

Dot behaves like a small capacitor of energy Ec~%%
V, =0 Vp =14 Vy =V, <V V, =0
V=0 ;=0 V, #0 V, #0

9
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Coulomb blockade

Figure 6.7: The low temperature conductances of (a) a metal single-
electron transistor (SET), (b) a semiconducting SET, (¢) a carbon nan-
otube SET, and (d) a superconducting SET are plotted as a function of
rate voltage and bias voltage. The diamond shaped regions along the
zero bias voltage axis are regions of Coulomb blockade. The conductance
is a periodic function of gate voltage for the metal SET and the super-
conducting SET where the confinement energy is negligible. The condue-
tance is not a periodic function of gate voltage for the semiconductor SET
and the carbon nanotube SET where the confinement energy is impor-
tant. From: P. Hadley and J.E. Mooij, Delft University of Technology,
http://qt.tn.tudelft.nl/publi/2000/quantumdev/qdevices . html

Clive Emary
Theory of Nanostructures nanoskript.pdf
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Scalar and vector fields

Maxwell’s equations in matter

., 0B
VXE = iFTY Material equations (linear)
VxH=Jy+ oD
Jsw dt B = .Uoﬁ +M= to(1 + Xm)ﬁ = ﬂﬁ — ﬂrﬂOﬁ
VD — — - - - - -
~ T P D =¢eoF + B =ey(1+ y.)E = ¢E = ey¢,.F
VB = R
jsw =0
The equations written in the form of a 1 1 o7 o2
: 2 _ _ _
scalar ¢ and vector A potentials: vt = = =2
~ — Ho€o Ur&Er Hr&Er n
B=VXA
then 7xE=-22o L (rx7) srxEil(rxA)=0 =>\7><(E+aj>—
- at ot ot B ot/
If the rotation of the gradient is zero, then: —Vp =E + ?3_’4 thus |F = —pp — aa_A
t t
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Scalar and vector fields

Maxwell’s equations in matter

= - B} A
dt
Example: ¢ =—E7+ Co A=—-Et+C,

Not only constants C, and C4 we can add for the scalar and vector potentials:

d - - —
(p_)(p_d_)tf A->A+TVy eg.. xy==Ert

We call it the gauge

- 0
Landau gauge: field B = (0,0,B,) = B, = =2 — %x A, = B,x lub Ay = —B,y

(unfortunately distinguishes direction)
Coulomb gauge: VA =0 field B = (0,0,B,) = A= %BZ(—y, x,0) = %l? X 7

(unfortunately complicates calculations)

Lorentz gauge: VA + aa—(f =0
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Local density of states

The density of states (in general) can be defined as:

N3P (E, 2)~ — /—gof Ai? (eFZ_S) de = %,/_sto[[Ai’(s)]z — s[Ai(s)]?]

Franz-Keldysh effect - in the electric field optical transitions occur at lower energies - the energy
gap is ,blurred”, the wavefunctions are ,leaking" into the band gap:

band gap
WNAWAYE |
VA “ond
conduction E (2) Eg

band c 41/ [\ /\ N
\VAAVA;

FIGURE 6.3. The Franz--Keldysh effect on interband absorption. The states shown in the valence
and conduction bands are separated by AE < £, but overlap because of the tail that tunnels into
the band gap.

E (z)
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Homogenous magnetic field

2 ; 2
[—h—vz R O BT, U(z)]t/;(?) = Ey()

2m m dy 2m
Vector potential does not depend on y, we can assume the function of the form:

Y(@) = w(2)u(x) exp(ikyy)

2 4z 1 Ak \2 eB v 2mE
[ omdx? 2 e (x eB) ulx) = eu(x) Ye =T ke w, |eB]|

[\

Cyclotron frequency | | Cyclotron radius (gyroradius)

k, wave vector. What interesting in € THERE IS NO k,,.

The parabolic potential of the form of x; = —hk, /eB
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Hall effect

The full coductivity tensor

1 —S
1+s2 1+ s2

o = neu S 1
1+s2 1+s2

0 0

The full resistivity tensor

9 1 1 s 0
p=0 =—||-s 1 0

Jx Uoo—py B L LB
5, | e xy = EyW S e T dne” T H g
E=p/=| j.B

- 1

ne — — Hall constant

0 R ne
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Homogenous magnetic field

The Landau gauge solution

{L[A —q A t)]z + qo(r,t) + U(r t)}tp(f-’ t) = ihilp(F £)
2m P4 ’ apLr, ’ )= W,

0Ay 94, (unfortunately distinguishes

Landau gauge: magnetic field B = (0,0,B,) = B, = % oy direction)
A= [0, B,x, 0] czyli A, = B,x = Bx q= —e We assume that in a plane xy
/ there is no other potential
1 92 9 2 Gk
2 ; 2 N — >
{% [—h EP) + (—lh@ + eBx> —h 3,2 + U(z)}t/;(r) = EY(r)
h? ieh 0 (eBx)?
Which gives: ——F? — B r) = EY(r
ich gives [ - ——Bx 3y + o + U(2) | Y(¥) Y (1)
The evidence of the Lorentz force Parabolic potential!

