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Born- von Karman boundary conditions

Finite size of the crystal Lx, Ly, Lz

Ψ – the Bloch function

Ψ(x + Lx,y,z) = Ψ(x, y + Ly,z) = Ψ(x, y, z + Lz)

If our crystal has a finite size the set of 𝑘 −vectors is finite (though enormous!). 
For example: we can assume periodic boundary conditions and then:
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Infinite square quantum well
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Bandgap engineering
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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Figure 5. Schematic diagrams depicting the evolution of the 
conduction band structure in the transverse direction: (a) 
double heterostructure, (b) separate confinement
heterostructure (SCH), (c) graded-index separate
confinement heterostructure (GRIN-SCH), (d) single 
quantum well heterostructure (QWH), and (e) multiple
quantum well (MQW).

The development of the semiconductor laser diode after the first demonstration in 1962 J J Coleman Semicond. Sci. Technol. 27 (2012) 090207



Vapor-phase (VPE, CVD) 

wzrost z fazy gazowej dzięki reakcjom chemicznym prekursorów na powierzchni, 

często dzielony ze względu na źródłowe gazy  na wodorkową VPE i 

metalorganiczną VPE (MOCVD); prędkości wzrostu >10 -20 nm/min.

Liquid-phase (LPE)

wzrost z fazy ciekłej na podłożu w temperaturach niższych od temperatury 

topnienia hodowanego materiału. Półprzewodnik jest rozpuszczony w cieczy 

innego materiału, wzrost w warunkach bliskich równowagi roztworu i depozycji; 

prędkości wzrostu 0.1 to 1 μm/min.

Molecular-beam (MBE)

Materiał źródłowy podgrzewany w komórkach produkuje strumień cząsteczek. W 

wysokiej próżni (10-8 Pa) cząsteczki docierają do podłoża i osadzają się na nim; 

prędkości wzrostu < 1 monowarstwa/s (1 μm/h).
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Jak się robi heterostruktury?



Ec

E0

E1D(E)

E

Quantum Well

t

2D

MBE Osadzanie z atomową  

precyzją warstw o różnym składzie 

lub domieszkowaniu

Ec

Hubert J. Krenner
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Jak się robi heterostruktury?



Wzrost warstw MBE jest monitorowany przez Reflection High Energy Electron

Diffraction (REED). Komputer steruje przesłonami (shutterami) na froncie 

podgrzewanych komórek efuzyjnych, co pozwala na precyzyjną kontrolę wzrostu do 

poziomu pojedynczej warstwy atomowej. 

Wzrost warstw z jamami kwantowymi (quantum wells), kropek kwantowych (quantum 

dots) – struktury LD, LED.
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Jak się robi heterostruktury?



komora załadunkowa komora UHV

wzrostu 

materiałów III-V

(Ga, Al, In, As, Sb, 

N-plazma,

Si lub Te, Be lub Zn, 

Mn lub Cr lub Co) 

komora UHV

wzrostu 

materiałów II-VI

(Zn, Cd, Mg, 

S, Se, Te, Mn, Co, 

ZnCl2, N-plazma)

komora UHV

przygotowania

podłoży 

(odgazowanie 

powierzchni)

Urządzenie MBE - do epitaksji z wiązek molekularnych  (2 komory wzrostu)

producent SVTA (USA).  Zakup przez Wydział Fizyki w r. 2010, program CePT
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Jak się robi heterostruktury?



MBE na Wydziale Fizyki UW
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Jak się robi heterostruktury?



MBE na Wydziale Fizyki UW
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Jak się robi heterostruktury?



Reaktor Metal-Organic Chemical Vapour Epitaxy (MOCVD) w Zakładzie Fizyki Ciała 

Stałego  

Heterostruktury GaInSb, AlGaInAs and AlGaN. 
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Jak się robi heterostruktury?

