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Perfect State Transfer in Quantum Spin Networks
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We propose a class of qubit networks that admit the perfect state transfer of any quantum state in a
fixed period of time. Unlike many other schemes for quantum computation and communication, these
networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin
networks of identical qubit couplings, we show that 2log3N is the maximal perfect communication
distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the
qubits, then perfect state transfer can be achieved over arbitrarily long distances in a linear chain.
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The network is described by a graph G in which the distances.
The transfer of quantum states from one location (A) to
another (B) is an important feature in many quantum
information processing systems. Depending on the tech-
nology at hand, this task can be accomplished in a number
of ways. Optical systems, typically employed in quantum
communication and cryptography applications, transfer
states from A to B directly via photons. These photons
could contain an actual message or could be used to create
entanglement between A and B for future quantum tele-
portation between the two sites [1]. Quantum computing
applications with trapped atoms use a variety of informa-
tion carriers to transfer states from A to B, e.g., photons in
cavity QED [2] and phonons in ion traps [3]. These
photons and phonons may be viewed as individual quan-
tum carriers. However, many promising technologies for
the implementation of quantum information processing,
such as optical lattices [4], and arrays of quantum dots [5]
rely on collective phenomena to transfer quantum states.
In this case, a ‘‘quantum wire,’’ the most fundamental
unit of any quantum processing device, is made out of
many interacting components. In the sequel, we focus on
quantum channels of this type. Insight into the physics of
perfect quantum channels is of special significance for
technologies that route entanglement and quantum states
on networks. These technologies range from the very
small, such as the components of a quantum cellular
automaton, to the medium sized, such as the data bus of
a quantum computer, to the truly grand, such as a quan-
tum Internet spanning many quantum computers.

In this Letter, we address the problem of arranging N
interacting qubits in a network which allows the perfect
transfer of any quantum state over the longest possible
distance. The transfer is implemented by preparing the
input qubit A in a prescribed quantum state and, some
time later, by retrieving the state from the output qubit B.
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vertices V�G� represent locations of the qubits and a set
of edges E�G� specifies which pairs of qubits are coupled.
The graph is characterized by its adjacency matrix A�G�,

Aij�G� :�
�
1 if �i; j� 2 E�G�

0 otherwise:
(1)

It has two special vertices, labeled A and B, which mark
the input and the output qubits, respectively.We define the
distance between A and B to be the number of edges
constituting the shortest path between them. Although
this distance is defined on a graph, it is directly related
to the physical separation between the input and output
qubits, when a graph can be embedded in physical space.

The most desirable graph, for our purposes, is a linear
chain of N qubits with A and B at the two opposite ends of
the chain. For fixed N it maximizes the distance between
A and B. If we can switch on and off couplings between
adjacent qubits, then we can swap qubit states one-by-one
along the chain, all the way from the input to the out-
put. Such a dynamical control over the interactions
between the qubits is still an experimental challenge.
Theoretically, this challenge has been met by consider-
able progress in reducing the amount of control needed to
accomplish quantum computation tasks [6]. Moreover, it
has been shown that this can also be achieved without
direct control over interqubit interactions, as long as one
has control over individual qubits [7]. Even if just one
qubit in the chain is controllable, then quantum commu-
nication can be effected [8].

Quantum communication over short distances through
an unmodulated spin chain has been studied in detail, and
an expression for the fidelity of quantum state has been
obtained [9]. In contrast to these works, we focus on the
situation in which the state transfer is perfect; i.e., the
fidelity is unity, and can be achieved over arbitrarily long
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We consider networks in which state transfer is
achieved by time evolution under a suitable time-inde-
pendent Hamiltonian, without any additional external
control. This mechanism avoids possible errors arising
from dynamical control of interqubit interactions.
However, note that we do not consider the effects of
any other source of errors in this Letter.

Here, we show that a simple XY coupling

HG �
1

2

X
�i;j�2E�G�

��x
i�

x
j � �y

i�
y
j�; (2)

where �x
i , �

y
i , and �z

i are the Pauli matrices acting on the
i th qubit, allows perfect state transfer between antipodes
of a hypercube. Moreover, if we can engineer the strength
of the couplings between the qubits then perfect state
transfer can also be performed between the two ends of
a linear chain. These tasks can also be accomplished with
the Heisenberg, or exchange, interaction by a suitable
modulation of the network, e.g., by placing it in a static
but, in general, nonuniform external magnetic field. We
shall elaborate on this point later on.

Although our qubits represent generic two state sys-
tems, for the convenience of exposition we will also use
the term spin as it provides a simple physical picture of
the network. The standard basis for an individual qubit is
chosen to be fj0i � j #i; j1i � j "ig, and we shall assume
that initially all spins point ‘‘down’’ along a prescribed z
axis; i.e., the network is in the state j0i � j0A00 � � � 00Bi.
This is an eigenstate of the Hamiltonian (2) correspond-
ing to zero energy.