2016-08-08 81




Homogenous magnetic field

The 2D case: .
Solutions &, = (n — E) hw. + Ey (does not depend on ky; E,- is any 2D energy).

— — 2
(:bnk (X, 3’) X Hn—l (x xk) exp [_ (x xk) ] eXp(lkyy) n=123..

lp

Wave functions are the functions of the oscillator (along x, of the order of Iz /4/2) and travelling
waves (along y) — weird, right? Why?

The energy does not depend on k vector — states of different k have the same energy, so they
are degenerated (therefore any combination of them does not change the energy).

The density of states is reduced from the constant % to a series of discrete values §
given by the equation of ¢, - they are called Landau levels.

Full energy (including binding potential in z direction): E,
1
E=E,+¢e,, =E, + n-y hw, E,

n=123..
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Homogenous magnetic field

The 2D case: .
Solutions &, = (n — E) hw. + Ey (does not depend on ky; E,- is any 2D energy).

X —X (x — x1.)? . _
Gk (x,y) X Hn_l( - ") exp [— 2"‘ ]exp(kay) n=1,273..

SRR I
g:%ﬁ w o
QO
Ie
m
N7\
" -
Q%ﬁ 2N "' - | . L\
0 hw, 2h0, g O Pfw, 2o, g 0O ho 2, g

AGURE 6.7. Density of states in a magnetic field, neglecting spin splitting. (a) The states in cach
range Ao, are squeezed into a §-function Landau level. (b) Landau levels have a non-zero width T
m a more realistic picture and overlap if fw, < T. (¢) The levels become distinct when i, > I
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Landau levels

The solution of the Schrodinger equation in a magnetic field gives a discrete spectrum.

What is the number of states per one level? The sample S = L, X L,,, in the Landau gauge for y

coordnate we have plane wave condition k = (Zn/Ly)ny (where n,, is an integer number).

: o . hk
For x coordinate the wavefunction is centered in x;, = — 5 —(anmy/eBLy).

The condition for xj, to be in the sample (rather than outside):

Znhny

_ ebB
eBL, <0 czyli 0<n, <—1LyL, =ngS =

—L, <
x h

h
flux @, = o= 4135667516 x 107> Wb [Wb]=[T m?]
The magnetic flux quantum (pol. flukson) (In a superconductor h/2e, so this is not a ,,quantum”)

® = BS the total magnetic flux in the sample S = L, X L,

0<n,®y <P

The amount of allowed states is related to the amount of magnetic flux quanta passing through
the sample!
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Landau levels

The Fermi level lies between Landau levels -
there is no DOS, change of Er does not change
DOS —incompressible states (stany niescisliwe)

The Fermi level lies inside the Landau level —

large DOS, change of E strongly affects the DOS
— compressible states (stany Scisliwe)

(a) 4 (b) 4 (c) 4

n(k)

EF E EF E

FIGURE 6.8. Occupation of Landau levels in a magnetic field neglecting the spin splitting, shawing
how the Fermi level moves to maintain a constant density of electrons. The fields are in the ratio
2:3:4and givev =4, %.and 2.
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Landau levels

The Fermi level in the magnetic field: V= = cB = B = 2mlgnyp

20

0 4 8 12
B/T

FIGURE 6.9. Variation of the Fermi level as a function of nragnetic field for a two-dimensional

electron gas in GaAs with Eg = 10 meV before the field was applied. Spin splitting is neglected,
The fan of thin lines shows the Landaun levels, while the discontintious thick line 1s Er.
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Shubnikov-de Haas effect

Shubnikov-de Haas effect (a) (b | © 4

Density of states oscillates - falls to O for v = n and

L. 1 :
is highest forv = n + i the easiest measurement

EF E

is the magnetoresistance R,.,.. Be  E

FIGURE B.8. Occupation of Landau jevels in a agnetic field neglecting the spin splitting, showing
how the Fernu level moves to maintain a constant density of electrons. The fields are in the ratio

Oscillations depend on the ratio of the Fermi energy 2:3:sadgivev—4.t.ama2.
Er to the cyclotron frequency hw, = eB/m™.
Oscillations are periodic in 1/B.