Aixtron CCS 3x2



Bandgap engineering
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress



Semiconductor heterostructures
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Investigation of high antimony-content gallium arsenic nitride-gallium arsenic antimonide heterostructures for long wavelength application



Bandgap engineering
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Valence band offset (Anderson’s rule)

Valence band offset: 
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Bandgap engineering
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Valence band offset (Anderson’s rule)
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Valence band offset

W
al

u
ki

e
w

ic
z

P
h

ys
ic

a
B

 3
02

–3
03

 (
20

01
) 

12
3

–1
34



Bandgap engineering
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress

Vegard’s law:
the empirical heuristic that the lattice 
parameter of a solid solution of two 
constituents is approximately equal to a rule 
of mixtures of the two constituents' (A and B) 
lattice parameters at the same temperature:

𝑎 = 𝑎𝐴 1 − 𝑥 + 𝑎𝐵𝑥



Bandgap engineering
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Vegard’s law:
Relationship to band gaps of „binary
compound”:

𝐸 = 𝐸𝐴 1 − 𝑥 + 𝐸𝐵𝑥 − 𝑏𝑥(1 − 𝑥)

b – so-called „bowing” (curvature) of the energy gap
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress



Bandgap engineering

2017-06-05 25

Valence band offset
How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress



Semiconductor heterostructures
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http://beta.globalspec.com/reference/45139/203279/chapter-iii-
optical-properties

Thin Solid Films 433 (2003) 22–26

Quaternary compounds



Semiconductor heterostructures

2017-06-05 27

Quinternary barriers push room-temperature operation of GaSb-based 
type-I lasers further into mid-infrared

http://beta.globalspec.com/reference/45139/203279/chapter-iii-
optical-properties

Quinternary compounds



Comments on the conduction band
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Depending on the semiconductor the bottom of the conduction band may be constructd from a 
differnent valleys – the same heterostructure may be a well in a one band (eg. Γ) and a barrier
in another (eg. 𝑋).



Comments on the conduction band

2017-06-05 29

Depending on the semiconductor the bottom of the conduction band may be constructd from a 
differnent valleys – the same heterostructure may be a well in a one band (eg. Γ) and a barrier
in another (eg. 𝑋).

GaAs AlAs



Heterostruktury półprzewodnikowe
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http://www.springermaterials.com/docs/pdf/10681719_656.html



Bandgap engineering
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress
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How can we change the heterostructure band structure:
• selecting a material (eg., GaAs / AlAs)
• controlling the composition
• controlling the stress uniaxial biaxial

⊥ allong the 
strain axis



Bandgap engineering
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Effects of biaxial strain: decrease of the 
degeneracy of the valence band and change 
of the effective masses in the GaxIn1-xAs / 
GaxIn1-xAsyyP1-y material system.

S.L. Chuang, Phys. Rev. B 43, p. 9649 (1991). 9, 10

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the 
direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You 
have to solve the 𝒌𝒑 perturbation theory (Chemla 1983):



Potencjał harmoniczny
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Comments on the valence band

2017-06-05 43

𝐸3/2 𝑘 = 𝐴𝑘2 ± 𝐵2𝑘4 + 𝐶2 𝑘𝑥
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From 𝒌𝒑 perturbation theory :
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Comments on the valence band
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𝐸3/2 𝑘 = 𝐴𝑘2 ± 𝐵2𝑘4 + 𝐶2 𝑘𝑥
2𝑘𝑦

2 + 𝑘𝑦
2𝑘𝑧

2 + 𝑘𝑧
2𝑘𝑥

2 1/2

X.X. Wei,Y. Yu, Y. Bi; Int. J. of Mechanical Sciences Vol. 50, 1499–1509 (2008),

Fig. 7. The 3D constant-energy surfaces of the heavy hole (HH) band, the light hole (LH) band 
and the split-off (SO) band and their corresponding conductivity masses for unstrained silicon.

From 𝒌𝒑 perturbation theory :
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X.X. Wei,Y. Yu, Y. Bi; Int. J. of Mechanical Sciences Vol. 50, 1499–1509 (2008),

Fig. 8. The 3D constant-energy surfaces of the heavy hole (HH) band, the light hole (LH) band 
and the split-off (SO) band and the corresponding conductivity masses for silicon under the 
uniaxial compression P ¼ 500kN. .

