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Domieszkowanie potprzewodnikow

Semiconductors
] 1 IV V Vi

Carriers: Dopants:

holes o T ‘ Acceptors (p-type)
clectrons (@ - ‘ Donors (n-type)

Group IV: diamond, Si, Ge
Group llI-V: GaAs, AlAs, InSb, InAs...
Group lI-VI: ZnSe, CdTe, ZnO, SdS...
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Semiconductor heterostructures

C )
6.0 AIND Diamond T=30K e
& Ttalics
R AINGO BNO =
5.0 e . indirect gap
I MgS
9, = ©
w4 0f SN "Roman"
€3] A A LN ] =
: C Ultra GaNO "o ZnS @ Mese MeTe direct gap
& [ violel 4H-SiCq@eZn00 __ GaNO ¢ &"F°¢
2 3.0 2H-SiIC
o = ‘;?::.‘..QI_{.&.C.Q ----- zngco. Cdso-----'—--—- mMSe (P cadsacsasansd] o
g [EHIESEEE S S i) A _ AlPg %CASO-_———____ :
e bfeliow ------------------ 3C-S:C0 --------- i Pz ----®7nTe -——--- hexagonal
& 2. 0SSR SRnsasnmnenng R R InNEY4 'AIAS"""""""] structure
] F ---------------- IILNO ——————————————————————————— .Cdse @————
= C Infra CdSc O G.u\\. . C dTe 5
1.0 - fed Si. AlSb cubic
B ® structure
: Ge "EA‘aSb InSh
0 I-l B O D) Dk 1] bl o8 | l Lt 11 11811 I | N N 0 O £f OO ) O | I 1 £t 111111 | S Y | E-1-2-R
2.0 3.0 4.0 5.0 6.0 7.0

Lattice constant a (Angstroms)

Fig. 11.4. Room-temperature bandgap energy versus lattice constant of common
elemental and binary compound semiconductors.
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Infinite square quantum well

Inside the quantum well:
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Infinite square quantum well

Inside the quantum well:
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Infinite square quantum well

Inside the quantum well:
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Bandgap engineering

How can we change the heterostructure band structure:

Jll selecting a material (eg., GaAs / AlAs)

e controlling the composition
e controlling the stress

Conduction Band (CE)

Valence Band (VEB)

Straddling Gap Staggered Gap Eroken Gap
(type ) (type 1l (type Il
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(a)
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Figure 5. Schematic diagrams depicting the evolution of the
conduction band structure in the transverse direction: (a)
double heterostructure, (b) separate confinement
heterostructure (SCH), (c) graded-index separate
confinement heterostructure (GRIN-SCH), (d) single

guantum well heterostructure (QWH), and (e) multiple
mm” quantum well (MQW).

- (d) : -

= (e)

The development of the semiconductor laser diode after the first demonstration in 1962 J J Coleman Semicond. Sci. Technol. 27 (2012) 090207
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Jak sie robi heterostruktury?

Liquid-phase (LPE)

wzrost z fazy ciektej na podtozu w temperaturach nizszych od temperatury
topnienia hodowanego materiatu. Potprzewodnik jest rozpuszczony w cieczy
innego materiatu, wzrost w warunkach bliskich rownowagi roztworu i depozyciji;
predkosci wzrostu 0.1 to 1 um/min.

Vapor-phase (VPE, CVD)

wzrost z fazy gazowej dzieki reakcjom chemicznym prekursoréw na powierzchni,
czesto dzielony ze wzgledu na zrédtowe gazy na wodorkowg VPE i
metalorganiczng VPE (MOCVD); predkosci wzrostu >10 -20 nm/min.

Molecular-beam (MBE)

Materiat zrodtowy podgrzewany w komorkach produkuje strumien czgsteczek. W
wysokiej prézni (108 Pa) czgsteczki docierajg do podioza i osadzajg sie na nim;
predkosci wzrostu < 1 monowarstwa/s (1 um/h).
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Jak sie robi heterostruktury?

Quantum Well

MBE—-> Osadzanie z atomowg
precyzjg warstw o réznym sktadzie

lub domieszkowaniu
Hubert J. Krenner
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Jak sie robi heterostruktury?

Wzrost warstw MBE jest monitorowany przez Reflection High Energy Electron
Diffraction (REED). Komputer steruje przestonami (shutterami) na froncie
podgrzewanych komorek efuzyjnych, co pozwala na precyzyjng kontrole wzrostu do
poziomu pojedynczej warstwy atomowe,;.

