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If the states of spins in solids can be created, manipulated, and measured at the single-quantum
level, an entirely new form of information processing, quantum computing, will be possible. We
first give an overview of quantum information processing, showing that the famous Shor speedup
of integer factoring is just one of a host of important applications for qubits, including cryptogra-
phy, counterfeit protection, channel capacity enhancement, distributed computing, and others. We
review our proposed spin-quantum dot architecture for a quantum computer, and we indicate a
variety of first generation materials, optical, and electrical measurements which should be consid-
ered. We analyze the efficiency of a two-dot device as a transmitter of quantum information via the
propagation of qubit carriers (i.e. electrons) in a Fermi sea.

I. INFORMATION PROCESSING AND

QUANTUM MECHANICS

While we will spend much of this chapter considering
fairly specifically the application of quantum magnetic
systems to quantum computing, we want to first review
more broadly the potential “quantum revolution” that is
brewing in the area of information science. It is amus-
ing for a physicist to note that quantum mechanics is
now being taught as part of the standard curriculum in a
growing number of graduate computer science programs!
Why would computer scientists find it necessary to take
up such an esoteric study from a different field? The
problems which have interested them have nothing to do
with the quantum world, and this is not being changed
by this quantum revolution. Computer scientists have a
wide range of tasks which they are interested in accom-
plishing successfully, safely, and/or efficiently [1]:

1. Given data X , compute f(X) in the fewest number
of steps. (computational complexity [2])

2. Given two parties holding data X and Y , compute
f(X,Y ) with the least communication. (communi-
cation complexity [3])

3. Given two parties holding data X and Y , compute
f(X,Y ) in such a way that the two learn no more
about each other’s data than they know from the
function value itself. (discreet function evaluation
( [1], Chap. 5.8))

4. Transmit data X reliably from one party to a sec-
ond as quickly as possible. (channel capacity [4])

5. Protect data X from duplication. (counterfeit pro-
tection)

6. Transmit dataX from one party to a second in such
a way that the data cannot be read by any third

party. (key distribution/cryptography ( [1], Chap.
6))

7. Transmit data X from one party to a second in
such a way that the receiver can be assured that
the data was not corrupted during passage through
the channel. (authentication [1])

8. Transmit dataX from one party to a second in such
a way that another party can later confirm that the
second party did not alter X , and can confirm that
it was produced by the first party. (digital signature
[1])

9. Divide data X among n parties in such a way that
no n− 1 of them can reconstruct data X , but all n
working together can. (secret sharing [5])

10. Determine and execute optimal strategies in games.
(game theory; economics [6])

In this information age, our society’s well being increas-
ingly depends on being able to perform these and similar
tasks well. Quantum mechanics is never mentioned in
this list; nor should it be, since all of these tasks in-
volve the possession and transmission of data in palpa-
ble, macroscopic form. “Quantum data” is not useful for
members of our very macroscopic society; the inputs and
outputs of these tasks must be in classical form. (One
might question this assumption in some radically altered
definition of “society”.)

But what we have increasingly realized is that the tools
employed to accomplish these tasks can well be quantum
mechanical. In addition to “classical” processing primi-
tives involved in completing tasks (place a bit in memory,
compute the AND of two bits, launch a bit into a com-
munication channel), we can employ a host of quantum
processing primitives: prepare a qubit (two-level quan-
tum system) in a particular pure state; launch a qubit
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(e.g., a photon or an electron, see Sec. III) into a com-
munications channel; transform the state of two qubits
according to the action of some two-body Hamiltonian.

The remarkable fact is that it is known how to achieve
improvements in many (but by no means all) of the tasks
mentioned above by employing these quantum primitives.
We will review here briefly the “quantum state of the art”
for our list of tasks:

1. computational complexity: Shor’s famous work [7]
showed that some very important computations,
for example prime factorization, have only poly-
nomial complexity if quantum primitives are used,
while this computation can (probably) not be done
in polynomial time if only classical primitives are
used. It is worth reviewing the general way in which
the classical specification of the problem is con-
verted into an application of quantum primitives:
the dataX (the number to be factored) is converted
into a time-dependent two-body Hamiltonian func-
tion which is applied to a set of qubits prepared in
a standard quantum state (e.g., all zeros). Then
the answer f(X) (the set of prime factors) is ob-
tained by the results of a quantum measurement
performed on each of the qubits. It may be nec-
essary to repeat Shor’s procedure several times to
obtain a factor.

It should be noted that there are some other com-
putations for which it has been proved that no im-
provement in computational complexity is achieved
by using quantum primitives [8]. For instance, the
nth iterate of a function provided as a look-up ta-
ble takes n references to the table even if quantum
primitives can be used [9]. Work continues to ex-
plore the cases in which quantum speed-ups are and
are not possible [10].

2. communication complexity: In this work the advan-
tages gained by communicating using qubits rather
than bits have been explored [13]. There are some
strong positive results in this area. Quantum com-
munication is provably more efficient for the prob-
lem of two-party appointment scheduling: two per-
sons have to compare their appointment books to
choose a day to have lunch out of N possible days.
For classical bit transmission O(N) bits of commu-
nication are required in general. But it has been
proved (it is an application of the “Grover” algo-

rithm [12]) that no more than O(
√
N logN) quan-

tum bits of transmission are needed to complete
this task with high reliability [11]. There is a re-
lated task in which the quantum speedup is even
more dramatic, in the area of “sampling complex-
ity”: two parties must both pick a subset of car-
dinality

√
N from a common set of size N in such

a way that their subsets are disjoint. Classically,
O(N) bits of communication are required to as-
sure disjointness, but just O(logN) of quantum bit

transmission suffices [14]. Such dramatic provable
speedups are apparently also possible even in a case
where two parties share a string of random bits [15].

3. discreet function evaluation: This is an example of
a category of task for which there is believed to
be no quantum solution. This is true, at least, for
the principal technique which computer scientists
have used to analyze this task [1], which involves
reducing it to a procedure called bit commitment, in
which one party records a bit value of her choosing,
locks the record in a safe and sends it to a second
party (the “commit” phase); then at a later time of
her choosing, she sends the key to the other party
(the “opening” phase). Since safes can be x-rayed
and locks picked, this protocol is not secure. It has
been proved that bit commitment is never secure
in a quantum world [16]; using entanglement, the
sender can change the value of the bit between the
commit phase and the opening phase.

