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A Rough Guide to Quantum Chaos

This tutorial offers some insight into the question “What is quantum chaos and
why is it interesting?”. Its main purpose is to present some signatures of chaos in
the quantum world. This isnot a technical reference, it contains but a few simple
equations and no explicit references; rather, the main body of this manuscript is
followed by a reading guide. Some of the mathematical tools used in the field are
so cumbersome they often obscure the physical relevance of the problem under
investigation. However, after having consulted this tutorial, the technical literature
should appear less mysterious and, we hope, one should have a better intuition of
what is interesting, and what is superficial!

Why quantum chaos?

Let us set the record straight: there is no such thing as quantum chaos. The term
“quantum chaos” is a shorthand for the study of quantized systems who’s classical
analog exhibits chaotic features. This raises two obvious questions: why does
quantum chaos not exist and, since that is the case, why is the study of quantized
chaotic systems of interest? In what follows, we will try to clarify these two issues.

In classical dynamics, the standard definition of chaos is formulated in terms
of hypersensitivity to initial conditions. Two arbitrarily close points in phase space
will grow apart from each other at an exponential rate. This rate is fixed by the
largest Lyapunov exponent which characterizes the dynamics of the system. As
soon as one of the Lyapunov exponent is positive, some trajectories in phase space

1



will diverge exponentially in time so we say that the system is chaotic. For Hamil-
tonian systems, the sum of the Lyapunov exponents must be unit since the dynamics
is conservative, i.e. it preserves volume in phase space. Therefore, if some trajecto-
ries diverge exponentially under some Hamiltonian there must be some trajectories
which converge exponentially. Only Hamiltonians which are nonlinear functions
of position and momentum can exhibit chaotic features. In the absence of such
features the system is said to be regular or integrable.

Quantum mechanical systems are not represented by points in phase space but,
rather, by vectors in Hilbert spaces. The time evolution of these vectors is governed
by the linear Schr̈odinger equation. This is the crucial distinctions which is respon-
sible for the absence of chaos in quantized systems. For classical chaotic systems,
the distance between two points in position and momentum space can grow expo-
nentially in time because the dynamics depends in a nonlinear fashion on position
and momentum them self. On the other hand, the dynamics of a state vectors does
not depend on the vector itself: the quantum equation of motion is linear. Since
nonlinearity was a crucial ingredient for exponential divergence, quantum systems
cannot exhibit hypersensitivity to initial conditions. Moreover, it follows from the
Hermiticity of the Hamiltonian, i.e. the fact that the energy of a system must be a
real number, that the evolution operator is unitary. While linearity of the dynamics
constrained the growth in time of the distance between two vectors to be subex-
ponential, unitarity has a more drastic consequence: the distance between any two
vectors is a constant of motion. This is more than needed to rule out the possibility
of exponential divergence between initially close quantum states.

The linearity of Schr̈odinger’s equation ensures that there is no such thing as
chaotic quantum dynamics defined in terms of hypersensitivity to initial conditions;
so what’s the interest of quantum chaos? Well the simple fact that this definition
fails has a certain interest. Since all systems are fundamentally quantum, how can
some of them, such as the solar system, exhibit hypersensitivity to initial condi-
tions? Is it that the predictions of quantum mechanics are wrong? Hence, a large
area of research in the field of quantum chaos consist in finding other criteria which
characterize classical chaos and can be adapted to the quantum world. An example
of such criteria is the well known butterfly effect: hypersensitivity to perturbation.
Instead of looking at how a small difference in initial conditions evolve in time,
one can study the different evolutions of two initially identical systems whose dy-
namics are governed by two slightly different Hamiltonians. If the dynamics of the
system is chaotic, this difference should grow exponentially before saturating at a
certain maximal value while for regular systems, this growth should follow some
power law.
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If the alarming discrepancy between classical chaos and the prediction of quan-
tum mechanics was only caused by an “incorrect definition of chaos”, the interest
in quantum chaos would be rather superficial, a pedagogical curiosity at most, but
would certainly not deserve the attention it is presently being devoted. Thus, it
should not come as a surprise to the reader to learn that chaos creates a second
equally alarming conflict between the predictions of quantum mechanics and those
of classical dynamics: the Ehrenfest correspondence principle breaks down after
a short time for chaotic systems. Recall that Ehrenfest’s principle stipulates that
in the limit of large quantum numbers, the quantum average of the position and
momentum operators should reproduce a classical paths in phase space. It was
shown by Ehrenfest, using a generic system, that the time required for the dif-
ference between the two predictions to be noticeable was sufficiently long for the
experimentalists to sleep quietly! What escaped him at the time was that those pre-
dictions differ on much shorter time scales when the system under investigation is
chaotic. Therefore, it is of crucial importance to understand under what conditions
the correspondence principle can be reestablished.