The Hilbert space H G associated with a network of N
qubits is of dimension 2N . However, the state transfer
dynamics is completely determined by the evolution in
the N-dimensional subspace SG spanned by the basis
vectors jni, n � 1; . . . ; N, corresponding to spin configu-
rations in which all spins are down apart from just one
spin at the vertex n which is ‘‘up.’’ Indeed, when we
prepare the input qubit A in state �j0i � �j1i, the state
of the network becomes

�j0A00 � � � 00Bi � �j1A00 � � � 00Bi � �j0i � �j1i: (3)

The coefficient � does not change in time, as j0i is the
zero-energy eigenstate of HG. The operator of the total z
component of the spin,

�z
tot :�

X
i2V�G�

�z
i ; (4)

commutes with HG, which leads to the conservation of
the total z component of spin. This means that the state
j1i � j1A00 � � � 00Bi must evolve into a superposition of
states with exactly one spin up and all other spins down.
Thus, the initial state of the network evolves in time t as

�j0i � �j1i � �j0i �
XN
n�1

�n�t�jni: (5)
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The dynamics are effectively confined to the subspace
SG. The Hamiltonian HG, when restricted to this sub-
space, is represented by an N � N matrix that is identical
to the adjacency matrix A�G�, Eq. (1), of the underlying
graph G. Because of this, one may express the time
evolution of the network in the SG subspace as a continu-
ous-time quantum walk on G (first considered by Farhi
and Gutmann in 1998 [10]).

The question we are interested in is: When will the
quantum walk propagate from A to B with unit fidelity?
To answer this, if we identify qubit A with vertex 1 and
qubit B with vertex N, we need to compute the probability
amplitude that the network initially in state j1i, corre-
sponding to j1A00 � � � 00Bi, evolves after time t to state
jNi, corresponding to j0A00 � � � 01Bi; i.e.,

F�t� � hNje�itHG j1i: (6)

Perfect state transfer is obtained for times t for which
jF�t�j � 1. Here and henceforth we take �h � 1.

Let us start with the XY linear chain of qubits. In this
case, one can compute F�t� explicitly by diagonalizing
the Hamiltonian or the corresponding adjacency matrix.
The eigenstates are given by

j~kki �

�������������
2

N � 1

r XN
n�1

sin

�
�kn
N � 1

�
jni; (7)

with corresponding eigenvalues Ek � �2 cos k�
N�1 for all

k � 1; . . . ; N. Thus,

F�t� �
2

N � 1

XN
k�1

sin

�
�k

N � 1

�
sin

�
�kN
N � 1

�
e�iEkt: (8)

Perfect state transfer from one end of the chain to
another is possible only for N � 2 and N � 3, with
F�t� � �i sin�t� and F�t� � ��sin�t=

���
2

p
��2, respectively.

For perfect state transfer in a chain, it is necessary
that the ratios of the differences of eigenvalues of the
related adjacency matrix A�G� are rational numbers. The
absence of perfect state transfer for N � 4 can be proven
by showing explicitly that the above condition is not
satisfied.

A chain of two or three qubits can serve as basic
building blocks for networks that can perfectly transfer
a quantum state over longer distances. This can be
achieved by building networks which are multiple
Cartesian products of either of the two simple chains.

In general, the Cartesian product of two graphs G :�
fV�G�; E�G�g and H :� fV�H�; E�H�g is a graph G�H
whose vertex set is V�G� � V�H� and two of its vertices
�g; h� and �g0; h0� are adjacent if and only if one of the
following hold: (i) g � g0 and fh; h0g 2 E�H�; (ii) h � h0

and fg; g0g 2 E�G�. If j~kki is an eigenvector of A�G� cor-
responding to eigenvalue Ek and j~lli is an eigenvector of
A�H� corresponding to eigenvalue El, then j~kk i � j~ll i is an
eigenvector of A�G�H� corresponding to eigenvalue
187902-2



FIG. 1. Couplings Jn that admit perfect state transfer from A
to B in a six-qubit chain. Eigenvalues m of the equivalent spin- 52
particle are also shown.
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Ek � El. This is because

A�G�H� � A�G� � 1V�G� � 1V�H� � A�H�; (9)

where 1V�H� is the jV�H�j � jV�H�j identity matrix (see,
e.g., [11]).

Now, consider a graph Gd which is a d-fold Cartesian
product of graph G. The propagator between the two
antipodal vertices in Gd, namely, A � �1; . . . ; 1� and B �
�N; . . . ; N�, is simply

FGd�t� � �FG�t��d: (10)

The d-fold Cartesian product of a one-link chain (two
qubits) and a two-link chain (three qubits) lead to one-
link and two-link hypercubes with jF�t�j given, respec-
tively, by

�sin�t��d and
�
sin

�
t���
2

p

��
2d
: (11)

Any quantum state can be perfectly transferred between
the two antipodes of the one-link and two-link hyper-
cubes of any dimensions in constant time t � �=2 and
t � �=

���
2

p
, respectively [12].