4. channel capacity: Here the results are tantalizing,
but not conclusive. The problem is this: given a
classical bit channel and a quantum bit channel
with the same levels of noise (the same probabil-
ity that the bit will pass through the channel un-
affected, roughly speaking), are fewer uses of the
qubit channel needed to send a given classical mes-
sage reliably than of the bit channel? No case
has been found in which this “classical capacity of
a quantum channel” exceeds the Shannon capac-
ity for the classical channel, although the work of
Fuchs et al. give indications that it may be pos-
sible [17]. Actually, there is one scenario in which
the quantum capacity is definitely greater: if the
sender and receiver have shared a prior supply of
maximally entangled quantum states, which them-
selves carry no classical information, the quantum
capacity can be boosted by the technique of super-
dense coding [18] by a factor of two or sometimes
more (at least up to a factor of three for qubit trans-
mission) [19].

5. counterfeit protection: There are really no strong
classical techniques for protecting against counter-
feiting. The first application of quantum primitives
ever conceived, “quantum money” was devised in
1970 by S. Wiesner [20]. It is a beautifully straight-
forward application of the simple rules of quantum
state preparation and measurement. The bank em-
beds qubits into its banknotes; each qubit is in a
pure quantum state, but the states are drawn from
a non-orthogonal ensemble (e.g., |0〉, |1〉, |0〉 + |1〉,
and |0〉−|1〉, or in spin language, in the eigenstates
of either σz or σx). A record of the state prepara-
tion is kept at the bank, and the bill is sent into
circulation. When the note returns to the bank,
the bank can use its record to measure each qubit
in a “non-demolition” [21] fashion, that is, in the
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appropriate σz or σx basis so that the state is undis-
turbed and the measurement outcome is determin-
istic. If all measurements agree with the stored
record, the bank can be assured that no attempt
has been made by a counterfeiter to read the state
of the qubits to duplicate them. This application
has not received much attention lately, but per-
haps its day will come with the further advance of
quantum technology, when qubits can be stored (or
error-corrected) over very long times.

6. key distribution: The most well-known success of
quantum protocols is in “quantum cryptography
[22].” The security of quantum transmission of ran-
dom data (the key) begins with the same trick that
is introduced in quantum money, sending one of a
set of non-orthogonal quantum states that an eaves-
dropper cannot reliably distinguish, and that are
in fact disturbed if the eavesdropper attempts to
learn any information about them. The construc-
tion of a secure key from this primitive involves a
lot more work, but Mayers has given a proof [23]
that the a protocol naturally obtained from the one
proposed by Bennett and Brassard in 1984 [22] is
unconditionally secure. Another protocol in which
state transmission is augmented by local quantum
computation is considerably easier to prove secure
[24].

7. authentication: Wegman and Carter [25] intro-
duced a provably secure authentication technique
that assumes that the sender and receiver possess
a secret key; therefore, a secure key exchange using
quantum primitives leads directly to a way of do-
ing secure authentication. In today’s world there
is another way to perform authentication: authen-
tication is implied by digital signatures, which are
routinely used in present-day cryptography, but —

8. digital signatures: The existence of quantum proto-
cols has negated the ability to do digital signatures.
First, no quantum protocol can apparently be in-
troduced which can take the place of digital signa-
tures used in public-key cryptography, in which a
sender, by appending to the end of a message an
encrypted version of that message, produces unal-
terable evidence that this message originated from
him: anyone can later decrypt the “signature” us-
ing the sender’s public key and compare it with the
putative message [1]. Second, the “proof” that this
protocol is secure relies on the security of public-key
cryptography, which is jeopardized by the ability
to factor large numbers by quantum computation.
Perhaps some entirely different quantum reasoning
will again permit the accomplishment of this infor-
mation processing task.

9. secret sharing: Only a little work has been done on
this [26], but it appears that there will be a vari-

ety of ways of using multipartite states to split up
a secret in such a way that it can only be recon-
structed by the cooperative quantum operations of
several parties. Buzek et al. have shown ways in
which this problem can be approached using entan-
gled states; it is perhaps more surprising that it is
possible to use unentangled quantum states to per-
form this task. This arises from the recent discov-
ery that there exist ensembles of multiparty orthog-
onal product states which can nevertheless not be
distinguished by any local operations of those par-
ties, even if they are allowed any amount of classical
communication. Only a joint quantum measure-
ment can distinguish them reliably. The detailed
application of this discovery to a secure secret shar-
ing protocol has only just begun.

10. games: This is a rather ill-defined area at the mo-
ment, but one with apparent promise. Meyer and
Eisert et al. [27] have shown that if the players in a
game can perform quantum mechanical manipula-
tions in the game (e.g., moving a chess piece into a
superposition of positions by a unitary operation),
they can gain some advantages. It seems that some
changes will have to take place in our society be-
fore some of these game results become applicable
— can we have a quantum stock market? A quan-
tum economy?

A final comment about this survey: while in some sense
it covers everything that goes on in the research on quan-
tum improvements of information processing tasks, in an-
other way it misses a lot of what workers in this field re-
ally think about. Between the bottom level of quantum
or classical primitives like data transmission and qubit
measurement, and the top level of tasks to be accom-
plished, lies a whole realm of macros and subprocedures
which use the primitives and provide tools for accom-
plishing the end tasks. We are very familiar with these
in classical computing (fetch program instructions, in-
voke a floating-point multiplier, launch a packet onto an
ethernet), but there is a whole host of quantum macros
which have no classical analog and which are crucial for
facilitating the quantum implementations of many tasks.

An important example of these is quantum error cor-
rection and fault-tolerant quantum computation [28],
which put together the primitives of state preparation,
measurement, and manipulation in such a way that the
effective unitary evolution of a quantum computation
is carried out reliably despite the intervention of noise
(“quantum decoherence”). Another operation which one
might consider as a quantum macro is the sharing of
a quantum secret, recently discussed in [29]. Reliable
qubit communication depends on other noise-suppression
quantum macros; the most effective approach to this
problem involves entanglement purification [30] (in which
a large supply of partially entangled mixed quantum
states is manipulated locally to produce a smaller supply
of pure, maximally entangled quantum states). Another
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crucial subprocedure in this noise-suppression macro is
the celebrated “quantum teleportation [31].” Much of
the recent “Star Trek” discussion of teleportation misses
the point that it has a well-defined, scientifically valid
role as an an enabler of high-level quantum processing
for anything involving the transmission of quantum in-
formation (e.g., distributed computing, key distribution).

So, quantum information processing isn’t just factor-
ing! Quantum factoring alone is interesting and impor-
tant; seeing the whole picture, though, indicates that we
may be just at the beginning of something really big.