Last but not least, an important byproduct of quantum chaos is our better under-
standing of many body systems. This connection is established through the great
statistical agreement between spectral properties of chaotic quantum systems and
those of random matrices. Historically, random matrix theory was introduced in
physics to study complex many body Hamiltonians. The classical analog of these
systems are generally not integrable due to their small number of conserved quan-
tities compared to the number of degree of freedom they possess. It was later
realized that the spectral properties of random matrices could also reproduce those
of quantized chaotic systems involving only a few degree of freedom. In the tech-
nical jargon, the complex dynamics caused by a few degrees of freedom is called
deterministic chaos; when it is caused by many body interaction, we name it mi-
croscopic chaos. Here, we mainly concentrate on the former, but would like to
add this brief comment about the latter. Perhaps the most interesting aspect of mi-
croscopic chaos is its connection with thermodynamics, more specifically to our
understanding of the second law. If the increase of entropy is to be thought of as
a fundamental feature of our universe, better make it quantum mechanical. There-
fore, a deep understanding of quantum microscopic chaos should yield a detailed
explanation of the second law; unfortunately, this connection will not be discussed
in what follows.

3



Quantum-classical correspondence

Bohr’s correspondence principle is one of quantum mechanics’ cornerstone. It
states that in certain classical limits, quantum theory should reproduce the pre-
dictions of classical theory with vanishing errors. In particular, for those objects
which are known to be in excellent agreement with classical mechanics — chairs,
planets, etc. — quantum effects should be negligible. In fact, this can be established
formally under some assumptions. Consider a simple HamiltonianH = P 2/2m+
V (X) whereP andX the position and momentum operators. Now, assume that
the initial quantum state|ψ(0)〉 is localized around the phase point(x(0), p(0))
and has a small spread, as small as Heisenberg’s uncertainty allows. Then, the
quantum expectation values ofx(t) = 〈ψ(t)|X|ψ(t)〉 andp(t) = 〈ψ(t)|P |ψ(t)〉
are governed by equations which are almost identical to Newton’s equation. The
only difference is that the forceF (x) is replaced by its quantum expectation value
〈ψ(t)|F (X)|ψ(t)〉. Nevertheless, under our working assumptions, these terms are
almost identical: the first correction is proportional to the spread in position of the
wave function times the second derivative of the force. Higher order terms may
also become significant because they involve increasing order moments ofX and
derivatives ofV . Of course, these higher derivatives can only contribute whenV
involves super-quadratic powers ofX. In a regime where the variations of the po-
tential are on a much larger scale than the spread of the wave functionandthis lat-
ter is sufficiently large, the principle, known as Ehrenfest’s correspondence, should
hold.

Given a potentialV (x), it is crucial to determine for how long a localized wave
function will remain localized, on a scale set by the typical variation of the poten-
tial. Indeed, by virtue of Heisenberg’s principle, a finite spread in position implies
a finite spread in momentum. this position uncertainty will increase the spread
in momentum through dynamical effects — the particle is traveling at “different
speeds” so it gets delocalized — but this can take a long time. Thisbreak-timecan
be estimated and, for generic Hamiltonians, it is proportional to some characteristic
power (of order unity) of the typical action of the system (in units of~). Since the
quantum unit of action is so small (10−34J · s) compared to the action involved for
macroscopic objects, the Ehrenfest break-time is usually astronomical. Fro exam-
ple, the typical pendulum found in clocks (100 cm arm, 2 sec. oscillation and 100 g
mass) has a typical actionS/~ = 2 × 1033.