Wzrost warstw z jamami kwantowymi (quantum wells), kropek kwantowych (quantum
dots) — struktury LD, LED.
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Jak sie robi heterostruktury?

komora UHV komora zatadunkowa komora UHV
wzrostu
materiatéw IlI-V
(Ga, Al, In, As, Sh,
N-plazma,

&45 8 Silub Te, Be lub Zn,
SR8 Mn lub Cr lub Co)

wzrostu
materiatéw |l-VI
(Zn, Cd, Mg,

S, Se, Te, Mn, Co,
ZnCl,, N-plazma)

komora UHV
przygotowania
podtozy

(odgazowanie
powierzchni)

Urzadzenie MBE - do epitaksji z wigzek molekularnych (2 komory wzrostu)
producent SVTA (USA). Zakup przez Wydziat Fizyki w r. 2010, program CePT
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k sie robi heterostruktury?
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MBE na Wydziale Fizyki UW




Jak sie robi heterostruktury?

MBE na Wydziale Fizyki UW
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Jak sie robi heterostruktury?

Reaktor Metal- Organlc Chemical Vapour Epltaxy (MOCVD) w Zak’fad2|e Fizyki Ciata
Statego | g > .,

Aixtron CCS 3x2
Heterostruktury GalnSb, AlGalnAs and AlGaN.
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Bandgap engineering

How can we change the heterostructure band structure:

Jll selecting a material (eg., GaAs / AlAs)

e controlling the composition
e controlling the stress

Conduction Band (CE)

Valence Band (VEB)

Straddling Gap Staggered Gap Eroken Gap
(type ) (type 1l (type Il
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Semiconductor heterostructures
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Bandgap engineering

¢ = work function

% = electron affinity (powinowactwo)
Ec = band gap

Ec = conduction band

Ev = valence band

Valence band offset (Anderson’s rule) AEs = y1 — xo = Ay
vacuum level AFEg; = FEg — Eax
[ 3 T
c T 72 qtz Valence band offset: AEy = AEg — Ax
B A1 P1
s ' — Eco AEs = AEs + AEy
: T R
é EF1———-T——3'—— v
3 Ea Eg:
? Ev; '
E Y Ev
.—§

Conduction Band (CE)

Valence Band (VE)

Straddling Gap Staggered Gap Broken Gap
(type 1) (type 1) (type Il
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Bandgap engineering

Valence band offset (Anderson’s rule)

vacuum level
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Su-Huai Wei, Computational Materials Science, 30, 337-348 (2004)

AEc = x1 — X2 = Ay - s m
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Valence band offset: AEy = AEg — Ax " o Lo
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Bandgap enginee

Valence band offset
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Fig. 4. Band offsets for group III-Nitrides. The dashed lines
represent the Fermi energy for the maximum achievable free
electron concentration in GaN and InN.
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Fig. 1. Band offsets and the Fermi level stabilization energy
(Egs) in I[TI-V compounds. The energy i1s measured relative to
the vacuum level. The filled circles represent stabilized Fermi
energies in heavily damaged materials, exposed to high energy
radiation. The open circles correspond to the location of the
Fermi energy on pinned semiconductor surfaces and at metal/
semiconductor interfaces. The dashed lines show the location of
the Fermi energy for a maximum equilibrium n- and p-type
doping in GaAs and InP.
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Bandgap engineering

How can we change the heterostructure band structure:

» selecting a material (eg., GaAs / AlAs)
l controlling the composition
e controlling the stress

Vegard’s law:

the empirical heuristic that the lattice
parameter of a solid solution of two
constituents is approximately equal to a rule
of mixtures of the two constituents' (A and B)
lattice parameters at the same temperature:

a=a,(1—x)+agx
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)

-

e controlling the stress

Vegard’s law:
Relationship to band gaps of ,,binary
compound”:

E=E;,(1—x)+Egx—bx(1—x)

Band gap (eV)

b — so-called ,,bowing” (curvature) of the energy gap

0.0 0.2 0.4 0.6 0.8 1.0
Composition x

Z Dridi et al. Semicond. Sci. Technol. 18 No 9 (September 2003) 850-856
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Bandgap engineering

Valence band offset
How can we change the heterostructure band structure:

» selecting a material (eg., Gaf< / AlAc)
Al controlling the composition . .
e controlling the stress
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Semiconductor heterostructures

Quaternary compounds
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Semiconductor heterostructures

Quinternary compounds

InSb 50 nm p* -GaSb contact  Be: 1x10°cm3

64
(Ga, In)Sb

62r (Al, Ga)Sb/AISH 2 um p-Aly gGag 1AS; 05Sbo o, cladding  Be: 1x108 cm™

1 um p-AlyoGag 1Asg 0sSby o, cladding  Be: 1x10*7 cm™

300 nm Al, ;Ga 5Ing <As, 4,Sb, o Waveguide

Lattice spacing (A)
(=]
o

X 5
56k 10 nm Aly3Gag ,Ing sAs 445by 5 barrier
gL i 290 nm Al 3Gag ;I sASg 44Sby 55 Waveguide
A 1 | lGa J
>4 05 10 15 20 25 1 pm n-Aly 6Gag ;ASo 05Sbo s, cladding  Te: 1x10%7 cm

Bandgap (eV)
2 um n-Aly oGa, 1AS 05Sbo o, cladding  Te: 2x107 cm2

http://beta.globalspec.com/reference/45139/203279/chapter-iii-
optical-properties

n-GaSb buffer Te: 5x10Y ¢cm™

n-GaSb substrate Te: 5x10Y cm3

Quinternary barriers push room-temperature operation of GaSbh-based
type-I lasers further into mid-infrared
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Comments on the conduction band

Depending on the semiconductor the bottom of the conduction band may be constructd from a
differnent valleys — the same heterostructure may be a well in a one band (eg. I') and a barrier
in another (eg. X).