𝐸3/2 𝑘 = 𝐴𝑘2 ± 𝐵2𝑘4 + 𝐶2 𝑘𝑥
2𝑘𝑦

2 + 𝑘𝑦
2𝑘𝑧

2 + 𝑘𝑧
2𝑘𝑥

2 1/2

From 𝒌𝒑 perturbation theory :
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𝐸3/2 𝑘 = 𝐴𝑘2 ± 𝐵2𝑘4 + 𝐶2 𝑘𝑥
2𝑘𝑦

2 + 𝑘𝑦
2𝑘𝑧

2 + 𝑘𝑧
2𝑘𝑥

2 1/2
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2𝑚
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𝐴 𝛾2 = −

𝑚

ℏ2
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𝑚
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1

3
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Luttinger dimensionless parameters:
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2𝑚
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2 ± 4𝛾2
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2𝑘𝑦
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Expanding around 𝑘 = 0
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2𝑚
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2𝑚
𝛾1 − 2𝛾2 𝒌⊥

2 + 𝛾1 − 2𝛾2 𝑘𝑧
2

From 𝒌𝒑 perturbation theory :
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𝐸ℎℎ 𝒌 = −
ℏ2

2𝑚
𝛾1 + 𝛾2 𝒌⊥

2 + 𝛾1 − 2𝛾2 𝑘𝑧
2
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ℏ2

2𝑚
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2 + 𝛾1 + 2𝛾2 𝑘𝑧
2

It follows that the heavy holes have a "light" mass 
𝑚

𝛾1+𝛾2
in the plane 𝑥 − 𝑦 , while light holes 

have heavy mass 
𝑚

𝛾1−𝛾2

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the 
direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You 
have to solve the 𝒌𝒑 perturbation theory (Chemla 1983):

𝐸

𝐽𝑧 = ±
3

2

𝐽𝑧 = ±
1

2

𝐸1ℎℎ

𝐸1𝑙ℎ
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𝑘𝑥

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the 
direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You 
have to solve the 𝒌𝒑 perturbation theory (Chemla 1983):
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𝐸ℎℎ 𝒌 = −
ℏ2

2𝑚
𝛾1 + 𝛾2 𝒌⊥

2 + 𝛾1 − 2𝛾2 𝑘𝑧
2
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𝐸
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3

2

𝐽𝑧 = ±
1

2

𝐸1ℎℎ
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𝛾1 − 𝛾2

ℏ2

2𝑚
𝛾1 + 𝛾2
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PoLDS 385

The presence of the well changes the symmetry of the crystal (eg. quantum wells in the 
direction of [001] corresponds to an uniaxial pressure applied perpendicular to the layer). You 
have to solve the 𝒌𝒑 perturbation theory (Chemla 1983):
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Energy bands



Energy bands

2017-06-05 51

Example:

D. Wasik.



Quantum well
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http://www.nextnano.de/nextnano3/tutorial/1Dtutorial_AlGaInP_onGaAs.htm
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Simply example has been already calculated
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Heterostructures can have different effective masses in different regions:

−
ℏ2

2𝑚0𝑚∗

𝑑2

𝑑𝑧2
𝜓 𝑧 + V0 z 𝜓 𝑧 = 𝜀𝜓 𝑧

ቤ
1

𝑚𝐵

𝑑𝜓

𝑑𝑧
z=

a
2

= ቤ
1

𝑚𝑊

𝑑𝜓

𝑑𝑧
z=

a
2

Matching conditions at the interface must be 
modified (equation has to conserve current
𝐼𝑊 = 𝐼𝐵 thus 𝑣𝑊 = 𝑣𝐵):

It turns that the conversion 𝑚∗ → 𝑚 𝑧 is not a good solution of the problem (equation ceases 
to be Hermitean). It has to be done diferently, eg.:

−
ℏ2

2𝑚0

𝑑

𝑑𝑧

1

𝑚 𝑧

𝑑

𝑑𝑧
𝜓 𝑧 + V0 z 𝜓 𝑧 = 𝜀𝜓 𝑧
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Inside the well:

𝜓 𝑧, 𝑡 = 𝐶 ቊ
cos 𝑘𝑛𝑧

sin 𝑘𝑛𝑧
𝑒−𝑖𝜔𝑛𝑡

−
𝑎

2
< 𝑧 <

𝑎

2

The barrier:

𝜓 𝑧 = 𝐷 exp(±𝜅𝑛𝑧)

ℏ2𝜅2

2𝑚 𝑚𝐵
= 𝐸𝐵 − 𝐸𝑛 = 𝐵

𝑘𝑛 =
1

ℏ
2𝑚𝑚𝑊 𝐸𝑛 − 𝐸𝑊

𝜅𝑛 =
1

ℏ
2𝑚𝑚𝐵 𝐸𝐵 − 𝐸𝑛

−
ℏ2

2𝑚0𝑚𝑊

𝑑2

𝑑𝑧2
𝜓 𝑧 = 𝐸𝑛 − 𝐸𝑊 𝜓 𝑧

ቤ
1

𝑚𝐵

𝑑𝜓

𝑑𝑧
z=

a
2

= ቤ
1

𝑚𝑊

𝑑𝜓

𝑑𝑧
z=

a
2

Matching conditions:

𝐶𝑘

𝑚𝑊

−sin 𝑘𝑛
𝑎

2

cos 𝑘𝑛
𝑎

2

= −
𝐷𝜅

𝑚𝐵
exp 𝑘𝑛

𝑎

2
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We calculate:

𝐶𝑘

𝑚𝑊

−sin 𝑘𝑛
𝑎

2

cos 𝑘𝑛
𝑎

2

= −
𝐷𝜅𝑛
𝑚𝐵

exp 𝜅𝑛
𝑎

2

ቚ𝜓𝐵 𝑧
z=

a
2

= ቚ𝜓𝑊 𝑧
z=

a
2

ቤ
1

𝑚𝐵

𝑑𝜓

𝑑𝑧
z=

a
2

= ቤ
1

𝑚𝑊

𝑑𝜓

𝑑𝑧
z=

a
2

tan 𝑘𝑛
𝑎

2

cot 𝑘𝑛
𝑎

2

=
𝑚𝑊𝜅𝑛
𝑚𝐵𝑘𝑛

=
𝑚𝑊

𝑚𝐵

2𝑚0𝑚𝑊𝑉0

ℏ2𝑘𝑛
2 − 1

Substituting , and                                       (depends only on 𝑚𝑊)𝜃 =
𝑘𝑛𝑎

2
𝜃0
2 =

𝑚0𝑚𝑊𝑉0𝑎
2

2ℏ2

ቊ
tan 𝜃
−cot 𝜃

=
𝑚𝑊

𝑚𝐵

𝜃0
2

𝜃2
− 1
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THE SAME mass in the well and in the barrier:
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THE DIFFERENT mass in the well and in the barrier:
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THE DIFFERENT mass in the well and in the barrier:
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THE DIFFERENT mass in the well and in the barrier:
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Harmonic potential
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𝜀𝑛 = 𝑛 −
1

2
ℏ𝜔0𝑉 𝑧 =

1

2
𝐾𝑧2 =

1

2
𝑚𝜔0

2𝑧2−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
+ 𝑉(𝑧) 𝜓 𝑧 = 𝜀𝜓 𝑧
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𝜙𝑛+1 𝑧 =
1

2𝑛𝑛!

𝑚𝜔0

ℏ𝜋

1/4

exp −
𝑚𝜔0𝑧

2

2ℏ
𝐻𝑛

𝑚𝜔0

ℏ
𝑧

𝐻0 𝑡 = 1
𝐻1 𝑡 = 𝑡
𝐻2 𝑡 = 4𝑡2 − 2
𝐻3 𝑡 = 8𝑡3 − 12𝑡

𝜙1 𝑧 2 =
𝑚𝜔0

𝜋ℏ
exp −

𝑚𝜔0𝑧
2

ℏ

The ground state is a Gauss package – does the packet diffuse?