The major omission of the previous demonstration, which had many historical
consequences, was to evaluate the behavior of the break-time only for regular dy-
namic. If one considers chaotic Hamiltonians, the Ehrenfest break-time does not
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follow some power law with respect to the action but, for a variety of models, a log-
arithmic law. Perhaps the most drastic consequences of this law can be illustrated
with the help of Hyperion, a moon of Saturn widely studied for its chaotic motion,
for which the estimated break-time is of the order of ten years. After this period,
the classical and quantum predictions are expected to diverge on a scale of many
kilometers!

Quantum localization

To fully grasp the origin of this discrepancy, we shall illustrate it on a simple
chaotic model: the kicked rotator. The rotator has two variables, its momentum
and an angle, which we shall refer to asp andθ. The phase space is a cylinder:
p can take all real values whileθ is restricted to[0, 2π) with periodic boundary
conditions. The dynamics of this system is specified by its stroboscopic effect:
θt+1 = (θt + pt)mod2π andpt+1 = pt + λ sin θt+1. In words, the angle rotates
around the cylinder at a velocity prescribed byp while the variation in time of
the momentum is caused by a potential which has a cosine profile. For high val-
ues ofλ, the angle may get “wrapped around” the cylinder many times; to a good
approximation for the classical analysis, we may assume that the angle is there-
fore memory-less. As a consequence, the momentum increment (λ sin θt+1) is well
modeled by a random variable distributed symmetrically over[−λ, λ]. Thus the
average value of the momentum is equal to its initial valuep0. On the other hand,
and this is crucial, its variance (width of the distribution) grows linearly in time,
unboundedly.

It is quite simple to show that this classical map is chaotic. Indeed, define
δpt and δθt, the difference between two phase points at timet. The recursion
relation relating this difference at two successive times can be expressed as a2× 2
matrix multiplication. Hence, to compute this distance at timet given it at time0
requires the multiplication oft such matrices. Using a theorem by Furtenberg, it
can be shown that the resulting matrix has an exponentially large eigenvalue (and
an exponentially small one as imposed by the conservation of phase space volume
of Hamiltonian systems): exponential divergences of paths in phase space.

Let’s turn now to the quantum case. The first part of the analysis establishes a
relation between the kick rotator and Anderson’s model. In a simple version of this
model, a particle can hop from site to site in a one-dimensional chain. Each site of
the chain has a random potential and hopping from one site to the neighboring one
costs a fixed amount of energy. An eigenstate of this HamiltonianH|φ〉 = E|φ〉
has amplitudeφm on sitem. The value ofφm+1 can be computed recursively, it
is related toφm−1 andφm via a 2 × 2 matrix. Once again, we use Furtenberg’s

5



theorem, but this time it is the exponentially small value which is of interest to
us. Indeed, the growing exponential does not represent a physical solution because
such a wave function would not be normalizable. We are thus forced to conclude
that all eigenstates of this Hamiltonian are localized around some site: their mag-
nitude decrease exponentially with the distance from their center.

The site in Anderson’s model played the role of the variablep in a discretized
version of the kicked rotator. The conclusion drawn from this analogy is that the
eigenstates of the kicked rotator are exponentially localized inp space, with some
characteristic width̀ . Assume that the initial state of the system isψ0 and it has
some finite widthσ0 in p space. Clearly,ψ0 can only overlap considerably with
a finite number of eigenstates of the Hamiltonian. All eigenstates well outside
this initial spreadσ0 can only have an exponentially vanishing overlap withψ0

since they also are localized. Furthermore, it is a straightforward consequence
of Schr̈odinger’s equation that the magnitude of the overlap with an eigenstate is
constant in time. Thus, the evolution of this wave packet is restricted to a finite
range ofp. It can initially spread out like in the classical case but at a critical
width — which depends on the value of` andσ0 — the spreading must cease.
At this time, the evolution of the wave function becomes quasi-periodic; this is a
direct consequence of the finite number of eigenvalues involved in the equation of
motion.

In this simple model, Anderson’s localization — a purely quantum phenomenon
— creates an unbounded discrepancy between quantum and classical predictions.
While the spread in momentum of the classical rotator increases for ever, its growth
for the quantum rotator halts after some critical break-time.

