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Local density of states
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Gęstość stanów (ogólnie) można zdefiniować jako:
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Electrons statistics in crystals
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The case of a semiconductor, in which both the electron gas and hole gas are far from the 
degeneracy:

the probability of filling of the electronic states:

𝑓𝑒 ≈ 𝑒
−

𝐸𝐺
2𝑘𝐵𝑇

−
𝐸𝑒
𝑘𝐵𝑇

+
𝜉

𝑘𝐵𝑇

and of holes 𝑓ℎ = 1 − 𝑓𝑒

𝑓ℎ ≈ 𝑒
−

𝐸𝐺
2𝑘𝐵𝑇

−
𝐸ℎ
𝑘𝐵𝑇

−
𝜉

𝑘𝐵𝑇

න

0

∞

𝑥𝑒−𝑥 𝑑𝑥 =
𝜋

2

Thus:

𝑛 𝜉 = 2
𝑚𝑒
∗𝑘𝐵𝑇

2𝜋ℏ2

3/2

𝑒
−

𝐸𝐺
2𝑘𝐵𝑇 ⋅ 𝑒

𝜉
𝑘𝐵𝑇 = 𝑁𝑐 𝑇 𝑒

− 𝐸𝑐−𝜉
𝑘𝐵𝑇

𝑝 𝜉 = 2
𝑚ℎ
∗𝑘𝐵𝑇

2𝜋ℏ2

3/2

𝑒
−

𝐸𝐺
2𝑘𝐵𝑇 ⋅ 𝑒

−
𝜉

𝑘𝐵𝑇 = 𝑁𝑣 𝑇 𝑒
− 𝜉−𝐸𝑣
𝑘𝐵𝑇
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2
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𝐸𝑣



What is the concentration of carriers for T>0?
In the thermodynamic equilibrium for an intrinsic semiconductors (półprzewodniki samoistne), 
the concentration of electrons in the conduction band is equal to the concnetration of holes in 
the valence band (because they appear only as a result of excitation from the valence band).

1/T

ln(n)
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Electrons statistics in crystals

𝑛 ⋅ 𝑝 = 𝑛𝑖
2 = 4

𝑘𝐵𝑇
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−
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𝑛 = 𝑝 = 𝑛𝑖 = 2
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−
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2𝑘𝐵𝑇

𝑛 = 𝑝 = 𝑛𝑖 (an intrinsic case)



Intrinsic carrier concentration
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𝑛 = 𝑝 = 𝑛𝑖 = 2
𝑘𝐵𝑇

2𝜋ℏ2

3
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𝑚𝑒
∗𝑚ℎ

∗
3
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−
𝐸𝑔

2𝑘𝐵𝑇 = 𝑁𝑐𝑁𝑣𝑒
−

𝐸𝑔
2𝑘𝐵𝑇

𝑁𝑐
𝑁𝑣

= 𝑒
2𝜉−𝐸𝑔
𝑘𝐵𝑇 ⇒ 𝜉 =

1

2
𝐸𝑐 + 𝐸𝑣 +

3

4
𝑘𝐵𝑇 ln

𝑚ℎ
∗

𝑚𝑒
∗

in our notation the middle 
of the band is 0

In the thermodynamic equilibrium for an intrinsic semiconductors (półprzewodniki samoistne), 
the concentration of electrons in the conduction band is equal to the concnetration of holes in 
the valence band (because they appear only as a result of excitation from the valence band).

𝑛 = 𝑝 = 𝑛𝑖 (an intrinsic case)

What is the concentration of carriers for T>0?