Wavefunction

Hermite polynomials

𝜀𝑛 = 𝑛 −
1

2
ℏ𝜔0−

ℏ2

2𝑚

𝑑2

𝑑𝑧2
+
1

2
𝑚𝜔0

2𝑧2 𝜓 𝑧 = 𝜀𝜓 𝑧
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Triangular well
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Triangular well
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−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
+ 𝑒𝐹𝑧 𝜓 𝑧 = 𝜀𝜓 𝑧
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−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
+ 𝑒𝐹𝑧 𝜓 𝑧 = 𝜀𝜓 𝑧

𝑑2

𝑑𝑧2
𝜓 𝑧 =

2𝑚

ℏ2
𝑒𝐹𝑧 − 𝜀 𝜓 𝑧

Transformation:

The equation reduces to Stokes or Airy equation:

𝑑2

𝑑𝑧2
𝑓 𝑧 = 𝑧𝑓 𝑧

Its two independent solutions the Airy functions 𝐴𝑖(𝑧) and 𝐵𝑖(𝑧). The solutions of the 
equation are the zeros of a function 𝐴𝑖(𝑧) (after some rearrangements).

Substituting:  𝑧0 =
ℏ2

2𝑚𝑒𝐹

1/3

𝜀0 = 𝑒𝐹𝑧0 =
𝑒𝐹ℏ 2

2𝑚

1/3

, ҧ𝑧 =
𝑧

𝑧0
,  ҧ𝜀 =

𝜀

𝜀0

𝑑2

𝑑𝑧2
𝜓 𝑧 =

2𝑚

ℏ2
𝑒𝐹𝑧 − 𝜀 𝜓 𝑧
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𝑉 𝑧 = 𝑒𝐹𝑧 𝜀𝑛 = 𝑐𝑛
𝑒𝐹𝑧 2

2𝑚

1/3
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WKB approximation (Wentzel – Krammers – Brillouin) – for slowly changing potential

It is also known as the LG or Liouville–Green method or JWKB and WKBJ, where the "J" stands 
for Jeffreys or phase integral method or semi-classical approximation.

−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉 𝑥 𝜓 𝑥 = 𝐸𝜓 𝑥

What is slowly varing potential? It is for sure 𝑉 𝑥 = 𝑉0 = 𝑐𝑜𝑛𝑠𝑡. The solution for this potential 
is a plane wave 𝜓 𝑥 = 𝑒𝑖𝑘𝑥 - phase of the wavefunction 𝑘 𝑥 = 𝑘 = 𝑐𝑜𝑛𝑠𝑡 is constant in the 

whole space 𝑘2 =
2𝑚

ℏ
𝐸 − 𝑉0

Let's define 𝑘2 𝑥 =
2𝑚

ℏ
𝐸 − 𝑉(𝑥) - we want the phase 𝑘 𝑥 to be slowly varying in space, i.e. 

𝑑𝑘

𝑑𝑥
≪ 𝑘2

(such condition).

We are looking for the solution 𝜓 𝑥 = 𝑒𝑖𝜒 𝑥 where 𝜒 𝑥 is the phase of the wavefunction.
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−
ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉 𝑥 𝜓 𝑥 = 𝐸𝜓 𝑥

Let’s define 𝑘2 𝑥 =
2𝑚

ℏ
𝐸 − 𝑉(𝑥) - slowly varing in real space 𝑘 𝑥 .

We are looking for the solutuion 𝜓 𝑥 = 𝑒𝑖𝜒 𝑥 where 𝜒 𝑥 its the phase of the wavefunction. 
Inserting into Schrodinger equation:

𝜒′ 𝑥 2 − 𝑖𝜒′′ 𝑥 =
2𝑚

ℏ
𝐸 − 𝑉 𝑥 ≡ 𝑘2 𝑥 - this is rigorous.