II. QUANTUM INFORMATION PROCESSING

AND MAGNETIC PHYSICS

Specially-crafted magnetic materials and magnetoelec-
tronic structures, we believe, are good candidates for pro-
viding some of the important primitive quantum tools
for performing many of the tasks itemized above, as we
will detail shortly. We will concentrate in this section on
those applications which require the creation and manip-
ulation of “fixed” qubits, which include the applications
of quantum computing, counterfeit protection, and secret
sharing, and pieces of the others, such as the encoding
and decoding required in channel transmission. In Sec.
III we will discuss a particular scenario based on mobile
electrons [32] whose spins provide the “mobile” qubits
needed in the other applications; some proposals are now
being considered in which the coupling by solid-state op-
tical cavities to photons [33] could provide the tools for
the remainder of our tasks as well.

The magnetic structures that we envision are promis-
ing because the qubit is naturally defined (in terms of a
localized single spin). This localized spin has the poten-
tial for being relatively well isolated from its environment
– that is, for having low decoherence rates – and it can be
manipulated by electrical, magnetic and/or spectroscopic
tools and can be measured using advanced magnetomet-
ric or electronic techniques.

Of course, the magnetoelectronic structures that we
propose are not the only possible approach to the real-
ization of quantum information processing: efforts span-
ning many of the active areas of experimental quantum
physics have led to successful demonstrations of quan-
tum logic gates, and of operating systems for quantum
cryptography, superdense coding, and quantum telepor-
tation.

We can only give a brief mention of all the differ-
ent quantum logic gate demonstrations that have been
reported: In 1995, there was the demonstration of the
two-qubit controlled-NOT reported using ion trap spec-
troscopy by the NIST group [34]. Since this demonstra-
tion, progress towards realizing the idea of the linear-ion
trap quantum computer has been proceeding steadily;
this group has recently demonstrated the determinis-
tic creation of entanglement between two ions [35]. In

the area of cavity-quantum-electrodynamics, the vacuum
cavity version of the solid state microcavity scheme men-
tioned above was first investigated in 1995 by the Cal
Tech group [36], and many proposals have been made
for how to use this device in a quantum communication
network.

The processing of photons in fiber-optic experiments
has also received a lot of attention. Full-scale quantum
cryptography demonstrations have now been achieved in
many different laboratories [37]. In addition, several
other quantum information processing protocols have
been realized in such systems: superdense coding has
been achieved in systems where photon EPR pairs are
created by parametric down conversion, and incomplete
Bell measurements are performed using linear optical el-
ements [38]. More recently, teleportation of photon po-
larization states has been achieved [39,40]. Now it has
also become possible to teleport a “continuous” Hilbert
space, the quadrature field coordinates of a coherent state
of light [41].

Finally, it should be mentioned that there is another
condensed matter implementation of quantum gates that
has received a lot of experimenatal attention lately, one
involving bulk NMR (nuclear magnetic resonance). Fol-
lowing on the original theoretical idea for using NMR
for quantum gates [42], the idea was put into practi-
cal, realizable form in 1997 [43]. Since then, there has
been a plethora of experimental investigations of 2 and 3
spin systems, including demonstrations of the Deutsch-
Jozsa and Grover quantum algorithms [44] and of simple
quantum error correction techniques [45]. There has even
been a realization of intramolecular quantum teleporta-
tion [46].

A. Proposed Device Structure

Rather than giving a general discussion of the criteria
which a magnetoelectronic device proposal must satisfy
in order to be a good candidate for a quantum computer
(which we have done previously; see Refs. [47–49]), we
will simply proceed to describe the specific model that
we have introduced [48–50]. From the discussion here it
should be clear what are the critical requirements for this
proposal to succeed.

Fig. 1 sketches the model that we have introduced in
Ref. [48]. It is a quantum-dot array [51,52], produced
in this version of the model by lateral confinement. The
figure indicates a two-dimensional layer, for example a
quantum well produced in a GaAs heterostructure, above
which an array of electrodes is placed. As in the exper-
iments of various groups [53–57,61], voltages on these
electrodes can be used to deplete selectively regions of
the two-dimensional electron gas below them, leaving iso-
lated regions (the quantum dots shown dotted in the fig-
ure) in which electrons can be confined.

The qubit in this scheme is provided by the electron
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spin of each quantum dot. In order that this qubit be
well defined, the electron number must be controlled and
constant throughout the operation of the device. This
is assured by exploiting the well understood Coulomb
blockade effect in these dots. We imagine that a trans-
port (e.g., [55]) or capacitance [53] measurement is per-
formed on every dot in the array separately, and the gate
voltages (the gates are shown shaded in the figure) ad-
justed so that the energy of the N electron state is much
lower than that of the N − 1 or N + 1 electron state.
N will remain fixed throughout the quantum computa-
tion operations: this computer has no moving parts, not
even the electrons move (at least not much). In order
to use the electron spin as a quantum number, it is very
likely essential that N be an odd number (if N is even, it
would typically be the case that the total spin of the dot
would be zero, so that no nearly-degenerate levels would
be available to represent the qubit). If N is odd, the spin
is at least 1/2. In fact, s = 1/2 exactly is the ideal situa-
tion for representing a qubit. s = 1/2 is assured if N = 1,
that is, if there is only one excess electron confined to the
dot. For this reason partly, but mainly because of other
considerations about the many-body physics of the dot,
such as that discussed in Sec. III, we will consider only
the N = 1 case. The N > 1 case may be usable for
quantum computation, but it will require more analysis
than we have performed up until now.
N = 1 is not easy to achieve experimentally. N in the

range of a few tens has become relatively routine in the
experiments cited, but in the very small-N regime it be-
comes difficult for electrons to tunnel in and out of the
dot, and the quantum-dot potential can become disorder
dominated. These are not severe difficulties in principle,
but we acknowledge that it is a demanding requirement
from the perspective of present-day experiments, and we
are committed to studying the effect of using larger elec-
tron numbers on our proposed device operation.

B. Decoherence

Among the most crucial requirements for the imple-
mentation of quantum logic devices is a high degree of
quantum coherence. Coherence is lost when a qubit in-
teracts with other quantum degrees of freedom in its en-
vironment and becomes entangled with them. Predicting
the coherence time of the electron spin states of the de-
vice described above is very difficult, as the possible cou-
plings to all the other quantum degrees of freedom of the
system must be considered. We are encouraged, however,
by the general fact, observed in many experimental situ-
ations in condensed matter physics, that spin degrees of
freedom have longer coherence times than charge degrees
of freedom (ones for which the different electron states are
associated with different orbital wavefunctions), simply
due to the weaker couplings of spin states than orbital
states to the environment.