𝑛 ⋅ 𝑝 = 𝑛𝑖
2 = 4

𝑘𝐵𝑇

2𝜋ℏ2

3

𝑚𝑒
∗𝑚ℎ

∗
3
2 𝑒

−
𝐸𝑔
𝑘𝐵𝑇 = 𝑁𝑐𝑁𝑣𝑒

−
𝐸𝑔
𝑘𝐵𝑇

(general formula)



Dopants, impurities and defects
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Hydrogen-like model – ionization of the dopant

x x

n-type p-type
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Dopants, impurities and defects

x

The carrier concentration in extrinsic
semiconductor (niesamoistny)
Consider a semiconductor, in which:
NA – concentration of acceptors
ND – concentration of donors
pA – concentration of neutral acceptors
nD – concentration of neutral donors
nc – concentration of electrons in conduction
band
pv – concentration of holes in valence band

From the charge neutrality of the crystal:

nc +(NA - pA)= pv + (ND - nD)
nc + nD = (ND - NA)+ pv + pA
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The occupation of impurity levels
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Occupation of impurity / defect levels in the thermodynamic equilibrium

„Occupation” of localized or band states means the exchange of particles (electrons) between 
the reservoir and considered subsystem (microstate).

The grand canonical ensemble (subsystem exchange particles and energy with the environment)

Thermodynamic probability (unnormalized) of finding subsystem in a state 𝑗,in which there are
𝑛𝑗 particles (electrons) and which subsystem energy is 𝐸𝑗 (the total energy of all 𝑛𝑗 particles): 

𝑃𝑗 = 𝑒−𝛽 𝐸𝑗−𝑛𝑗𝜉 , 𝛽 =
1

𝑘𝐵𝑇
𝜉- chemical potential.

Statistical sum:

𝑍 =෍

𝑗

𝑃𝑗 =෍

𝑗

𝑒−𝛽 𝐸𝑗−𝑛𝑗𝜉



The occupation of impurity levels
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Statistical sum :

𝑍 =෍

𝑗

𝑃𝑗 =෍

𝑗

𝑒−𝛽 𝐸𝑗−𝑛𝑗𝜉

Statistical means:

𝐴 =
σ𝑗𝐴𝑗 ⋅ 𝑒

−𝛽 𝐸𝑗−𝑛𝑗𝜉

σ𝑗 𝑒
−𝛽 𝐸𝑗−𝑛𝑗𝜉

Examples:

free electron occupying (or not) the quantum state of the 𝑘-vector and spin:
2 possible states of the subsystem (microstate):  
𝑛0 = 0; 𝐸0 = 0
𝑛1 = 1; 𝐸1 = 𝐸 (the occupation only for one spin state)
the average number of particles of the subsystem:

𝑛 =
0 ⋅ 𝑒0 + 1 ⋅ 𝑒−𝛽 𝐸−𝜉

1 + 𝑒−𝛽 𝐸−𝜉
=

1

𝑒𝛽 𝐸−𝜉 + 1
= 𝑓 𝐸, 𝑇

(Fermi-Dirac distribution)



The occupation of impurity levels
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Examples :

free electron occupying (or not) the quantum state of the 𝑘-vector and ANY spin:
4 possible states of the subsystem (microstate):  

𝑛0 = 0; 𝐸0 = 0
𝑛1 = 1; 𝐸1 = 𝐸 (spin ↑)
𝑛2 = 1; 𝐸2 = 𝐸 (spin ↓)
𝑛3 = 2; 𝐸3 = 2𝐸 (spin ↑↓)

the average number of particles of the subsystem: 

𝑛 =
0 ⋅ 𝑒0 + 1 ⋅ 𝑒−𝛽 𝐸−𝜉 + 1 ⋅ 𝑒−𝛽 𝐸−𝜉 + 2 ⋅ 𝑒−𝛽 2𝐸−2𝜉

1 + 𝑒−𝛽 𝐸−𝜉 + 𝑒−𝛽 𝐸−𝜉 + 𝑒−𝛽 2𝐸−2𝜉
= 2

𝑒−𝛽 𝐸−𝜉 1 + 𝑒−𝛽 𝐸−𝜉

𝑒−𝛽 𝐸−𝜉 + 1 2
=

= 2𝑓 𝐸, 𝑇

(Fermi-Dirac distribution x2)



The occupation of impurity levels

6/5/2017 11

The ratio of the probability of finding dopant / defect of 𝑛 + 1 electrons and of 𝑛 electrons: 