Zero-order WKB approximation assumes 𝜒′ 𝑥 2 ≫ 𝜒′′ 𝑥 czyli 𝜒′′ 𝑥 ≈ 0

𝜒′ 𝑥 2 = 𝑘2 𝑥 czyli
𝜒 𝑥 = ±න

𝑥

𝑘 𝑥′ 𝑑𝑥′

Usually we expand more
𝜒′ 𝑥 2 = 𝑘2 𝑥 + 𝑖𝜒′′ 𝑥 = 𝑘2 𝑥 + 𝑖 𝜒′ 𝑥 ′ ≈ 𝑘2 𝑥 ± 𝑖 𝑘 𝑥 ′

Thus:

𝜒′ 𝑥 ≈ ±𝑘 𝑥 1 +
𝑖𝑘′ 𝑥

𝑘2 𝑥
≈± 𝑘 𝑥 +

𝑖𝑘′ 𝑥

2𝑘 𝑥

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly changing potential
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Typically, the WKB method continues into

𝜒′ 𝑥 2 = 𝑘2 𝑥 + 𝑖𝜒′′ 𝑥 = 𝑘2 𝑥 + 𝑖 𝜒′ 𝑥 ′ ≈ 𝑘2 𝑥 ± 𝑖 𝑘 𝑥 ′

Thus:

𝜒′ 𝑥 ≈ ±𝑘 𝑥 1 +
𝑖𝑘′ 𝑥

𝑘2 𝑥
≈± 𝑘 𝑥 +

𝑖𝑘′ 𝑥

2𝑘 𝑥

therefore:

𝜒 𝑥 = ±න
𝑥

𝑘 𝑥′ 𝑑𝑥′ +
𝑖

2
ln 𝑘 𝑥

We get:

𝜓(𝑥) ≈
1

𝑘 𝑥
exp ±𝑖 න

𝑥

𝑘 𝑥′ 𝑑𝑥′

The term 1/ 𝑘 𝑥 - the density of probability of fast-moving particles is small for large 𝑘 - OK!

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly changing potential
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𝐸

In the case of turning points (ie. the edges of the barriers well) potential changes rapidly 
compared with the wavelength 𝑘 𝑥 - WKB approximation is not valid (a rigorous approach 
avoids it by moving into the complex plane). Another way is to note that the potential is linear 
for a small region around the turning point Δ𝑥𝐿 - and the Airy functions are the exact solutions. 
Then the solution must match on both regions near 𝑥𝐿.
The problem sounds complicated but fortunately the results are simple (we got additional 
phase).

energia cząstki

𝑉(𝑥)

𝑥

𝑥𝐿

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential
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𝐸
𝜓 𝑥

carrier energy

𝑉(𝑥)

𝑥

𝑥𝐿

𝜓 𝑥 ~
2

𝑘 𝑥
cos න

𝑥𝐿

𝑥

𝑘 𝑥′ 𝑑𝑥′ −
𝜋

4
, 𝑥 ≫ 𝑥𝐿

𝜓 𝑥 ~
1

𝜅 𝑥
exp −න

𝑥𝐿

𝑥

𝜅 𝑥′ 𝑑𝑥′ , 𝑥 ≪ 𝑥𝐿

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential
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𝜓 𝑥 ~
2

𝑘 𝑥
cos න

𝑥𝐿

𝑥

𝑘 𝑥′ 𝑑𝑥′ −
𝜋

4
, 𝑥 ≫ 𝑥𝐿

Examples:
1. „Hard” (infinitely steep) wall – the wave function goes to zero at the boundaries, so an exact 
number of half-wavelengths must fit between them 

න
𝑥𝐿

𝑥𝑅

𝑘 𝑥′ 𝑑𝑥′ = 𝑛𝜋

2. „Soft wall” – an allowed state must obey the matching conditions (𝑥 ≫ 𝑥𝐿, above) and at 𝑥𝐿 it 

has additional phase −
𝜋

4
and similarly at 𝑥𝑅 - next −

𝜋

4
. Altogether:

න
𝑥𝐿

𝑥𝑅

𝑘 𝑥′ 𝑑𝑥′ = 𝑛 −
1

2
𝜋

𝑘𝑛 =
𝑛𝜋

𝐿
For : 𝑘 𝑥 = 𝑐𝑜𝑛𝑠𝑡 we have

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential
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𝜓 𝑥 ~
2