This observation does not lead to any simple result
about what the available decoherence times in our struc-
ture will be. Experiments of spin coherence times have
been performed on somewhat related structures [58,59],
with the result that a very wide range of decoherence
times can be seen for the spins of electrons in semicon-
ductor heterostructures and bulk doped semiconductors.
In structures which are intentionally doped with mag-
netic ions (Mn), the coherence times are seen to be very
small, on the order of picoseconds. But times ranging
over six orders of magnitude, approaching microseconds
in some structures, have now been seen depending on the
details of the semiconductor structure. As we will dis-
cuss in the next section, microsecond decoherence times
would be acceptable for beginning experiments on quan-
tum gate operations, while times of milliseconds would
be adequate for even large-scale quantum computing ap-
plications (because of the abilities offered by quantum
error correction [28]).

We have considered in general the likely mechanisms
of decoherence in structures such as Fig. 1, which should
be useful in guiding designs of experiments which seek to
lengthen the decoherence times. Our estimates [50] indi-
cate that decoherence due to spin-orbit coupling should
be negligible for conduction band electrons in GaAs (al-
though not for holes); still, more detailed work needs to
be done to quantify this effect. A potentially important
mechanism for decoherence in these structures is the cou-
pling to other spin states in the environment. As demon-
strated in the Mn-doping experiments [58], this effect will
be greatly influenced by the materials preparation of the
devices, and can be a very strong pathway to decoher-
ence. Thus, in our work [48] we have studied in detail
models in which the qubits are coupled to a bath of other
spins. The significance of the effect is entirely determined
by the strengths of the coupling constants between the
system and bath. The decohering effect of this bath can
be enhanced during quantum gate operations [49], that
is, when spins in neighboring quantum dots are coupled
(see next section).

In addition to other electronic spins, there are unques-
tionably nuclear spins in the environment as well whose
decohering effect must be considered. In GaAs in partic-
ular, 100% of the nuclei possess non-zero spin. We have
studied the effect of these spins recently [50], and our cal-
culations indicate that these spins can be a serious source
of decoherence if the applied magnetic fields are low and
the nuclear spins are in their thermal equilibrium state.
However, it is relatively easy to modify these conditions,
either by dynamically spin-polarizing the nuclear spins
e.g. by known optical techniques, and/or by arranging
that the operation of the devices is performed with a
non-zero applied magnetic field. Actually, the presence
of significantly spin-polarized nuclei may actually be very
useful for performing gate operations on these qubits (see
next section) [50].

Another “trivial” but practically important source of
spin decoherence arises from uncertainties in the applied
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Hamiltonians to be discussed in the next section. For ex-
ample, in schemes in which the gate action involves the
application of a uniform magnetic field, inhomogeneities
in this field will result in inaccuracies in the gate opera-
tion. This decoherence effect is analogous to the broaden-
ing effect on absorption lines which is well known in tra-
ditional spin spectroscopies, where various “refocusing”
and “spin-echo” techniques have been devised to amelio-
rate them. Such techniques may have to be developed
and adapted to assure reliable quantum gate operation,
but this problem has not been addressed systematically
in any detail.

One might think that if fluctuating magnetic fields are
a severe problem for quantum-dot quantum bits, then
perhaps there would be some value in reconsidering the
use of electron orbital states, which, after all, would be
insensitive to such magnetic field effects. We are pes-
simistic on this account, not only because the decoher-
ence times for orbital states are short for myriad other
reasons, but also because there is reason to believe that
some of the important decoherence mechanisms due to
Fermi-sea effects will be non-Markovian. Markovian, or
memoryless, decoherence is actually greatly desired over
non-Markovian decoherence in quantum computation, as
all the powerful techniques introduced in quantum er-
ror correction assume a memoryless error scenario [28].
No one has demonstrated that a qubit system with even
very weak non-Markovian decoherence would be useful
for quantum information processing.

C. Quantum gates

Another crucial requirement for quantum computing,
and for many of the other quantum approaches to infor-
mation processing tasks outlined in the first section, is
that it must be possible to apply time-dependent one-
and two-body Hamiltonians to the qubits according to
the specifications of some program [60].

The structure of Fig. 1 can have many mechanisms
for applying such “quantum gates” to the spin qubits.
First, the structure has a set of gates which can con-
trol the position of the electron’s wavefunction within
the two-dimensional electron gas, simply by varying the
confining voltages on these gates. If two of these elec-
trons in neighboring dots are pushed close together, the
overlap of the orbital wavefunctions will, via the Pauli
principle, produce an effective two-spin interaction be-
tween the two spin qubits. The Hamiltonian produced is
that of an exchange interaction which is isotropic in spin
space

H(t) = J(t)S1 · S2. (1)

Here the time dependence J(t) is regulated by the time
variation of the tunneling matrix element Γ of an electron
from one dot to the other. According to perturbation
theory, J(t) is

J(t) ∝ Γ(t)2

U
. (2)

Here U is the Coulomb blockade energy, the charging
energy required to add a second electron to one of the
dots.

In Ref. [50] we give a more refined and detailed anal-
ysis of this switchable spin interaction, in particular we
show that the long range part of the Coulomb interaction
(if it is not screened) will produce an additional term in
(2) of opposite sign that leads to a sign reversal of J for
sufficiently large external magnetic fields as a result of
competition between long-range Coulomb repulsion and
magnetic wave function compression. By working at this
magnetic field (where J vanishes) the exchange interac-
tion can be pulsed on, even without changing the tunnel-
ing barrier between the dots, either by an application of a
local magnetic field, or by exploiting a Stark electric field
(which will also make the exchange interaction nonzero).
See [50] for further information. We finally note that
the exchange energy J can be understood as the level
splitting induced by the formation of a molecular state
between the two quantum dots [50]. The observation of
such a molecular state in a double dot system contain-
ing several electrons has indeed been reported recently
[61,62].

The exchange interaction of the form Eq. (1) is suf-
ficient for the most general quantum computation, if it
is supplemented by a suite of one-body time-dependent
interactions (one-bit gates). This is discussed in [48–50],
where it is shown that Eq. (1) will produce a quantum
gate known as a “square-root of swap” (in which the ex-
change interaction is turned on for half the time required
for it to produce a complete interchange (“swap”) of the
quantum states of the two qubits). We show [48] that
two square roots of swap, in conjuction with a set of one-
qubit gates, will produce a quantum XOR (also known as
a controlled-NOT) gate, which is known to be employable
for any arbitrary quantum computation [63].