Decoherence

The exponential stretching of phase space induced by chaotic Hamiltonians chal-
lenges the correspondence principle. As argued above, this stretching must be ac-
companied of an exponential squeezing in order to preserve volume. But a direct
consequence of this stretching and squeezing is the violation of the conditions under
which Ehrenfest’s principle is valid. Exponential squeezing will inevitably bring
significant quantum corrections through high order terms. But yet, we do not see
quantum features in the macroscopic world surrounding us; this world is very well
modeled by classical mechanics.

The weak interaction of a system with its environment is a well known rem-
edy to apparent conflicts between quantum and classical mechanics. Decoherence
is the name given to the suppression of quantum effects caused by the existence
of uncontrolleddegrees of freedom which contribute to the system’s dynamics.
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These degree of freedom can be external (heat bath, cosmic background radiation,
air molecules, etc.) or internal (fine and hyperfine structure of an atom, molecu-
lar structure of a macroscopic object, etc.); they are generally referred to asthe
environment. Roughly speaking, decoherence selects a set of “preferred states”
of the system which, for typical models, coincide with states one would naturally
qualify as “classical”, those states which are to a certain degree localized in phase
space. The effect of the coupling to an environment is to induce a superselection
rule on the system, forbidding it to be in a superposition of preferred states. A sys-
tem initialized in such a superposition willdecohereinto a classical mixture of the
preferred states after a time which depends on the strength of the coupling to the
environment. Hence, decoherence provides an explanation to why we do not see
cats in weird dead/alive superposition like those which should would emerge from
Schr̈odingerGedankenexperiment.

But can decoherence reestablish the quantum-classical correspondence for chaotic
systems? The answer appears to be yes. To understand this, it is helpful to think of
the environment as an observer repeatingly measuring the system in the preferred
basis. By the very nature of the environment, the outcome of this measurement re-
mains unknown; this is why the wave packet is transformed to a statistical mixture.
Hence, before the wave packet becomes exponentially stretched, it is collapsed to
a mixture of some roughly local states. Consequently, the squeezing also gets in-
terrupted before high order quantum corrections become significant.

The effect of decoherence can be illustrated with the help of Anderson’s model.
As argued above, a wave packet centered at momentump0 and with a finite width
σ0 can only overlap considerably with a finite number of localized eigenstates of
the Hamiltonian. Depending on the decoherence time scale, the system will un-
dergo a certain number of iterations before being measured by the environment.
During these iterations, the wave packet will have spread at a linear rate fromσ0

to σt: recall that it is only after a critical break-time that this linear increase halts.
The “outcome” of the environmental measurement can be anyone of the preferred
states that is localized within the wave packet’s spreadσt. After this measurement,
the quantum dynamics is reinitialized according to the outcome so dynamical lo-
calization never enters the picture.

The previous example clearly illustrates that decoherence can suppress the
quantum effects responsible for the divergences between quantum and classical
predictions. In fact, it is so efficient at doing so that it can serve as a quantum
signature of chaos. Since the outcomes of the environmental measurement are not
revealed, our knowledge about the system decreases in time. This can be estab-
lished quantitatively from the increase of the system’s entropy. It was postulated
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by Zurek and Paz that this increase of entropy can testify to the presence of chaos.
The initial growth for times of the order of the decoherence time depends mostly on
the details of the coupling to the environment. After this initial increase, the system
enters a second regime which should mostly depend on the system’s Hamiltonian,
not on the strength of the environmental interaction. In this regime, Zurek and
Paz have argue that the rate of increase of entropy should be fixed by the largest
Lyapunov exponent of chaotic systems, until the system reaches equilibrium. For
a regular system on the other hand, entropy production in this regime should be
logarithmic so it only reach equilibrium after an exponential time.

Liouville correspondence

The correspondence principle seems to be endangered when the predictions of
quantum mechanics are compared with those of Newton’s mechanics of achaotic
system. A weak coupling with the environment will modify quantum mechanical
predictions just enough so it no longer enter into conflict with Newton’s equation of
motion. Nevertheless, maybe this recovery was not desirable since Newton’s me-
chanics is an idealization describing the motion ofpoints in phase space. A more
reasonable requirement would be to recover the predictions of Liouville’s mechan-
ics, the dynamics ofprobability distributionson phase space.