𝑘 𝑥
cos න

𝑥𝐿

𝑥

𝑘 𝑥′ 𝑑𝑥′ −
𝜋

4
, 𝑥 ≫ 𝑥𝐿

3. Triangular well of „hard” and „soft” well:

Eg. Triangular well: 𝑉 𝑥 = 𝑒𝐹𝑥 wtedy 𝑘𝑛 𝑥 =
1

ℏ
2𝑚 𝐸𝑛 − 𝑉 𝑥 =

1

ℏ
2𝑚 𝐸𝑛 − 𝑒𝐹𝑥

න
𝑥𝐿

𝑥𝑅

𝑘 𝑥′ 𝑑𝑥′ = 𝑛 −
1

4
𝜋

න
𝑥𝐿

𝑥𝑅

𝑘𝑛 𝑥′ 𝑑𝑥′ = න
0

𝐸𝑛/𝑒𝐹 1

ℏ
2𝑚 𝐸𝑛 − 𝑒𝐹𝑥′ 𝑑𝑥′ =

2𝑚𝐸𝑛
ℏ2

1/2 𝐸𝑛
𝑒𝐹

න
0

1

1 − 𝑠 𝑑𝑠 =

2𝑚𝐸𝑛
ℏ2

1/2 𝐸𝑛
𝑒𝐹

න
0

1

1 − 𝑠 𝑑𝑠 =
2

3

2𝑚𝐸𝑛
ℏ2

1/2 𝐸𝑛
𝑒𝐹

𝑠 =
𝑥

𝑥𝑅

𝐸𝑛 =
3

2
𝜋 𝑛 −

1

4

2/3
𝑒𝐹ℏ 2

2𝑚

1/3

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential
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𝐸𝑛 =
3

2
𝜋 𝑛 −

1

4

2/3
𝑒𝐹ℏ 2

2𝑚

1/3

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential
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𝐸𝑛 =
3

2
𝜋 𝑛 −

1

4

2/3
𝑒𝐹ℏ 2

2𝑚

1/3

http://www.phys.unsw.edu.au/QED/research/2D_scattering.htm

WKB approximation (Wentzel – Krammers – Brillouin) – for slowly varying potential
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𝑘𝑛 𝑥 =
1

ℏ
2𝑚𝑉 𝑥 =

1

ℏ
2𝑚𝑉𝑏 1 −

𝑥

𝑑

2

𝑉 𝑥 = 𝑉𝑏 1 −
𝑥

𝑑

2
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Full Hamiltonian in our universe has three spatial dimensions 𝑥, 𝑦, 𝑧, 𝑡 = 𝑅, 𝑡

−
ℏ2

2𝑚
𝛻2 + 𝑉 𝑅 𝜓 𝑅 = 𝐸𝜓 𝑅

For 𝑉 𝑅 = 𝑉(𝑧) we obtain: 

−
ℏ2

2𝑚

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
+ 𝑉 𝑧 𝜓 𝑥, 𝑦, 𝑧 = 𝐸𝜓 𝑥, 𝑦, 𝑧

𝜓 𝑥, 𝑦, 𝑧 = exp 𝑖𝑘𝑥𝑥 exp 𝑖𝑘𝑦𝑦 𝑢(𝑧)

Along directions 𝑥 and 𝑦 mamy ruch swobodny:

We can show (on the blackboard!), that final eigenenergies of the potential 𝑉 𝑧 are:

131

𝜀 = 𝐸 −
ℏ2𝑘𝑥

2

2𝑚
−
ℏ2𝑘𝑦

2

2𝑚
−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
+ 𝑉 𝑧 𝑢 𝑧 = 𝜀𝑢 𝑧
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𝐸𝑛 𝑘𝑥, 𝑘𝑦 = 𝜀𝑛 +
ℏ2𝑘𝑥