The speed at which these switchings are done will be
an important parameter; the rule is, the faster the better,
consistent with doing the prescribed manipulations with
rather high accuracy (error correction theory says that
the relative accuracy to be striven for is on the order of
10−4). The fundamental physics says that the switching
on and off of the tunneling could be done much faster
than a nanosecond [50]–only at much, much shorter time
scales will such fundamental limitations as adiabaticity
enter the picture. It is necessary that the switching time
be smaller than the decoherence time; again, error cor-
rection theory says that ultimately, it is desirable that
the switching time be smaller than the decoherence time
by about 10−4. We think that 10−1 will be quite satisfac-
tory for the initial round of measurements. We think that
initially, the experimentalist should simply be guided by
what is doable. Since high-frequency signals are difficult
to transmit into quantum dot structures in the Coulomb
blockade regime at 4K or so, we might suggest that one
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should shoot for switching times in the neighborhood of
10−7 sec. A simple calculation indicates that only modest
control-voltage excursions are needed to do square-root-
of-swap in this time.

We note that the switching of the gates via an ex-
ternal control field v(t) should be performed adiabati-
cally [50], i.e. |v̇/v| ≪ δǫ/h̄, where δǫ is a character-
istic energy scale of the problem. In the present case
δǫ should be taken to be on the order of the orbital
energy-level separation. This adiabaticity requirement
excludes e.g. switching pulses of rectangular shape, in
which case many excitations into higher levels will occur.
An adiabatic pulse shape of amplitude v0 is e.g. given by
v(t) = v0sech(t/∆t), where ∆t = τs/α gives the width
of the curve and α is chosen such that v(t = τs)/v0 be-
comes vanishingly small. In this case we have |v̇/v| =
1

∆t |tanh(t/∆t)| ≤ 1/∆t = α/τs, and thus for adiabatic-
ity we need to choose τs such that α/τs ≪ δǫ/h̄. Note
that the Fourier transform, v(ω) = ∆tv0πsech(πω∆t),
has the same shape as v(t) but with a width 2/π∆t, and
we see that v(ω) decays exponentially in frequency ω,
whereas it decays only as 1/ω for a rectangular pulse.
[We could, of course, also use a Gaussian pulse shape,
however, in this case we would get |v̇/v| ∝ t and some
cutting of the long-time tails is required in order to satisfy
adiabaticity for all times.] It is worth emphasizing, how-
ever, that for our quantum gate action the pulse shape
is not relevant, the only parameter which counts is the
integrated pulse shape,

∫ τs

0
dtP (v(t)), where P stands

for the exchange J or the magnetic field B which is
switched. This stands in contrast to spectroscopic mech-
anisms based on resonance conditions where more de-
tails of the shape of the pulse are relevant. Also, even
if adiabaticity is not well satisfied in our switching, not
much will happen as long as spin-orbit coupling remains
small since typically only charge degrees of freedom will
be excited in a non-adiabatic process and not the spins
representing the qubits.

The use of an inhomogeneous magnetic field (or an
inhomogeneous g-factor) for gating mentioned above for
two-bit gates is obligatory, in some form, for the accom-
plishment of the desired one-qubit gates. That is, every
one-body Hamiltonian needed for quantum computing
can be written in a standard Zeeman form

gµBB(t) · S. (3)

It is necessary that the field B(t) (or the effective field)
be applicable separately to each qubit (or at least that
the effect on neighboring qubits be smaller and known),
and that it can be applied along at least two different
axes.

There are many ways that we can conceive of applying
these local magnetic fields or local Zeeman interactions.
If the switching time scale is to be the same as above
(10−7 sec.), then field strengths of only a few Gauss are
necessary, and this could be accomplished by a mecha-
nism as simple as winding a small wire coil or by plac-
ing magnetic dots above/below each quantum dot, or by

placing the dots between a grid of current-carrying wires
as in RAM devices [64]. Other methods of obtaining
very localized fields, such as moving magnetic bubbles in
a garnet film, using a magnetic-disk writing head, or a
magnetic force microscope tip, can be considered.

Although strict localization of the applied field is not
necessary, it does make life considerably easier, and there
are several ideas which would make this field effectively
much more localized. If the nuclear spins of the dot and
the material surrounding the dot can be polarized as dis-
cussed above, then the electron spin (but not the orbital
motion) experiences an effective internal magnetic field,
the “Overhauser field”, which can be on the order of sev-
eral Tesla in GaAs [50]. If the Overhauser field is different
in the dot and in the confining layers above and below
it, then the field as seen by the confined electron can
be varied by purely electric gating, that is, by pushing
the electron more or less into the insulating barriers. In
our original work [48] we introduced another variant of
this idea, in which the confining materials possess a real
magnetization due to a ferromagnetic moment. Such fer-
romagnetic insulating materials are not so common, but
are not unheard of either (the garnets, the ferrites, and
the Eu-chalcogenides are some examples); unfortunately,
there is little experience in matching these materials epi-
taxially to the common dot materials such as GaAs, but
first promising progress in this direction has been made
recently, see [65]. We also would like to emphasize here
that our set-up permits the performance of swaps of qubit
states in such a way that we can easily move a spin state
(not the electron spin itself) of a given quantum dot via
a chain of adjacent quantum dots to a desired location in
the network where we have localized magnetic fields avail-
able, act with the field on the qubit and then swap the
qubit back to its original location. This is possible since
the swapping operation does not involve single-qubit ro-
tations and since we can swap two states even without
knowing their particular state. But either the Overhauser
field idea or the magnetic insulator idea can be extended
to solve the very important problem of quantum mea-
surement, to be discussed momentarily.

A brief word about error correction, which we have al-
luded to many times already: error correction provides
a way of using redundancy and repeated quantum mea-
surement during the course of computation, which de-
tects and diagnoses the occurrence of decoherence, and
undoes its effects. It uses exactly the same gates which we
have just introduced, along with qubit measurements to
be described shortly. The conventional analysis of quan-
tum error correction [28] assumes that two-qubit gates
can be performed between any two qubits. In our com-
putational model, gate operations can only be performed
between neighboring qubits. This is not a serious modifi-
cation, the basic procedures of quantum error correction
still work in this case [66]. The more crucial requirement
for error correction to work is that two-qubit and one-
qubit gates can be performed on many different qubits
simultaneously as it is possible in our proposal. There
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are other popular quantum register designs, for example
the well-known linear ion trap model of Cirac and Zoller
[67], for which error correction is not possible because
gate operations cannot be done in parallel.

Finally, the concept of error correction promises to be
important by itself. Indeed, in many areas of mesoscopic
physics it would be highly desirable to maintain phase
coherence indefinitely, a goal which we believe could be
achieved with error correction schemes.