There are two reasons to believe that Liouville’s equation should yield predic-
tions which are in better agreement with Schrödinger’s equation. First, no quantum
state can represent a point in phase space, it is prohibited by Heisenberg’s prin-
ciple. All quantum states must have non-zero spread in phase space. Therefore,
probability distributions over phase space are much more suited to play the role
of quantum states in classical mechanics. To represent a quantum state in phase
space, one must use the Wigner representation. A Wigner function behaves just
like a probability distribution when comes time to compute averages but it isnot a
probability distribution; it can take negative values. Hence, it is generally impos-
sible to match the initial conditions perfectly with a classical distribution, but one
can hope to reproduce most low order moments to a good accuracy.

Second, the translation of Schrödinger’s equation in terms of Wigner functions
yields an equation quite similar to Liouville’s classical equation. In fact, the only
distinction is that the classical Poisson brackets are replaced by Moyal brackets.
This latter can be expressed as a Poisson bracket plus some correction terms. While
the analysis of these corrections is highly complex, numerical results are encour-
aging. Inevitably, the results obtained from the quantum and classical equation
start diverging after some critical break-time which is roughly equal to Ehrenfest’s
break-time. In the case where quantum mechanics was compared with point me-
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chanics, the divergence was only limited by the system size. However, when com-
pared to distributions on phase space, the divergence saturates much earlyer, and on
a scale which is independent of the system size. Indeed, numerical results suggest
that the disparity typically saturates at amicroscopicscale, thus saving the precious
quantum-classical correspondence. In short, the agreement between the quantum
and the classical are improved when the classical standards are set by phase space
distributions because they can match the initial conditions to a higher accuracy and
are governed by an equation which shows more resemblance to the quantum equa-
tion of motion.

The quantum butterfly effect

Models of atmospheric dynamic are so complex, it is often said that the flap of a
butterfly’s wings in Brazil can set off a tornado in Texas! This examples illustrates
the atmosphere’s extreme sensitivity to initial conditions. The two alternatives of
the butterfly — to flap or not to flap its wings — will generate two slightly different
initial states which can have huge repercussions on the future (like the creation of a
tornado). After its initial intervention, the butterfly does not enter the picture; only
the trace of is action on the system remains.

As we now know, this picture has to be modified to enter the quantum world
because the “magnitude” of the discrepancy are constant of motion. A possible
modification is to keep the butterfly into the picture as a constant disturbance; its
options are now to flap its wings repeatedly or not to flap them at all. Hence, the
perturbation is madedynamical, it is not a property of the system’s initial condi-
tions but of its time evolution. The butterfly’s action modifies the Hamiltonian of
the system and the effects of this modification can serve as a signature of chaos:
hypersensitivity to perturbation.

Perturbation theory

The standard way to deal with a small variationsδV of a HamiltonianH in the
quantum formalism is perturbation theory. The usual assumption is that for suffi-
ciently smallδ, the eigenvalues/vectors ofHp = H + δV should be equal to those
of H plus some minor corrections expressed as power series ofδ. Starting from
the solution of the unperturbed HamiltonianH|φj〉 = Ej |φj〉, one computes cor-
rections to be brought to arrive at the eigenvectors for the perturbed Hamiltonian
Hp|ψk〉 = Dk|ψk〉. Hence, this technique assumes a one-to-one correspondence
between the eigenstates ofH and those ofHp, ψj ' φj andEj ' Dj .
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It is a straightforward exercise found in all elementary book on quantum me-
chanics to compute the coefficient of the power series. They involve increasing
powers of the perturbation matrix elements(V n)ij = 〈φi|V n|φj〉. As will become
clear in the next section, the Hamiltonian having a classical regular limit should
be block diagonal. As a consequence, the successive power ofV are expected to
remain constant so the high order corrections vanish asδn. On the other hand,
chaotic Hamiltonian do not have this block diagonal structure so high powers ofV
reach a magnitude which scales as the system size: perturbation theory fails.