2

2𝑚
+
ℏ2𝑘𝑦

2

2𝑚

𝜓𝑘𝑥,𝑘𝑦,𝑛 𝑥, 𝑦, 𝑧 = exp 𝑖𝑘𝑥𝑥 exp 𝑖𝑘𝑦𝑦 𝑢𝑛 𝑧 = 𝜓𝒌,𝑛 𝒓, 𝑧 = exp 𝑖𝒌 ∙ 𝒓 𝑢𝑛 𝑧

𝐸𝑛 𝒌 = 𝜀𝑛 +
ℏ2𝒌2

2𝑚
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𝐸𝑛 𝑘𝑥, 𝑘𝑦 = 𝜀𝑛 +
ℏ2𝑘𝑥

2

2𝑚
+
ℏ2𝑘𝑦

2

2𝑚

𝜓𝑘𝑥,𝑘𝑦,𝑛 𝑥, 𝑦, 𝑧 = exp 𝑖𝑘𝑥𝑥 exp 𝑖𝑘𝑦𝑦 𝑢𝑛 𝑧 = 𝜓𝒌,𝑛 𝒓, 𝑧 = exp 𝑖𝒌 ∙ 𝒓 𝑢𝑛 𝑧

𝐸𝑛 𝒌 = 𝜀𝑛 +
ℏ2𝒌2

2𝑚
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THE DIFFERENT mass in the well and in the barrier:



Low dimensional structures
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𝜓 𝑅 = 𝜓𝒌,𝑛 𝒓, 𝑧 = exp 𝑖𝒌 ∙ 𝒓 𝑢𝑛 𝑧

−
ℏ2

2𝑚0 𝑚𝑊,𝐵
𝛻2 + 𝑉 𝑅 𝜓 𝑅 = 𝐸𝜓 𝑅

Effective mass in the barrier 𝑚𝐵 and in the well 𝑚𝑊

−
ℏ2

2𝑚0 𝑚𝑊
𝛻2 + 𝐸𝑊 𝜓 𝑅 = 𝐸𝜓 𝑅

For separated wave functions:

−
ℏ2

2𝑚0 𝑚𝐵
𝛻2 + 𝐸𝐵 𝜓 𝑅 = 𝐸𝜓 𝑅

We got (on the blackboard!):

−
ℏ2

2𝑚0 𝑚𝑊

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝑊
+ 𝐸𝑊 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

−
ℏ2

2𝑚0 𝑚𝐵

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝐵
+ 𝐸𝐵 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧
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The particle moves in the well which potentiald depends on 𝒌, in fact 𝑘 = 𝒌

−
ℏ2

2𝑚0 𝑚𝑊

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝑊
+ 𝐸𝑊 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

−
ℏ2

2𝑚0 𝑚𝐵

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝐵
+ 𝐸𝐵 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

𝑉0 𝑘 = 𝐸𝐵 − 𝐸𝑊 +
ℏ2𝑘2

2𝑚0

1

𝑚𝐵
−

1

𝑚𝑊

The particle gains partially the effective mass of the barrier: 

𝐸𝑛 𝑘 = 𝜀𝑛(𝑘) +
ℏ2𝑘2

2𝑚0𝑚𝑊
≈ 𝜀𝑛(𝑘 = 0) +

ℏ2𝑘2

2𝑚0𝑚𝑒𝑓𝑓

𝑚𝑒𝑓𝑓 ≈ 𝑚𝑊𝑃𝑊 +𝑚𝐵𝑃𝐵

prawdopodobieństwo znalezienia cząstki

Np. w strukturze GaAs-AlGaAs 𝑚𝐵 >
𝑚𝑊 więc studnia robi się „płytsza”

energy of the bond state depends on  𝑘
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−
ℏ2

2𝑚0 𝑚𝑊

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝑊
+ 𝐸𝑊 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

−
ℏ2

2𝑚0 𝑚𝐵

𝑑2

𝑑𝑧2
+

ℏ2𝒌2

2𝑚0 𝑚𝐵
+ 𝐸𝐵 𝑢𝑛 𝑧 = 𝜀𝑢𝑛 𝑧

𝑉0 𝑘 = 𝐸𝐵 − 𝐸𝑊 +
ℏ2𝑘2

2𝑚0

1

𝑚𝐵
−

1

𝑚𝑊

Np. w strukturze GaAs-AlGaAs 𝑚𝐵 >
𝑚𝑊 więc studnia robi się „płytsza”

The particle moves in the well which potentiald depends on 𝒌, in fact 𝑘 = 𝒌