D. Quantum measurements

The final requirement which must be addressed for
performing quantum information processing with the
quantum-dot structure is the need to read out data re-
liably, which translates into the necessity of doing spin
measurements at the single-spin level. It must be pos-
sible to address each individual spin in the structure
(or at least some subset of the spins) and perform an
“up/down” measurement on them. Solid-state magne-
tometry at the single-Bohr-magneton level has of course
proved to be very difficult, as other contributions to this
volume will discuss. We forsee, though, that using some
of the capabilities of quantum computing, the very diffi-
cult single-spin measurement can be turned into a more
manageable electrical (i.e., charge) measurement along
the lines first proposed by us in Ref. [48].

We have recently reviewed in detail the possibilities in
this area, we will just give an outline here, the interested
reader is referred to [68]. The basic idea of turning the
spin measurement into a charge measurement [48] (see
also [69]) is this: we use the kind of magnetic (either fer-
romagnetic or nuclear-spin-polarized) barriers mentioned
above as tunnel barriers, say in the form of a thin bar-
rier separating two quantum dots or a quantum dot and
a single-electron transistor. The tunneling barrier can
be made strongly spin dependent (this is the well-known
“spin-filter” effect); thus, at the time of measurement,
the tunneling of a spin-up electron can be made very
probable, while the tunneling of a spin-down electron re-
mains very improbable. Thus, the job of measuring spin
is converted into the job of measuring whether an elec-
tron has tunneled or not. But this is a feasible (and in-
deed, almost routine) electrometry measurement–many
labs have demonstrated the feasibility of single-electron-
charge magnetometry, either with single-electron tran-
sistors, quantum point contacts, and other mesoscopic
electronic structures.

Another promising idea for single-spin measurement
involves near-field optical probing of the spin state. We
have not analyzed this approach in any detail, but it
deserves future experimental and theoretical attention.

E. Test experiments

It is clear that the above concept, which we have devel-
oped over the last three years, has proved far too demand-
ing to be undertaken all at once. It requires a combina-
tion of developments, in materials and device fabrication,
in precision, high frequency electrical control, in hitherto
unexplored, complex, nanoscale architectures, which are
far beyond the scope of one generation of experimental
investigation.

Therefore, it is very important to pull apart our
quantum-dot quantum computer into small pieces, set-
ting feasible shorter-term goals for the demonstration of
particular capabilities. We only intend to give a brief
idea here of the kind of near-term work which might be
done; indeed, it seems that the possible ways of dividing
our proposal into smaller, manageable chunks are almost
infinite, and finding the most promising ones can only
result from a detailed dialog between the theorist and
experimentalist. But here is a selection of ideas which
we now now might be promising for the next few years:

There is a clear need to demonstrate the controlled
fabrication of spin quantum dots. As mentioned above,
a desirable goal would be to routinely obtain dots with
just one excess electron. More theory must be done to
see whether using dots with an odd number of excess
electrons would be acceptable. One-electron dots have
been achieved [53], but not in geometries in which dots
could potentially be coupled. Loading by transport in the
Coulomb blockade regime would be the obvious way, but
doping or optical techniques should also be considered.

If an array of such dots can be obtained, then char-
acterization of the qubit energy levels, g-factors, and es-
pecially decoherence times would be the next thing to
study. In fact, an initial version of this type of exper-
iment has now been reported [59], which demonstrates
that time-resolved optical probes of these systems are
extremely promising for these kinds of initial characteri-
zations. Further application of pulsed-spectroscopy tech-
niques should yield further information about the con-
trollability of such qubits (at least at the one-qubit gate
level).

Another distinct line of investigation would involve
demonstration of two-qubit gate capabilities. We have
suggested [48–50] that gated double-dot structures that
have been fabricated and studied in GaAs 2DEGs [55,56]
could be the starting point of such studies; it will also
be desirable to see if other types of dots, say in pillar
structures or ones created by chemical nucleation, can
be integrated into devices in which their coupling is sub-
ject to electrical or magnetic control. We envision ex-
periments in which arrays of these dots can be subjected
to identical preparations and probings. It may be that
an experiment as straightforward as the measurement of
the a.c. magnetic susceptibility of such a dot array as
a function of a control voltage [48,49] will be sufficient
to demonstrate the basic physics of quantum-mechanical
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exchange coupling between neighboring spins.
The magnetoelectronic techniques that we have sug-

gested for other gate operations and for single-spin quan-
tum measurement involved additional and quite different
experimental challenges. The basic materials issues of
the integration of semiconducting and magnetic materi-
als are not yet well enough developed to even propose a
likely system to study at this time, although it is promis-
ing to note that there is now active research focussed
on just this area, finding good matches between magnets
and semiconductors which will show clean, reproducible
interface properties. If, for example, it proves possible to
grow EuS or EuO on GaAs, then an experiment can im-
mediately be considered in which the basic spin filtering
phenomenon of carriers in the semiconductor conduction
band is looked for. This experiment would be very in-
formative even in a traditional bulk tunneling geometry;
there would be no need to even consider integrating these
with quantum dot structures at first. Tunneling through
Overhauser-polarized barrier materials may be less de-
manding from the materials science point of view, but
will require integration of optical (for nuclear spin po-
larization) and electrical expertise. A later generation of
experiment could consider integrating the spin-filter into
a simple point-contact (say of the Ralls type) so that
a combined spin-filter/Coulomb blockade effect could be
demonstrated. This already takes us quite far into spec-
ulative territory.

We would like finally to briefly comment about ques-
tions that we have been asked about whether the many
experiments on the charge degree of freedom in quan-
tum dots could be directed towards the achievement of
orbital-level qubits and quantum gates. While there may
be a worthwhile approach in this direction, we are pes-
simistic about its ultimate chance of success compared
with the spin approach, even though spin effects are
at this time much less well developed in quantum-dot
research. We say this based on the fact that orbital
(i.e. charge) degrees of freedom of a dot will be much
harder to make coherent than the spin of a dot, just
based on the typically stronger coupling of charge (com-
pared to magnetic moment) to the environment. A typ-
ical Fermi-sea charge environment also has a different,
and possibly even worse, problem as already pointed out
before: Fermionic baths are very non-Markovian, hav-
ing power-law decays of correlations. Almost all the
well-developed theory of quantum error correction ap-
plies only to Markovian baths [28], and it is very unclear
whether any useful quantum computation can be done
in the presence of a non-Markovian environment (how-
ever, see [70]). These considerations have been enough
to justify, in our minds, a continued focus on the eventual
possibilities of spin quantum dots only.