𝑝𝑛+1
𝑝𝑛

=
𝑁𝑛+1/𝑁𝑡𝑜𝑡𝑎𝑙
𝑁𝑛/𝑁𝑡𝑜𝑡𝑎𝑙

=
σ𝑗:𝑛𝑗=𝑛+1

𝑒−𝛽 𝐸𝑗− 𝑛+1 𝜉

σ𝑘;𝑛𝑘=𝑛
𝑒−𝛽 𝐸𝑘−𝑛𝜉

=
𝑔𝑛+1
𝑔𝑛

⋅ 𝑒−𝛽 𝐸𝑛+1−𝐸𝑛 −𝜉

σ𝑛𝑁𝑛 = 𝑁 – impurity (dopants) concentration

𝐸𝑛+1 i 𝐸𝑛 – the lowest of all subsystem energies 𝐸𝑗
with 𝑛 + 1 and 𝑛 electrons respectively

Successive impurity energy levels are filled with the 
increase of the Fermi level.

𝐸𝑛+1/𝑛 – so-called energy level of the impurity/ 
defect „numbered” by charge states 𝑛 + 1 and 𝑛

𝑔𝑛+1, 𝑔𝑛 – so-called degeneration of states of 
subsystem of 𝑛 + 1 and 𝑛 electrons



The occupation of impurity levels
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𝑔𝑛+1, 𝑔𝑛 – so-called degeneration of states of subsystem of 𝑛 + 1 and 𝑛 electrons.

The degeneracy 𝑔𝑛+1 and 𝑔𝑛 takes into account the possibility of the existence of different 
subsystem states corresponding to a same number of particles (including the excited states):

𝑔𝑛 = 𝛼𝑛,0 + ෍

𝑖=1,2,…

𝛼𝑛,𝑖𝑒
−𝛽𝜀𝑛,𝑖

𝛼𝑛,0 i 𝛼𝑛,𝑖 they are respectively: the degeneracies 
of the 𝑛-electronic ground state and its excited 
states of energies higher than the ground state by 
𝜀𝑛,𝑖 (excitation energies)

Such defined degeneration 𝑔𝑛 generally depends 
on temperature 
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Example – donor (we omit the excited states)

charge state (+) implemented in 1 way : 𝑔+ = 1
charge state(0) implemented in 2 ways (spin ↑ or ↓): 𝑔0 = 2
the energy of the donor state Ε0/+ = 𝐸𝐷
Doping concentration of donors 𝑁𝐷

𝑝𝑛+1
𝑝𝑛

=
𝑝0
𝑝+

=
𝑔0
𝑔+

⋅ 𝑒−𝛽 𝐸𝐷−𝜉 , 𝑝+ + 𝑝0 = 1

The occupation probability of the donor state:

𝑝0 = 𝑛 =
1

1 +
𝑔+
𝑔0

⋅ 𝑒𝛽 𝐸𝐷−𝜉
=

1

1 +
1
2 ⋅ 𝑒

𝛽 𝐸𝐷−𝜉

The concentration of occupied donor states (neutral donors are 𝑁𝐷
0)

𝑁𝐷
0 =

𝑁𝐷

1 +
1
2 ⋅ 𝑒

𝛽 𝐸𝐷−𝜉

TUTAJ 2017.04.10



Dopants, impurities and defects

x

The carrier concentration in extrinsic
semiconductor (niesamoistny)
Consider a semiconductor, in which:
NA – concentration of acceptors
ND – concentration of donors
pA – concentration of neutral acceptors
nD – concentration of neutral donors
nc – concentration of electrons in conduction
band
pv – concentration of holes in valence band

From the charge neutrality of the crystal:

nc +(NA - pA)= pv + (ND - nD)
nc + nD = (ND - NA)+ pv + pA

2017-06-05 14
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The occupation of impurity levels
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If both the donors and acceptors are shallow, and the electron and hole gas are not 
degenerated, then : 𝐸𝐷 − 𝜉 ≫ 𝑘𝐵𝑇, 𝜉 − 𝐸𝐴 ≫ 𝑘𝐵𝑇, 𝑁𝐷

0 ≪ 𝑁𝐷, 𝑁𝐴
0 ≪ 𝑁𝐴 (that is, virtually all 

impurities are ionized) .