From SdH we can determine the effective mass m*
and quantum time t,. The amplitude of oscillation is

given by
Apgay = 4pod cos(4mv)

O <_ T
sinh(f (T)) P W:Tg :
£(T) = 2n2kT /oo, e :

Temperature dependence gives m”, damping 7.

http://groups.physics.umn.edu/zudovlab/content/sdho.htm
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Shubnikov-de Haas effect

Shubnikov-de Haas effect (a) b) () 4 .
Density of states oscillates - falls to O for v = n and

L. 1 :

is highest forv = n + i the easiest measurement : | |

is the magnetoresistance R,,. B B B g B &

FIGURE B.8. Occupation of Landau jevels in a agnetic field neglecting the spin splitting, showing
how the Fernu level moves to maintain a constant density of electrons. The fields are in the ratio
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FIGURE 6.10. Longitudinal and transverse (Hail) resistivity, Ry, and Ry, of a two-dimension ;
electron gas of density nap = 2.6 x 10" nm ™2 as a function of magnetic field. The Measusremeo ;
were made at 7 = 1.13 K. The inset shows 1/ R, divided by the quantum unit of conducm =

e/ h as a function of the filling factor v. [Data kindly supplied by Dr A. R. Long, University
2016-08-08 Glasgow. |




Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states
the Hall resistance (opdr hallowski) is quantized
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FIGURE 6.10. Longitudinal and transverse (Hall) resistivity, Ry, and R, ), of a two-dimensiona

clectron gas of density n3p = 2.6 x 10'> nm™? as a function of magnetic field. The measurements 5§
were made at 7 = 1.13K. The inset shows 1/R,, divided by the quantum unit of conductame:

e?/ h as a function of the filling factor v. [Data kindly supplied by Dr A, R. Long, Umvenllytf #ﬁ
2016-08-08 Glasgow.] §3‘
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Quantum dots
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2
1 1
E,;=QCn+|ll—-1) |[(hwy)? + (E ha)c) + (E hwc)l
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AGURE 6.16. Energy levels in a magnetic field of a GaAs dot with a parabolic confining potential
pving hwg = 2 meV.
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Hofstadter butterfly

The Hofstadter butterfly is the energy spectrum of an electron, restricted to move in two-
dimensional periodic potential under the influence of a perpendicular magnetic field. The
horizontal axis is the energy and the vertical axis is the magnetic flux through the unit cell of the
periodic potential. The flux is a dimensionless number when measured in quantum flux units
(will call it @). It is an example of a fractal energy spectrum. When the flux parameter a is
rational and equal to p/q with p and g relatively prime, the spectrum consists of g non-
overlapping energy bands, and therefore g+1 energy gaps (gaps number 0 and g are the regions
below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set.

http://physics.technion.ac.il/~odim/hofstadter.ht
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Integer Quantum Hall Effect (IQHE)

Integer Quantum Hall effect (IQHE) — for 2D gas: if the Fermi level is located in localized states

the Hall resistance (opdr hallowski) is quantized
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Stromer, Nobel Lecture

Yu, Cardona = — -
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Fractional Quantum Hall Effect (FQHE)

Fractional Quantum Hall Effect (FQHE) — for 2D gas v < 1: if the Fermi level is located in
localized states the Hall resistance (opdr hallowski) is quantized

~—~ &

1 h o, oy~
Ru=1igs
f'—-._-—_‘
Y —=\y
Y — ¥
~_
s Y e > C
@ > (S e A N
Coulomb forces
J flux quantum attachment o odd bosen
Fig 14. Schematic drawing of electron vortex attraction at fractional Landau level filling, m=even — fermion

v=1/3. Now there are three times as many vortices as there are electrons. The Pauli principle is  of electrons and composite particles. Exchange of two particles affects d
fich described the quantum-mechanical behavior of the system, For ele

sausfied by placing one vortex onto each electron (a). Placing three vortices onto each electron  qby-1, identifying the particles as fermions. With the attachment of an o
reduces electron-electron (Coulomb) repulsion (b). Vortex attachment can be viewed as the at- @ ¥ remains unchanged under exchange (multiplication by +1), identifyi
sons. Attachment of an even number of flux quanta returns the particles

tachment of magnetic flux quanta to the electrons transforming them to composite particles (€).  umber of flux quanta.
Stromer, Nobel Lecture
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