III. QUANTUM COMMUNICATION WITH

ELECTRONS

In this section we would like to address the following
question: is it possible to use mobile electrons, prepared
in a definite (entangled) spin state, for the purpose of
quantum communication? Such a question, for instance,
is of central importance in a solid state quantum com-
puter where one wishes to exchange quantum informa-
tion between distant parts of a quantum network. The
question is of course also of broader interest: if we could
use electrons for creating entangled states, in particular
so-called EPR pairs, and if we could move them around
separately while preserving their spin entanglement, then
we would be able to implement, for instance, tests of
Bell’s inequality; thereby, we could obtain tests of non-
locality—one of the most striking concepts of quantum
mechanics—for the first time with electrons. So far, all
such tests have been done on photons [71], most recently
by Gisin’s group [72] who demonstrated in a remarkable
experiment that photons propagating in optical fibers re-
main in an entangled state over more than 10 km’s. It
is quite amusing to note here that the Gedanken exper-
iment which has been formulated by Einstein, Podolsky,
and Rosen [73], and which underlies the Bell inequalities,
makes use of point particles and not of massless particles
such as photons. Thus, there can be no doubt that it
would be highly desirable to extend tests of non-locality
also to quantities which have a rest mass such as electrons
in particular.

Now, as we have discussed before, one basic ingredi-
ent for quantum communication are entangled pairs of
qubits which are shared by two parties. There are three
separate requirements involved here which must be sat-
isfied. First of all we need mobile qubits which can be
transported from position A to position B. Second, we
need a source of entanglement for such qubits which can
be operated in a controllable way, and third, it must be
possible to transport each of the qubits separately in a
phase-coherent manner such that the entanglement be-
tween the two qubits of interest is not destroyed in the
process of transporting them to their desired locations.

Now, our choice of representing the qubit in terms of
the spin of a mobile electron satisfies the first require-
ment trivially (note that qubits defined as pseudospins
are typically not mobile). The second requirement, to
have a source of entanglement, can be satisfied by using
the quantum gate mechanism based on coupled quantum
dots [48–50] as we have described it in the preceeding
sections.

To assess the third requirement, transport of entangled
qubits, we need to be more specific of how we actually en-
visage such transport. One realistic scenario is to attach
leads to the quantum dots into which the electrons can
be injected (e.g. by lowering the gate barriers between
dot and lead). From an experimental point of view it is
best to make leads and dots out of the same material.
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For instance, if the dots are formed in a two-dimensional
electron gas (2DEG) such as GaAs heterostructures it
is not difficult to connect them to leads formed also in
the 2DEG by electrostatic confinement or some etching
techniques [61,55]. In a first step we inject an electron
into quantum dot 1 and another one into quantum dot
2. In a second step, we perform a quantum gate opera-
tion to produce an entangled state out of the two elec-
trons, say a singlet state, |ψkk′ 〉 = 1√

2
(|k, k′〉+ |k′, k〉)χs,

where χs = (| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)/
√

2 is the two spinor
describing a spin-singlet state. The orbital part of the
state, characterized by the quantum numbers k, k′, is
symmetric whereas the spin singlet is antisymmetric. As
a measure of correlations we consider transition ampli-
tudes between an initial and a final state. We begin with
the simplest case given by the wave function overlap of
|ψkk′ 〉 with |ψqq′ 〉,

〈ψqq′ |ψkk′ 〉 = δqkδq′k′ + δqk′δq′k . (4)

Thus, if e.g. q = k, and q′ = k′, the overlap assumes
its maximum value one, simply reflecting maximum cor-
relation between the two states. If we prepare the two
electrons in a triplet state instead of a singlet we will
find a minus sign instead of the plus sign in Eq. (4).
This means that this sign simply reflects the symmetry
of the orbital part of the wave function, and thus the
overlap (4) distinguishes only triplet from singlet states
but not necessarily entangled from unentangled states.
Indeed, the triplet states with mz = ±1 are not entan-
gled, whereas the triplet state with mz = 0 as well as the
singlet state are entangled. Since the (anti-)symmetry
of the orbital part of the wave function leads to (anti-
)bunching behavior in the noise spectrum [74], we can
in principle distinguish singlet from triplet states. The
triplet states themselves can be further distinguished by
measuring the z-component of the total spin, Sz, which
could be achieved e.g. by making use of spin filters in the
leads and/or leads that are connected up to other quan-
tum dots into which the electrons can tunnel and then
be detected via SET measurements [32]. In this way it is
possible (in principle) to distinguish all four spin states,
in particular also to distinguish between entangled and
unentangled states (provided we deal with these four par-
ticular states only–otherwise the expectation value of Sz

does not distinguish between entangled and unentangled
states in general).

Next we generalize this concept of the overlap to a
dynamical situation as well as to the leads which con-
tain many interacting electrons besides the two entangled
electrons of interest. Again, we use a similar overlap as
a measure of how much weight remains in the final state
|ψqq′ , ψ0, t〉 when we start from some given initial state
|ψkk′ , ψ0〉, where ψ0 denotes the fermionic ground state
of the electrons in the leads, which is simply given by a
filled Fermi sea. For further discussion it is now conve-
nient to make use of the standard second quantization

formalism in terms of fermionic creation (a†kσ) and anni-

hilation (akσ) operators, where σ = ±1 denotes spin ↑ (↓)
in the Sz-basis. The (normalized) initial state, choosing
a singlet, can then be written as

|ψkk′ , ψ0〉 =
1√
2
(a†k↑a

†
k′↓ − a†k↓ a

†
k′↑ ) |ψ0〉 , (5)

and similarly for the final state, again chosen to be a sin-
glet state. The overlap (4) now becomes a singlet-singlet
correlation function which we denote by Gs(q′, q, t; k, k′),
t ≥ 0, and which is explicitly given by

Gs(q′, q, t; k, k′) =
1

2

∑

σ=±1

[G(q′,−σ; q, σ; t; k, σ; k′,−σ)

− G(q′,−σ; q, σ; t; k,−σ; k′, σ)] , (6)

where

G(q′,−σ; q, σ; t; k, σ; k′,−σ) = −〈T aq′σ(t) aq−σ(t) a†k−σ a
†
k′σ 〉

(7)

is a standard 2-particle Green’s function, and k = (k, kl),
where kl = ±1 refers to lead 1 (2). Here, T is the
time-ordering operator and 〈...〉 the zero-temperature or
ground state expectation value. We assume a time-
and spin-independent Hamiltonian, H = H0 +

∑
i<j Vij ,

where H0 describes the free motion of the N electrons,
and Vij is the bare Coulomb interaction between elec-
trons i and j (extensions to more complicated situa-
tions including spin interactions will be considered else-
where). This four-point correlation function is of the type
G(12; 1′2′) and it provides a measure of how much over-
lap (or transition amplitude) is left after time t between
an initial and final singlet state of two electrons which
have been injected into a Fermi sea (leads) of N − 2 in-
teracting electrons, and which propagate during time t
in the leads before they are taken out again. We empha-
size that after injection the two electrons of interest are,
of course, no longer distinguishable from the electrons of
the leads, and consequently the two electrons taken out
of the leads will, in general, not be the same as the ones
injected.