Δ𝑛 = 𝑛 − 𝑝 ≈ 𝑁𝐷 −𝑁𝐴
𝑛 ⋅ 𝑝 = 𝑛𝑖

2 ⇒

𝑛 =
1

2
Δ𝑛 2 + 4𝑛𝑖

2 + Δ𝑛

𝑝 =
1

2
Δ𝑛 2 + 4𝑛𝑖

2 − Δ𝑛

If Δ𝑛 > 0 (𝑛-type semiconductor – for 𝑝-type is the same) and Δ𝑛 ≫ 𝑛𝑖, (at 𝑇=300K: 𝑛𝑖(Ge) < 
1013 cm-3, 𝑛𝑖(Si) < 1011 cm-3, 𝑛𝑖(GaAs) < 1010 cm-3):

𝑛 ≈ 𝑁𝐷 − 𝑁𝐴

𝑝 ≈
𝑛𝑖
2

𝑁𝐷 − 𝑁𝐴
=
𝑁𝐶 𝑇 ⋅ 𝑁𝑉 𝑇

𝑁𝐷 −𝑁𝐴
⋅ 𝑒

−
𝐸𝑔
𝑘𝐵𝑇

majority carrier concentration is determined by the effective concentration of impurities, the 
concentration of minority carriers may be very small (e.g. Si).
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Compensation
compensated semiconductors - containing both donors and acceptors

At appropriately high temperatures majority carrier concentration given by the effective 
concentration of dopants |𝑁𝐷 −𝑁𝐴|

the concentration of scattering centers (charges): 𝑁𝐷 +𝑁𝐴

compensation ratio - the ratio of impurity concentration: minority to majority. It is a measure of 
the total number of ionized impurities : 

𝑘 =
𝑁𝐴

𝑁𝐷
– for 𝑛-type

𝑘 =
𝑁𝐷

𝑁𝐴
– for 𝑝-type

in highly compensated semiconductors (𝑘 ≈ 1) strong electrostatic potential fluctuations are
present – originating from the impurities, the disorder localization, the percolation effects etc.



Equation of Charge Neutrality
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The occupation of impurity levels

low temperature, 

thermal ionization of impurities

Consider a semiconductor, in which:
NA ≈ 0 – concentration of acceptors
ND – concentration of donors
pA – concentration of neutral acceptors
nD – concentration of neutral donors
nc – concentration of electrons in conduction
band
pv ≈ 0 – concentration of holes in valence
band

From the charge neutrality of the crystal:

𝑛 = 𝑁𝐷 − 𝑁𝐷
0
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The occupation of impurity levels
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Now, a large part of donors will be neutral (the energies calculated from the bottom of the 
conduction band)

𝑁𝐷 − 𝑁𝐷
0 = 𝑁𝐷 −

𝑁𝐷

1 +
1
2 ⋅ 𝑒

𝛽 𝐸𝐷−𝜉
= ⋯ =

𝑁𝐷
2
⋅ 𝑒𝛽 𝐸𝐷−𝜉

to calculate the occupation of the conduction band we use the Boltzmann distribution :

𝑛 = 2
𝑚𝑒
∗𝑘𝐵𝑇

2𝜋ℏ2

3/2

𝑒
𝜉−𝐸𝑐
𝑘𝐵𝑇 = 𝑁𝐶 𝑇 ⋅ 𝑒

𝜉
𝑘𝐵𝑇

Having 𝑛 = 𝑁𝐷 − 𝑁𝐷
0 we got:

𝜉 =
𝐸𝐷
2
+
𝑘𝐵𝑇

2
ln

𝑁𝐷
2𝑁𝐶 𝑇

𝑛 𝑇 =
𝑁𝐶 𝑇 ⋅ 𝑁𝐷

2
⋅ 𝑒

𝐸𝐷
2𝑘𝐵𝑇
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Equation of Charge Neutrality
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−
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2𝑘𝐵𝑇
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𝐸𝐷
2𝑘𝐵𝑇
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For compensated semiconductors the thermal activation energy at low temperature is 

𝐸𝐷, not 
𝐸𝐷

2

If there is a lot of impurities, also the wave functions of electrons bound to them overlap -
ionization energies decrease, formed the impurity band.