(a) (b) r (¢) | r

........... , e XL X

A I e A )

GaAsAl“Ga“-TASG aAs GaAs AlAs GaAs AlAs GaAs  AlAs

FIGURE 3.8. Barriers and wells in GaAs—Al, Gaj—, As, showing the three lowest conduction
bands. (a) Barrier of Alg3Gan 7As. where 17 18 the Towest minimum throughout. (b Barrer o
AlAs, where X is the fowest minimum in the barrier. (¢) Well of GaAs surrounded by ATAx.
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Comments on the conduction band

Depending on the semiconductor the bottom of the conduction band may be constructd from a
differnent valleys — the same heterostructure may be a well in a one band (eg. I') and a barrier

in another (eg. X). f"z
;.
ol
ks 5
Energy GaAs i E"TQY ~ AlAs
X- vu{ey M-valley
L= w:ll} L-valley
X-
£, valley
) E
(100> M aood : am
Wave vector Wave vector
Eso _ Heavy holes Eso Heavy holes
Light holes Light holes

Split-off band "\ Split-off band
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Heterostruktury potprzewodnikowe

HgSe. Schematic band structure of the Hg—Cd—Se system near the I point
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)
e controlling the composition

Jl controlling the stress i Ga
BAS

2.4 - ,

Energy

\

X-valley

[=valley
L-valley

Band Gap Energy (eV)

ame

Wave vector
Heavy holes

Light holes

\Sptit-off band

1.2 — .
0 20 40 60 80 100 120

T T T T T T

Pressure (kbar)

Fig. 2. Direct and indirect band gaps in GaAs as a function of pressure.
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)

* controlling the composition 5 [
Jl controlling the stress
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Fig. 3. Variation of the pressure dependent electronic energy band structure,
Eni(P) for GaAs, at two different pressures, 0 kbar (solid line) and 120 kbar (dashed
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)
e controlling the composition

Jl controlling the stress i Ga
BAS

2.4 - ,

2.8

\

Band Gap Energy (eV)

1.2 — .
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Fig. 2. Direct and indirect band gaps in GaAs as a function of pressure.
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)
e controlling the composition

Jl controlling the stress
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)
e controlling the composition

Jl controlling the stress c . | | . | 00
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)
e controlling the composition

Jl controlling the stress uniaxial
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)
e controlling the composition

Jl controlling the stress biaxial
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Bandgap engineering

How can we change the heterostructure band structure:
» selecting a material (eg., GaAs / AlAs)
e controlling the composition

uniaxial biaxial

\1 /; \ N
r
e

ENIENSEEZN

Energy

N L] L

Ki r Ky Ky r Ky K r KL
(@] (o] (]

1 a||ong the FI1G. 6. (a) Schematic representation of the band structure of an unstrained direct-gap tetrahedral
. . semiconductor (as in Fig. 2). (b) Under bi-axial tension, the hydrostatic component of the tension
strain axis reduces the mean band gap, while the axial component splits the degeneracy of the valence band
maximum and introduces an anisotropic valence band structure, with the highest band being light

along the strain axis (k) and comparatively heavy perpendicular to that axis. (¢) Under bi-axial

compression the mean band gap increases and the valence splitting 1s reversed so the highest

band i1s now heavy along the strain axis (k) and comparatively light perpendicular to it (rep-

rinted with permission of'®" © 1989 Institute of Physics).
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Bandgap engineering

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the

direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You
have to solve the kp perturbation theory (Chemla 1983):

(a) COMPRESSION (b) MO STEAIM (c) TEMSION
alx) = ay, arn) = ay, alx) < a,
[ I |
— - a———
[ I Jxi=a, o ]
| |

Effects of biaxial strain: decrease of the
degeneracy of the valence band and change
of the effective masses in the Ga,In, As /
Ga,In, As yP,  material system.