It is now a non-trivial many-body problem to find an
explicit value for G(12; 1′2′). On the other hand, we
can expect some simplification: without spin-dependent
forces we know that the total spin must be conserved
even if the two electrons strongly interact with the rest
(and among themselves) via Coulomb interaction. It
is thus not unreasonable to expect that we still find
some spin correlations, in particular entanglement, be-
tween initial and final states. But how much is it? And
why and how do we loose some of the correlations, etc.?
These questions are of fundamental interest, and we can
find answers to them by evaluating G(12; 1′2′) explic-
itly with the help of standard many-body techniques
[75,32]. Omitting most of the details [32] here we briefly
state the main results. First we note that the four-point
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Green’s function considerably simplifies for the realis-
tic situation where there is no Coulomb interaction be-
tween the electrons in lead 1 and the electrons in lead
2. As a result the 2-particle vertex part vanishes and
we get G(12; 1′2′) = G(11′)G(22′) − G(12′)G(21′), i.e.
the Hartree-Fock approximation is exact and the prob-
lem is reduced to the evaluation of single-particle Green’s
functions G1(k, t), G2(k

′, t) pertaining to lead 1 and 2,
resp. (these leads are still interacting many-body systems
though). In particular, we now find

Gs/t(q′, q, t; k, k′) = − {G1(q, t)G2(q
′, t) δqkδq′k′

±G1(q
′, t)G2(q, t) δqk′δq′k} , (8)

where the upper (lower) sign refers to the spin singlet
(triplet), and where we have chosen kl = 1. For the
special case t = 0, N = 2, and no interactions, we have
Gj = −i, and thus Gs reduces to the rhs of Eq. (4). For
the general case, we evaluate the (time-ordered) single-
particle Green’s functions Gj close to the Fermi surface
and get the standard result [75]

Gj(q, t) ≈ −izqΘ(ǫq − ǫF )e−iǫqt−Γqt , (9)

where ǫq = q2/2m is the quasiparticle energy (of our ad-
ditional electron), ǫF is the Fermi energy, and 1/Γq is the
quasiparticle lifetime. In a 2DEG, Γq ∝ (ǫq−ǫF )2 log(ǫq−
ǫF ) [76] within the random phase approximation (RPA),
which accounts for screening and which is obtained by
summing all polarization diagrams [75]. Thus, the life-
time becomes infinite when the energy of the added elec-
tron approaches ǫF . Eq. (9) is valid for 0 ≤ t <∼ 1/Γq, in
which case the incoherent part of the Green’s function is
negligible. Now, we come to the most important quan-
tity in the present context, the renormalization factor or
quasiparticle weight, zF = zqF

, evaluated at the Fermi
surface; it is defined by

zF =
1

1 − ∂
∂ωReΣ(qF , ω = 0)

, (10)

where Σ(q, ω) is the irreducible self-energy occurring in
the Dyson equation. The quasiparticle weight, 0 ≤ zq ≤
1, describes the weight of the bare electron in the quasi-
particle state q, i.e. when we add an electron with
energy ǫq ≥ ǫF to the system, some weight (given by
1 − zq) of the original state q will be distributed among
all the electrons due to the Coulomb interaction. This
rearrangement of the Fermi system due to interactions
happens very quickly, at a speed given approximately by
the plasmon velocity, which exceeds the Fermi velocity
(typically 105 m/s in GaAs). Restricting ourselves now
to momenta close to the Fermi surface and to identical
leads (i.e. G1 = G2) we then have

|Gs/t(q′, q, t; k, k′)| = z2

F | δqkδq′k′ ± δqk′δq′k| (11)

for all times satisfying 0 < t <∼ 1/Γq. Thus we see that it
is the quasiparticle weight squared, z2

F , which is the mea-
sure of our spin correlation function Gs we were looking

for. It is thus interesting to evaluate zF explicitly. This
is indeed possible, again within RPA, and we find after
some calculation [32]

zF = 1 − rs(
1

2
+

1

π
) , (12)

in leading order of the interaction parameter rs =
1/qFaB, where aB = ǫ0h̄

2/me2 is the Bohr radius. In
particular, in a GaAs 2DEG we have aB = 10.3 nm,
and rs = 0.614, and thus we obtain from (12) the
value zF = 0.665. We note that a more accurate nu-
merical evaluation of the exact RPA self-energy yields
zF = 0.691155 [32], again for GaAs. [For 3D metallic
leads with say rs = 2 (e.g. rCu

s = 2.67) the loss of correla-
tion is somewhat less strong, since then the quasiparticle
weight becomes zF = 0.77 [77]. ]

In summary, we see that the spin correlation is reduced
by a factor of about two (from its maximum value one) as
soon as we inject the two electrons (entangled or not) into
separate leads consisting of interacting Fermi liquids in
their ground state. These findings are quite encouraging
in view of experimental investigations, as they demon-
strate that the spin correlations of a pair of electrons
in a Fermi liquid will indeed be preserved in time (al-
beit with a reduced amplitude) as long as we can neglect
spin-dependent forces such as spin-orbit interaction and
spin flips induced by spin impurities or nuclear spins etc.
Given the high purity of present-day GaAs 2DEG’s and
the possibility of suppressing the dephasing effects of nu-
clear spins by dynamical spin polarization [50], it looks
promising to use mobile electrons in nanostructures as
a means for quantum communication. Similar investi-
gations [32] of such spin correlations are under way for
non-equilibrium transport situations, as well as for leads
containing impurities or consisting of superconducting or
non-Fermi liquid materials, etc.

In conclusion, we believe that various aspects of quan-
tum communication have a high chance of being realized
in the not-too-distant future. As we have seen, all that is
needed is one single quantum gate which is attached to
leads and which can be used as a source of entanglement
for mobile qubits along the lines proposed here. Although
the realization of such a device is still an experimental
challenge at present we are optimistic that it is within
technological reach.
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FIG. 1. A schematic of the quantum-dot array quantum
computer. Single electrons are confined in a two-dimensional
electron gas, and to dot regions in between the electrodes.
Electrodes are shown shaded, dots are shown as dashed cir-
cles. The electrode potentials can be varied so as to push pairs
of electrons into contact (see the third and fourth dots), which
results in the execution of a two-bit quantum gate. One-bit
gates are accomplished by the action of inhomogeneous mag-
netic fields (or effective fields). Readout is accomplished by
tunneling the electrons through a spin-selective barrier. The
magnetic elements of the device are not shown.
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