When impurity concentration is of the order of: 

𝑎𝐵
∗ ⋅ 𝑁𝐷

1
3 ≈ 0.26

there is a nonmetal - metal phase transition (Mott transition)
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P.P. Edwards, M.J. Sienko, J. Am. Chem. Soc. 103, 2967 (1981) 

𝑎𝐵
∗ ⋅ 𝑁𝐷

1
3 ≈ 0.26
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Quasi-Fermi level (imref)
What happens if there is no equilibrium?
The problem is much more complicated, requires statistical analysis, but one can introduce a 
very useful concept of "quasi Fermi level" close to the equilibrium.
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𝑛𝑝 > 𝑛𝑖
2

𝐸𝐹
𝑛 = 𝐸𝑐 + 𝑘𝐵𝑇 ln

𝑛

𝑁𝑐

𝑛 = 𝑁𝑐 exp −
𝐸𝑐 − 𝐸𝐹
𝑘𝐵𝑇

𝑝 = 𝑁𝑣 exp −
𝐸𝐹 − 𝐸𝑣
𝑘𝐵𝑇

𝑁𝑐
𝑁𝑣

= 𝑒
2𝐸𝐹−𝐸𝑔
𝑘𝐵𝑇 ⇒ 𝐸𝐹 =

1

2
𝐸𝑐 + 𝐸𝑣 +

3

4
𝑘𝐵𝑇 ln

𝑚ℎ
∗

𝑚𝑒
∗



Semiconductor heterostructures
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Investigation of high antimony-content gallium arsenic nitride-gallium arsenic antimonide heterostructures for long wavelength application



Bandgap engineering
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Złącze metal-metal

Electrical properties of materials Solymar, Walsh (6.11)
Pg. 143

Suppose, that 𝜙2 − 𝜙1 ≈ 1 𝑒𝑉
Estimate the number of electrons that 
pass from one metal to another to 
create equilibrium potential difference. 
Assume that the distance between the 
metals is 5 × 10−10𝑚.

Electric field: 𝐸 =
Δ𝜙

𝑑
= 2 × 109

𝑉

𝑚

The surface charge: 𝜎 = 𝜀0𝐸

The concentration: 𝑛2𝐷 =
𝜎

𝑒
= 1.12 × 1013𝑐𝑚−2

The concnetration in metal
𝑛3𝐷 = 5 × 1022𝑐𝑚−3

𝑛2𝐷 = 1.5 × 1015𝑐𝑚−2

Within the width of 1 lattice parameter ~1% of charge
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Złącze metal-metal

Electrical properties of materials Solymar, Walsh (6.11)
Pg. 143

Suppose, that 𝜙2 − 𝜙1 ≈ 1 𝑒𝑉
Estimate the number of electrons that 
pass from one metal to another to 
create equilibrium potential difference. 
Assume that the distance between the 
metals is 5 × 10−10𝑚.

Electric field: 𝐸 =
Δ𝜙

𝑑
= 2 × 109

𝑉

𝑚

The surface charge: 𝜎 = 𝜀0𝐸

The concentration: 𝑛2𝐷 =
𝜎

𝑒
= 1.12 × 1013𝑐𝑚−2

The concnetration in metal
𝑛3𝐷 = 5 × 1022𝑐𝑚−3

𝑛2𝐷 = 1.5 × 1015𝑐𝑚−2

Within the width of 1 lattice parameter ~1% of charge
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Poisson equation:
𝑑2𝑈

𝑑𝑥2
= −

1

𝜖
𝜌𝑠 =

1

𝜖
𝑒𝑁𝐴

𝛻𝐷 = 𝜌𝑠 - net charge density

From the Maxwell equations:

𝐸 = −𝛻𝜙 = −𝛻𝑈

𝛻𝐷 = 𝜀0𝜀 𝛻𝐸 = −𝜀0𝜀 𝛻
2𝜙 ≝ −𝜖Δ𝑈 = 𝜌𝑠

𝑥𝑝

𝑥𝑛

+

−

Net charge densities

Thus the electric field in the range 𝑥𝑝, 0 :

𝐸 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐴 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐴 𝑥 − 𝑥𝑝