S.L. Chuang, Phys. Rev. B 43, p. 9649 (1991). 9, 10 g(%)

Eg{x}v
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Potencjat harmoniczny

hZ d2 1 E maw
o - 2,2 — = — = 0
[ 2 T o mwsz ]l/J(Z) EY(z) = ooy § P
d d g & = .
(d_f_5)<d_€+f)Ae2=(—2€o+1)A62=0 = 2"“:0-"1_0=>€°_2
1
sn—n+§

1
E—n = h(l)o <n + E)

_ mawy _m(l)o 2
wn(z)—Aan( n z)exp( T z)

H,, - wielomiany Hermite’a

~1/2
A, = (Z"n! n_h)
mw
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Comments on the valence band

From kp perturbation theory :

E3jp(k) = Ak? + [B?k* + C?(k2k3 + k2kZ + k2kZ)] kEO‘lO
011 011
001 /\ » 001
NP
011 011
010

Przykladowe powierzchnie stalej energii w
dwuwymiarowej przestrzeni k.
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Comments on the valence band

From kp perturbation theory :

1/2
Esjp(k) = Ak? + [B?k* + C?(k2k3 + k2kZ + k2kZ)]
Heavy hole(HH) Light hole (LH) Split-off (SO)
E=12 meV E=80 meV E=120 meV
Constant
energy surface
£ o7 =
gw % os :P |
§ i | | 205 ‘ R \ E ‘
? : \ 'I“. % W E 04 I 0y A E’ :
" og g | 4 uu‘-,"'.' : 5 (e V‘I1 WD a I i
g S R E pd il 4'.‘,‘1‘}1 oo E :
E 8¢ 1 2 o3 = wo* 0
ey e wlR it ;
210 e %"/o,,%"’m as “they 210 o
¢

73 a5 . L o
Oo%‘ e patas angd® 380 o poar ang'® 45 po\,,.no“'

0’7% 5 380 0

Fig. 7. The 3D constant-energy surfaces of the heavy hole (HH) band, the light hole (LH) band
and the split-off (SO) band and their corresponding conductivity masses for unstrained silicon.

X.X. Wei,Y. Yu, Y. Bi; Int. J. of Mechanical Sciences Vol. 50, 1499-1509 (2008),
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Comments on the valence band

From kp perturbation theory :

1/2
Es (k) = Ak? + [B2k* + C?(k2K2 + k2k2 + k2k2)]"
Heavy hole(HH) Light hole (LH) Split-off (SO)
E=12 meV E=80 meV E=120 meV

Constant
energy surface

SEE A
R
b

s

"
o
-

N oW

A -
e o ©o
& v o

-
o
w

on

Hole mass m _(unit of my)
o

os
Hole mass m (unit of m;)

Hola mass m _(unit of m,)

9 ° e
a1y, 270 e ge
%, 360 0 poar 2"

Fig. 8. The 3D constant-energy surfaces of the heavy hole (HH) band, the light hole (LH) band

and the split-off (SO) band and the corresponding conductivity masses for silicon under the

uniaxial compression P % 500kN. . X.X. Wei,Y. Yu, Y. Bi; Int. J. of Mechanical Sciences Vol. 50, 1499-1509 (2008),
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Comments on the valence band

From kp perturbation theory :

Luttinger dimensionless parameters:
2m m _m 1, 2
nETpd =B 1T nzjgc +tB
Bun(l) = 2|y ok & J4y2k4 + 1272 — y2)[k2K2 + k2kZ + kzk2]| T heavy holes
’ 2m —N 2 3 f2 Ly B Ryrz D AL ight holes

Expanding around k =0

hZ
Epp(k) = o [(y1 + 2y kS + (y1 + 2y2) k7]

2

h
En(k) = o [(y1 — 2y2)k: + (y1 — 2y2)kZ]

2017-06-05




Comments on the valence band

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the
direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You

have to solve the kp perturbation theory (Chemla 1983): A
E

2
Epn(k) = ™ [(y1 + v2) ki + (y1 — 2y2)kZ]

72 E1nn I T J, = iE

En(l) = —5—[(y1 = v2)kL + (r1 + 2y2)kz] 2

E1in j = +1

272

It follows that the heavy holes have a "light" mass o Ty ) in the plane (x — y), while light holes
1 2

have heavy mass
v vy (y1-v2)
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Comments on the valence band

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the
direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You
have to solve the kp perturbation theory (Chemla 1983):

AE
hZ
Eyn(k) = om [(y1 + y2) k5 + (y1 — 2y2)kZ] R
72 E1nn I T J, = iE
Epn () = ———[(r1 = v2 ki + (y1 + 2y2)kZ] 2
Eqvin 1
Iz = iz
AE
ke
E1nn h?
o (Y1 +7v2)
E1in
hZ
% (Y1 —72)
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Comments on the valence band

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the
direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You
have to solve the kp perturbation theory (Chemla 1983):

AE
hZ
Eyn(k) = om [(y1 + y2) k5 + (y1 — 2y2)kZ] R
72 E1nn I T J, = iE
Epn () = ———[(r1 = v ki + (v1 + 2y2)kZ] 2
Eqvin j = +1
Zo =2
E
T Ky
E1nn h?
o (Y1 +7v2)
E1in
hZ
% (Y1 —72)