Let us mention in passing that our discussion here is
related to comparative studies of continuous-time random
walks on graphs. The mean hitting time between vertices
A and B is the time it takes the random walk on average to
reach B starting at A. The classical mean hitting time
between the antipodes in a one-link and two-link
d-dimensional hypercube is given, for large d, by 2d and
3d, respectively. One way to calculate this is to reduce
the continuous-time random walk on the d-dimensional
hypercube Gd to a continuous-time random walk,
with potential drift, in one and two dimensions, respec-
tively, via the so-called lumping method (see, e.g., [13]).
In contrast, as we have shown, the corresponding quan-
tum hitting time is constant. This gives an exponential
separation between the classical and quantum mean hit-
ting times between the antipodes of one- and two-link
hypercubes.

Thus, we have shown that, for a two-link hypercube of
N sites, the maximum distance of perfect quantum com-
munication is 2log3N. It is an interesting open problem to
see if, given N qubits, one can construct a network with
identical couplings in which any quantum state can be
perfectly transferred over a larger distance.

An improvement of the perfect quantum communica-
tion distance to N is, however, possible if one allows for
different, but fixed, couplings between qubits on a chain.
In order to see how to do this, let us start with a conve-
nient relabeling of qubits. One may associate a fictitious
spin-�N � 1�=2 particle with an N-qubit chain and relabel
the basis vectors as jmi, where m � � 1

2 �N � 1� � n� 1.
The input node jAi can be labeled both as jn � 1i and

jm � � 1
2 �N � 1�i, and the output node jBi both as jn �

Ni and jm � � 1
2 �N � 1�i. An example for N � 6 is
187902-3
depicted in Fig. 1. Now let the evolution of the chain be
governed by a modified version of (2),

HG �
X

�n;n�1�2E�G�

Jn
2
��x

n�x
n�1 � �y

n�
y
n�1�; (12)

which, when restricted to the subspace SG, is of the form
0
BBBBBB@

0 J1 0 � � � 0
J1 0 J2 � � � 0
0 J2 0 � � � 0

..

. ..
. ..

. . .
.

JN�1

0 0 0 JN�1 0

1
CCCCCCA
: (13)

The above matrix, Eq. (13), is identical to the repre-
sentation of the Hamiltonian H of a fictitious spin S �
1
2 �N � 1� particle: H � "Sx, where Sx is its angular mo-
mentum operator and " is some constant. In this case, the
matrix elements Jn are equal to "

2

��������������������
n�N � n�

p
. The evolu-

tion

U�t� � exp��i"tSx�; (14)

of the network represents a rotation of this fictitious
particle. The matrix elements hn0jU�t�jni of this rotation
matrix are well known and, in particular, the probability
amplitude for state transfer is

F�t� � hNjU�t�j1i �
�
�i sin

�
"t
2

��
N�1

: (15)

Thus, perfect transfer of a quantum state between
the two antipodes A and B is obtained in a constant
time t � �=".

Each such engineered qubit chain can be viewed as a
projection from a graph having identical qubit couplings.
In fact, there is an entire family of such graphs G that
project to this chain. Motivated by the ‘‘column method’’
of [14], we define G as the set of graphs whose vertices
can be partitioned into N columns Gn of size jGnj �
�N�1
n�1� that satisfy the following two conditions for n �
1; . . . ; N: (i) each vertex in column n is connected to N �
n vertices in column n� 1, and (ii) each vertex in column
n� 1 is connected to n vertices in column n. An impor-
tant example of a graph in G is the one-link hypercube,
187902-3



P H Y S I C A L R E V I E W L E T T E R S week ending
7 MAY 2004VOLUME 92, NUMBER 18
where columns are defined as the set of vertices reachable
in n links. The evolution of a state at A (the first column)
under HG [Eq. (2)] remains in the column space H col �
H G, spanned by

jcol ni �
1���������
jGnj

p XjGnj

m�1

jGn;mi (16)

where Gn;m labels the vertices in Gn. Hence, we restrict
our attention to H col in which the matrix elements of HG
are given by

Jn � hcol njHGjcol n� 1i �
��������������������
n�N � n�

p
; (17)

the same as in the engineered chain.
In our analysis, we have focused on qubits coupled with

the XY interaction. The choice of this interaction was
dictated by its simple connection with the adjacency
matrix. We should add, however, that our considerations
remain valid if we choose the Heisenberg interaction and
compensate for the diagonal elements in the SG subspace.
For example, the Heisenberg model with local magnetic
fields,

1

2

XN�1

j�1

Jj ~��j � ~��j�1 �
XN
j�1

Bj�
z
j; (18)

where ~��j � ��x
j; �

y
j ; �

x
j� and Bn � 1

2 �Jn�1 � Jn� �
1

2�N�2�

PN�1
k�1 Jk, give exactly the same state transfer dy-

namics as the XY model.
Our analysis is not restricted to pure states; the

method presented here works equally well for mixed
states. It can also be used to transfer or to distribute
quantum entanglement.

In conclusion, in this Letter we have proven that per-
fect quantum state transfer between antipodal points of
one-link and two-link hypercubes is possible, and perfect
quantum state transfer between antipodal points of
N-link hypercubes for N � 3 is impossible. The transfer
time on these hypercubes is independent of their dimen-
sion. In addition, we have shown that a quantum state can
be transferred perfectly over a chain of any length as long
as one can pre-engineer interqubit interactions. These
networks are especially appealing as they require no
dynamical control, unlike many other quantum commu-
nication proposals.
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