Similarly for 0, 𝑥𝑛 :

𝐸 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐷 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐷 𝑥 − 𝑥𝑛

𝑁𝐷𝑁𝐴

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

2017-06-05
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𝑥𝑝

𝑥𝑛

+

−

𝑁𝐷𝑁𝐴

𝐸

𝑥𝑛𝑥𝑝

𝐸𝑚𝑎𝑥 = −
1

𝜖
𝑄

𝑝 𝑛

Poisson equation:
𝑑2𝑈

𝑑𝑥2
= −

1

𝜖
𝜌𝑠 =

1

𝜖
𝑒𝑁𝐴

𝛻𝐷 = 𝜌𝑠 - net charge density

From the Maxwell equations:

𝐸 = −𝛻𝜙 = −𝛻𝑈

𝛻𝐷 = 𝜀0𝜀 𝛻𝐸 = −𝜀0𝜀 𝛻
2𝜙 ≝ −𝜖Δ𝑈 = 𝜌𝑠

Thus the electric field in the range 𝑥𝑝, 0 :

𝐸 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐴 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐴 𝑥 − 𝑥𝑝

Similarly for 0, 𝑥𝑛 :

𝐸 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐷 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐷 𝑥 − 𝑥𝑛

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

Net charge densities
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𝑥𝑝

𝑥𝑛

+

−

Thus the electric field in the range 𝑥𝑝, 0 :

𝐸𝐴 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐴 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐴 𝑥 − 𝑥𝑝

Similarly for 0, 𝑥𝑛 :

𝐸𝐷 = −
𝑑𝑈

𝑑𝑥
=
1

𝜖
𝑒𝑁𝐷 𝑥 + 𝐶 =

1

𝜖
𝑒𝑁𝐷 𝑥 − 𝑥𝑛 𝑁𝐷𝑁𝐴

𝐸

𝑥𝑛𝑥𝑝

𝐸𝑚𝑎𝑥 = −
1

𝜖
𝑄

𝑈 = −න
𝑥𝑝

0

𝐸𝐴𝑑𝑥 𝑥 < 0

𝑈0 = 𝑈 𝑥𝑛 − 𝑈 𝑥𝑝 =
𝑒

2𝜀
𝑁𝐴𝑥𝑃

2 + 𝑁𝐷𝑥𝑛
2

𝑥𝑝 𝑥𝑛

𝑒

2𝜀
𝑁𝐴𝑥𝑃

2

𝑈

The built-in volatage in the 𝑝𝑛-junction

𝑈 = −න
0𝑝

𝑥𝑛

𝐸𝐷𝑑𝑥 𝑥 > 0

𝑝 𝑛

𝑈0 =
𝑒

2𝜀
𝑁𝐴𝑥𝑃

2 + 𝑁𝐷𝑥𝑛
2

Net charge densities
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𝑥𝑝

𝑥𝑛

+

−

𝑁𝐷𝑁𝐴

𝐸

𝑥𝑛𝑥𝑝

𝐸𝑚𝑎𝑥 = −
1

𝜖
𝑄

𝑥𝑝 𝑥𝑛

𝑒

2𝜀
𝑁𝐴𝑥𝑃

2

𝑈𝑈0 =
𝑒

2𝜀
𝑁𝐴𝑥𝑃

2 + 𝑁𝐷𝑥𝑛
2

The total width of the depletion region 𝑤

𝑤 = 𝑥𝑛 − 𝑥𝑝 =
2𝜀𝑈0

𝑒 𝑁𝐴 +𝑁𝐷

𝑁𝐴
𝑁𝐷

+
𝑁𝐷
𝑁𝐴

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

If, say, 𝑁𝐴 ≫ 𝑁𝐷 (𝑝-type doping) 
then:

𝑤 =
2𝜀𝑈0

𝑒𝑁𝐷
i     𝑥𝑛 > 𝑥𝑝

if the 𝑝-region is more highly doped, practically all of the
potential drop is in the 𝑛-region. The less donors are the 
wider this region is. 
(for 𝑁𝐴 ≪ 𝑁𝐷 is vice-versa!)