PoLDS 385
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Energy bands

€ DCDCD

€CDE-DECD
CHDCDCD

CHC-DEC-D
€CDCDECD
TC-DC-DC-D

P,
| @
]—> xory
(b) E(K)# (c)
kB k,

FGURE 2.17. Valence bands constructed from p orbitals. (a) Lattice of p- orbitals. (b) Bal
structure of the p. orbitals only; the band is ‘light’ along £, to the right and ‘heavy™ ulong &, (or
k) to the [eft. (c) Total bands from all three p orbitals, showing a doubly degenerate “heavy ™ band
and a single ‘light” band.
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Energy bands

Example:

b) +E

lekkie dziury

dziury
odszczepione

\]

!
GoAs-

Subbond EnergyE, lev}

LN

G.04 0.03% 0.02 0.01 (n} 0.0 0.02 0.03 0.04
—{n0} ACS (100}~

FIGURE 10.4. Valence-band structure in a muliiquantum well as a function of Kk along two

directions. The wells comprise 68 atomic layers of GaAs with barriers of 71 atomic layers of
Aly25Gag 75As. [From Chang and Schulman (1985).]

D. Wasik.
2017-06-05
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Quantum well
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3.5

Band gap profile

1AIP AP

3.0

Al Ga P

Al_.In P

2.5 4

0406

cb

2.0

1.5

energy (eV)

1.0 4

0.5 4

In__ P

0406

band gap maximum

0.0

0.5

1 1 1 1 I 1 1

) ¢ I 1 1 I
10 20 30 40 50 60 70 80 90 100
distance (nm)

cb (Gamma)
——cb (L)
——c¢b (X1)
——cb (X2)
——hh

——1h

—— S0

band gap

http://www.nextnano.de/nextnano3/tutorial/1Dtutorial_AlGalnP_onGaAs.htm




Finite potential well — square well

Simply example has been already calculated
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Finite potential well — square well

Heterostructures can have different effective masses in different regions:

h?  d?
- 2mym* dz?2 ¥(2) +Vo(2)9(2) = ep(2)

It turns that the conversion m* - m(z) is not a good solution of the problem (equation ceases
to be Hermitean). It has to be done diferently, eg.:

h? d
2m0 dz m(z) dz

] Y(2) + Vo (2)Y(2) = eY(2)

0.3

Matching conditions at the interface must be
modified (equation has to conserve current

IW = IB thus Vw = UB): 0.2
C
(4}
0.1
1 dy 1 dy
mpdz| a my dz| a
2 ) 0.0 : i L ! . l
-20 -10 0 z/nm 10 20
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Finite potential well — square well

: . a a
Inside the well: g2

5 5 2 2
(@) = (Bn — Ew)p(2)

B ZmOmW d

b= [

sin(k,,z)
The barrier:
h2 K>
=F,—E, =B
2mmg ° "

Y(z) = D exp(£K,2)

Matching conditions:
1 dy 1 dy

mpg dZ Z—ﬂ myy dZ

42
2

N

(. (k a )
C_k —SIin nz B _% a
my, \ cos (kn g) a mp exp (kn )
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Finite potential well — square well

We calculate:

.
V(2| 2 =Yw(2) ( a
Z=% |Z=% Ck ) —SIin (kn E ) B Dk ( a )
| Ly _ L dv | cos (i, D) | e o2
mp dz| _a my dz| _a "2
\ - 2

(depends only on my,)

tan6 _ [Mw 9_3_1
—cot 6 mg \ 0?2
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Finite potential well — square well

THE SAME mass in the well and in the barrier:

0.3

o E/eVo
f— B

0.0 — ¥ | | I . t
-20 -10 0 /nm 10 20

FIGURE 4.1. Finite square well in GaAs of depth Vy = 0.3 eV and width ¢ = 10nm, showing
three bound states.
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Finite potential well — square well

THE DIFFERENT mass in the well and in the barrier;

1.0

0.8

0.6

E/eV

04

0.2

-10 -5 0 z/nm 5 10

FIGURE 4.12. Finite square well of depth ¥y = | eV, width a = 5 nm along z, and effective
masses my = 0.067 in the well and mg = 0.15 in the barrier.
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Finite potential well — square well

THE DIFFERENT mass in the well and in the barrier;

- S W EE R e e = e e e = e e e o we W R A et et

4.12. Finite square well of depth Vo = | eV, width a = 5 nm along z, and effective
asses my = 0.067 in the well and mg = 0.15 in the barrier.
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Finite potential well — square well

THE DIFFERENT mass in the well and in the barrier:

2017-06-05

0-8“ ' N T : | | !
E S | | xz) -
04
0.2
0

-0.4 +

0.6 1 — — —

vy v v*
0.2 +

L ———

1

1l

8 4

2z / nm

8

FAIGURE 3.22. Wave function for the lowest state in a 6 nm quantum well in a heterostructure.
including the Bloch functions. The thin curve is an approximate envelope function joming the
peaks of the full wave function. [Redrawn from Burt (1994).]
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Harmonic potential |
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Harmonic potential

2
[_Zh—md— + V(Z)] Y@ =eplz) V()= %Kz2 = %mw%zz fn = (n - l) hwo

E/ meV

—— D A e e m—y — _———

FIGURE 4.4. Potential well V(2). energy levels, and wavi@nctions of a harmonic oscillator. The
potential is generated by a magnetic field of 1T acting on electrons in GaAs.
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Harmonic potential

h% d? 1

[— gzt %ma)gzzl Y(z) = e(2) &n = <n - z) o

Wavefunction

(2) = 1 [mw0]1/4 Mwyz? u [ [
¢n+1 zZ) = \/m hﬂ eXp - zh n h Z

Hy(t) =1

Hi(t) =t

Hy(t) = 4t%> -2
H3(t) = 8t3 — 12t

Hermite polynomials

The ground state is a Gauss package — does the packet diffuse?

2
2 mawy _ mawopz
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Harmonic potential

2017-06-05

Eth

{a) ® I PARABOLIC WELL
Ec(z) | Lz=510 & Eeo

PHOTOLUMINESCENCE (GU)
T

1.52 153% 154
LEa sl by ed g dadatsle el abatadsbakaleligtalad

152 1.56 160 1.64 1.68 172
PHOTON ENERGY (2V}

FIGURE 4.5. (a) Parabolic potential in both conduction and valence bands grown into GaAs by a
graded composition of Al Gaj_ As. The band gap has been reduced in this sketch, and only heavy
holes are shown. (b) Photolumtnescence in parabolic wells. [From Miller et al. (1984).}

64



Triangular well |
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Triangular well

h? d?
[—%@ + eFZ] Y(z) = e(2)

0.2 , , . , : , :
V(2) =eFz
o
@
= n=3
0.1l bmmmee e e e LT i
n=2
----------------- n= ]_
0.0 — l L I - | . |
0 10 20 30 40 50
z/nm

FGURE 4.6. Triangular potential well V(z) = ¢ Fz, showing the energy levels and wave functions.
The scales are for electrons in GaAs and a field of SMV m™L.
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Triangular well

2 g2
[—h—d— + eFZ] Y(z) = eP(z)

2m dz?
Transformation: 1.00 'ﬂ'“_;x')' [N AN B N B I B '!f' i
B ; / |
d2 m 0.75 | Biw = /
dz2 —¥(2) = HZ (eFz — &)Y (2) g J,’ :
0.50 | ~ i
nz \1/3 - n N / }\ .
Substituting: zo = (2 F) 025 [ha— AN AR Mx f\n‘ 1\ \ / \ 1
1/3 YA AN /.' VL [ j ]
(th) _ zZ  _ £ N IR AR NAREATAT /
eF 7 =— & = — 0.00 I 1 | \ AW | 1 h H | \ ]
&g = Zg = ’ — ’ — RHAWVVEAVVERN {' I'l o 'u' \ / .
%o %o SRVIAVIRV//RY AR Vo ]
i ] 1'| I | | \ !
d2 2m —0.25 WU Y \ViVi V\ j ]
— i - v \ / _
a2V = g (eFz = eh(2) o0 | W,
The equation reduces to Stokes or Airy equation: o _XS ’ ’

d2
—5f(2) = 2£(2)

Its two independent solutions the Airy functions Ai(z) and Bi(z). The solutions of the
equation are the zeros of a function Ai(z) (after some rearrangements).
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Triangular well

2017-06-05

1/3
_ (eFz)?
V(z) = eFz £, = Cpy [—Zm
0.2 E—— -
V(2) =eFz
o
o
= n=3
01 bemmee oL T ]
n=2
----------------- n= ]_
0.0 — ' . | - | , !
0 10 20 30 40 50
z/nm

FGURE 4.6. Triangular potential well V(z) = ¢ Fz, showing the energy levels and wave functions.
The scales are for electrons in GaAs and a field of SMV m™L.



WKB approximation

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly changing potential

It is also known as the LG or Liouville—Green method or JWKB and WKBJ, where the "J" stands
for Jeffreys or phase integral method or semi-classical approximation.

2
[—Zh—md— + V(x)] Y(x) = EP(x)

What is slowly varing potential? It is for sure V(x) = V; = const. The solution for this potential

is a plane wave P(x) = e'** - phase of the wavefunction k(x) = k = const is constant in the
2

whole space k? = Tm [E — V]

Let's define k?(x) = 27m [E — V(x)] - we want the phase k(x) to be slowly varying in space, i.e.
dk

2
dx <Lk

(such condition).
We are looking for the solution y¥(x) = e X(¥) where y(x) is the phase of the wavefunction.

6/5/2017 69




WKB approximation

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly changing potential

hZ
[— Z_d_ + V(x)] P(x) = Ey(x)

Let’s define k?(x) = 27"1 [E — V(x)] - slowly varing in real space k(x).