𝑝 𝑛

E.g. 𝑁𝐷 = 1015cm-3 for typical 𝑈0 = 0.3 V 
We have 𝑤 ≈ 180 nm. If the change from acceptor 
impurities to donor impurities is gradual, then 𝑤 ≈ 1 𝜇m

Net charge densitiesDepletion regions
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𝑥𝑝

𝑥𝑛

+

−

𝑁𝐷𝑁𝐴

𝐸

𝑥𝑛𝑥𝑝

𝐸𝑚𝑎𝑥 = −
1

𝜖
𝑄

𝑥𝑝 𝑥𝑛

𝑒

2𝜀
𝑁𝐴𝑥𝑃

2

𝑈𝑈0 =
𝑒

2𝜀
𝑁𝐴𝑥𝑃

2 + 𝑁𝐷𝑥𝑛
2

The total width of the depletion region 𝑤

𝑤 = 𝑥𝑛 − 𝑥𝑝 =
2𝜀𝑈0

𝑒 𝑁𝐴 +𝑁𝐷

𝑁𝐴
𝑁𝐷

+
𝑁𝐷
𝑁𝐴

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

If, say, 𝑁𝐴 ≫ 𝑁𝐷 (𝑝-type doping) 
then:

𝑤 =
2𝜀𝑈0

𝑒𝑁𝐷
i     𝑥𝑛 > 𝑥𝑝

if the 𝑝-region is more highly doped, practically all of the
potential drop is in the 𝑛-region. The less donors are the 
wider this region is. 
(for 𝑁𝐴 ≪ 𝑁𝐷 is vice-versa!)

𝑝 𝑛

E.g. 𝑁𝐷 = 1015cm-3 for typical 𝑈0 = 0.3 V 
We have 𝑤 ≈ 180 nm. If the change from acceptor 
impurities to donor impurities is gradual, then 𝑤 ≈ 1 𝜇m

Net charge densitiesDepletion regions

!
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The metal-semiconductor junction ( 𝜙𝑀 > 𝜙𝑆)

n-type

Shottky barrier

Electrical properties of materials Solymar, Walsh (9.16)
Pg. 257

Work function 𝜙𝑆, electron affinity 𝜙𝐵

Anderson's rule
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typ n

The metal-semiconductor junction ( 𝜙𝑀 > 𝜙𝑆) Shottky barrier
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n-type

Electrical properties of materials Solymar, Walsh

Theoretically there
should be no Shotky
barrier

The metal-semiconductor junction ( 𝜙𝑀 > 𝜙𝑆)
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n-type

Electrical properties of materials Solymar, Walsh

forward bias
napięcie przewodzenia

reverse bias
napięcie zaporowe

+ -

+-

isolator

The metal-semiconductor junction ( 𝜙𝑀 > 𝜙𝑆)
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The surface of the semiconductor is usually charged

Electrical properties of materials Solymar, Walsh

n-type

For the p-type the opposite is true - the 
bands bend downwardly the diagram!
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n-type

The metal-semiconductor junction ( 𝜙𝑀 > 𝜙𝑆)

https://en.wikipedia.org/wiki/Metal%E2%80%93semiconductor_junction
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𝑘𝑛 𝑥 =
1

ℏ
2𝑚𝑉 𝑥 =

1

ℏ
2𝑚𝑉𝑏 1 −

𝑥

𝑑

2

𝑉 𝑥 = 𝑉𝑏 1 −
𝑥

𝑑

2
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𝑥𝑝 𝑥𝑛

𝑒

2𝜀
𝑁𝐴𝑥𝑃

2

𝑈𝑈0 =
𝑒

2𝜀
𝑁𝐴𝑥𝑃

2 + 𝑁𝐷𝑥𝑛
2

𝑥𝑝 𝑥𝑛

𝑒𝑈0 (𝑒 < 0)

𝐸𝑔

Charge conservation
𝑒𝑁𝐴𝑥𝑝 = 𝑒𝑁𝐷𝑥𝑛 = 𝑄

TUTAJ 20151126
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Heterozłącze (heterojunction)
forward bias
napięcie przewodzenia

reverse bias
napięcie zaporowe