We are looking for the solutuion 1(x) = eX™®) where y(x) its the phase of the wavefunction.
Inserting into Schrodinger equation:

[x' (0)]? —ixy"(x) = sz [E —V(x)] = k?(x) - thisis rigorous.

Zero-order WKB approximation assumes [x’'(x)]% > |x" (x)| czyli y"'(x) = 0

[x' (x)]? = k?(x) czyli ) = + jxk(x')dx'

Usually we expand more
' (0)]% = k() + ix" (x) = k() +i[x' ()] = k*(x) £ i[k(0)]'

Thus:

o ik’(x) ik'(x)
X (x) = ik(x)\/l + kz(x) + k(x) + 2%

6/5/2017




WKB approximation

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly changing potential

Typically, the WKB method continues into

' (0)]% = k%) + ix" (x) = k2(x) + i[x' ()] = k*(x) £+ i[k(x)]’

Thus:
N ik'(x) _ ik’ (x)
x'(x) = ik(x)jl e ot k(x) + 2500
therefore:
200 = + j kG + 5 In k(o)
We get:

Y(x) = exp [ii f xk(x')dxr]

1
VEk(x)

The term 1/4/k(x) - the density of probability of fast-moving particles is small for large k - OK!
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WKB approximation

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly varying potential

V(x) : A

energia czastki

In the case of turning points (ie. the edges of the barriers well) potential changes rapidly
compared with the wavelength k(x) - WKB approximation is not valid (a rigorous approach
avoids it by moving into the complex plane). Another way is to note that the potential is linear
for a small region around the turning point Ax; - and the Airy functions are the exact solutions.

Then the solution must match on both regions near x; .
The problem sounds complicated but fortunately the results are simple (we got additional

phase).

72
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WKB approximation A

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly varying potential

V(x) : A

P(x)

carrier energy

lp(x)~\/%cos ijk(x’)dx’ — %‘, x> x
YP(x)~ ! ex -— jxlc(x’)dx’] x K x
JK(x) P XL ’ ‘
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WKB approximation

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly varying potential

2 x ,, T
YP(x)~ CoS k(x"dx" ——|, x> xp
\/ k(x) X1, 4
Examples:
1. ,Hard” (infinitely steep) wall — the wave function goes to zero at the boundaries, so an exact
number of half-wavelengths must fit between them XR
k(x")dx' =nn
XL
nm
For: k(x) = const we have k, = T

2. ,,Soft wall” — an allowed state must obey the matching conditions (x > x;, above) and at x; it
T
4

has additional phase —Z) and similarly at xp - next | ——). Altogether:
4

ka(x’)dx’ = (n — 1) T

X, 2
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WKB approximation

Krammers — Brillouin) — for slowly varying potential

WKB approximation (Wentzel —
2 x T
YP(x)~ coS U k(x")dx' — —] , x> X
N6)) 4 -

R 1
3. Triangular well of ,hard” and ,soft” well: j k(x")dx' = (n — Z) T
XL

Eg. Triangular well: V(x) = eFx wtedy k,(x) = %\/Zm(En — V(x)) = %\/Zm(En — eFx)

En/eF 1 ., [2mE, ]1/2E f\/lid
— s =

XR
k(") dx" = = JZm(E, — eFx)dx' =
. n(x")dx fo h\/ m(E, — eFx")dx' = v oF
0.2 — : : : —
lsz 1/2 f \/7 S_ ZmE ]1/2E V(z) = eFz
eF TN
my n=3
fw’ l-x dx= —5 (1 —x)*2 4 constant] N A n=2
---------------- n=1
E 1\ 17° [(eFm)2]"* )
n- 27-[ Tl—4 2m M 1I0 2'0 3|0 z/anO_ 50
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Triangular well

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly varying potential

TABLE 7.1

A comparison of various approximate meth-

ods for energy levels in a triangular potential, in units of g9 =
[(eFﬁ)z/(fzm)]’”, and the exact results from the Airy function,

n  Airy function WKB Variational Variational
(exact) (Fang—Howard) (Gaussian)
I 2.3381 2.3203 2.4764 2.3448
2 4.0879 40818
3 5.5206 55172
. . 0.2 —
10 12.8288 12.8281 o) o
G
E:l ____________________________ n=3
0.1 pommmofoam L T
n=2
2/3 /3 n=1
E 1\ 172 [(eFn)2]Y
— -_— -_—— , 1 1 1 o |
n 2 T 4 2m 0'00 10 20 0 40
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Triangular well

WKB approximation (Wentzel — Krammers — Brillouin) — for slowly varying potential

2DEG
conduction band
fermi level

z-direction
http://www.phys.unsw.edu.au/QED/research/2D_scattering.htm

2/3 1/3
eele-t) e

2m
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WKB approximation _

d

Vix) = V, [1 - (5)2]

—~ A . E
= ionized |
qé donors
Vi
E, A0 +o+

.

— x

FIGURE 7.7. Schottky barrier in the conduction band £.(x) between a metal and n-GaAs. The

n-GaAs

neutral region

potential is parabolic with height ¥, and thickness d.
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Low dimensional structures

Full Hamiltonian in our universe has three spatial dimensions (x,y,z,t) = (ﬁ, t)
hz - - -
- 3 7+ V) 9(R) = B4 (R)

For V(I_f) = V(z) we obtain:

h% [ 02 0% 0%
[_ 2m <0x2 T 0y? * 622) i V(Z)] peoy.2) =Bty z)

Along directions x and y mamy ruch swobodny:
Y(x,y,z) = exp(ik,x) exp(ikyy) u(z)
We can show (on the blackboard!), that final eigenenergies of the potential V(z) are:

flz 2 hzkz h2k2
——+ V(z)] u(z) = eu(z) _r_ X _ y
[ 2mdz? e=k 2m 2m

131
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Low dimensional structures

l/)I\",x,ky,n(x: y,z) = exp(ik,x) eXp(ikyY) un(z) = l/)k,n(r: z) = exp(ik - 1) u, (2)

h2k2  h2k2 h2k?
En(kx, ky) =&, + om + om En(k) = &n —+ om
(a): (c} :
06 + - -
% €y
o KVN_?{;% ____________________
0.4 .

| " |

0 10 -1 0 1 0] 1
z/nm k/nm™} n(E)/ eV-1 nm2

FIGURE 4.7. (a) Potential well with energy levels, (b) total energy including the transverse kinetic
energy for each subband, and (c) steplike density of states of a quasi-two-dimensional system. The
example is an infinitely deep square well in GaAs of width 10 nm. The thin curve in {c) is the
parabolic densily of states for unconfined three-dimensional electrons.
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Low dimensional structures

l/)I\",x,ky,n(x: y,z) = exp(ik,x) eXp(ikyY) un(z) = wk,n(r: z) = exp(ik - 1) u, (2)

n2k? h%kZ h?k?
En(kx» ky) =é&n + me + Zmy En(k) = &, +

2m

continuum

-20 0 20 -1 0

z/nm £/ nm! 1

FIGURE 4.9. Quasi-two-dimensional system in a potential well of finite depth. Electrons with the
same total energy can be bound in the well (.4) or free ( 5).
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Finite potential well — square well

THE DIFFERENT mass in the well and in the barrier;

- S W EE R e e = e e e = e e e o we W R A et et

4.12. Finite square well of depth Vo = | eV, width a = 5 nm along z, and effective
asses my = 0.067 in the well and mg = 0.15 in the barrier.
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Low dimensional structures

Effective mass in the barrier mg and in the well my,

hz 2 - - -
g 7+ V()| () = Bu(
For separated wave functions: 1/)(13) = Ypn(r, z) = exp(ik - r) u,(2)

2

72 4 EW] W (&) = Ep(R)

zmo myy
2

Zmo mpg

7 + EB] W(R) = Fy(R)
We got (on the blackboard!):

[ h?  d? h2k?

_ E —
2mg myy, dz2 * 2mgy my, * W] un(2) = €Uy (2)

[ I h%k?

2m0 mpg dZZ T zm() mpeg B] un(Z) gun(Z)
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Low dimensional structures

The particle moves in the well which potentiald depends on k, in fact k = | k]|

h? d?

- zmo mW de un(Z) — gun(z)
h?  d?

- Zmo mB dZZ + Tl(Z) — gun(z)

o \Mp

R

= \Lp w) T o

The particle gains partially the effective mass of the barrier:
2k2 hzkz

2momyy n( )+ 2MoMesys

En(k) = en(k) +

1

energy of the bond state depends on k

1
myy,

Np. w strukturze GaAs-AlGaAs mp >
my, wiec studnia robi sie ,, ptytsza”

Merr = My Py + mpPp

[ 1

prawdopodobienistwo znalezienia czastki
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Low dimensional structures

The particle moves in the well which potentiald depends on k, in fact k = | k]|

h? d?
- Zmo mW de un(z) — Sun(z)
[ h?  d?
- 2m0 mB dZZ + Tl(Z) — gun(z)

TR = (5 — Ey) + e (- 2
B B w Zmo me myy

TABLE 4.2 Decpendence on transverse wave vector k| of the energies of
the states bound in a well 5 nm wide and | eV deep, with effective mass mw =

0.067 inside the well and mp = 0.15 outside.

Np. w strukturze GaAs-AlGaAs mp >
my, wiec studnia robi sie ,, ptytsza”

h2k? h2k?
2momw 2moing
(nm~1) (eV) (eV) (eV) (V) (eV) (eV)

0.0 0.000 (.000 1000 0108 0446 (1.969  0.067
0.5 0.142 0.064 0.921  0.106 0435 0919 0.069
1.0 (L.570 (0,254 0.685 0.09% 0397 — 0.076

Vo(k) £l €2 £3 I off

k
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