As a consequence of this failure, there is no one-to one mapping between the
eigenstates ofH andHp. To illustrate this, one can expresses the eigenstates ofHp

as a superposition of those ofH as|ψk〉 =
∑

j α
k
j |φj〉. For regular systems, one of

the coefficientsαk
j clearly dominates the sum while for chaotic Hamiltonians, there

are typically a few of these coefficients which have non negligible magnitude.
The absence of a one-to-one mapping allows for a good understanding of hy-

persensitivity to perturbations. LetF andFp be the unitary operations resulting
from the application of HamiltoniansH andHp respectively over a unit period of
time. Assume that the system is initially in state|Ψ〉 =

∑
j aj |φj〉 =

∑
k bk|ψk〉.

After a time t, the system will be in state|Ψ(t)〉 = F t|Ψ〉 if the dynamics was
not perturbed and in state|Ψp(t)〉 = F t

p|Ψ〉 in the opposite case. To evaluate
the repercussions of the perturbation, we compute the overlap of these two states
|〈Ψ(t)|Ψp(t)〉|2 =

∑
jk |a∗jbk〈φj |ψk〉|2 + oscillations. When perturbation theory

holds, the resulting overlap should thus oscillate around a value which is equal to 1
plus corrections of orderδ; the dynamics is not sensitive to small perturbations. On
the other hand, when the eigenstates ofHp appear random relatively to those ofH,
the overlap is expected to first rapidly decrease and then oscillate around the value
1/N whereN is the dimension of the system. These predictions are in good agree-
ment with numerical results, even for tiny a perturbation which clearly indicates
the existence of hypersensitivity to perturbations for chaotic Hamiltonians.

Environment as a record

It was argued above that a weak coupling to an environment can help reestablishing
the quantum-classical correspondence. Through “measurements”, the environment
repeatedly perturbs the evolution of the system. Since the results of the measure-
ments are not revealed, this interaction increases the entropy of the system. This
picture can be generalized to other kind of perturbations; the system undergoes a
perturbed evolution conditioned on the state of the environment. From a thermo-
dynamics point of view, this entropy increase is not desirable since it decreases the
amount of work one can extract from the system. The complexity of the system’s
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Hamiltonian also enters into account, chaotic systems generate entropy at a much
higher rate — this was even postulated as a signature of chaos — hence decreasing
their usefulness for thermodynamic purposes.

To counter this noxious effect, one can try to keep tract of the system’s state by
monitoring the environment. But in thermodynamics, the information one gathers
is also noxious. At the end of the day, it must be erased in order for the heat engine
to run in a cyclic fashion. But Landauer’s principles shows that erasing information
has a thermodynamic cost. Therefore, the relevant quantity is the tradeoff between
the amount of work gained by learning about the system’s state through the envi-
ronment and the amount of work needed to erase this information.

To study this tradeoff quantitatively, we set a thresholdH0 and ask what’s the
minimal amount of information∆I which must be extracted from the environment
in order to keep the system’s entropy below the threshold. IfH0 = 0 we don’t
tolerate any entropy increase and so we must keep track of the exact state of the
environment. Hence,∆I will uniquely depend on the coupling between the system
and the environment: it is the information needed to specify a particular realization
of the perturbation. The same holds for small values of the threshold. The interest-
ing regime is whenH0 is just bellow the value of the entropy the system has when
the environment is not monitored, i.e. when we are just learning a little bit about
the system by interrogating the environment.

In this context, it has been shown numerically that for chaotic systems, the
Landauer erasure cost is much larger than the decrease of system’s entropy, i.e. of
available work. This means that the optimal thermodynamic protocol is simply to
let the environment scramble the state of the system without trying to keep tract
of its effects. For regular systems however, the tradeoff is positive: monitoring the
environment allows to extract more work from the system even when the erasure
cost is taken into account. This signature of chaos establishes a link between the
second law of thermodynamics and hypersensitivity to perturbations.

Random matrix theory

The spectrum of a many body system generally has a highly complex form. Never-
theless, given a complete description of the system’s Hamiltonian, it is possible to
understand this spectrum in all its details; this occurs only when the Hamiltonian
contains sufficient symmetries. Without symmetries, the system is non integrable
and the details of the spectrum cannot be predicted, only some of its general fea-
tures can usually be explained.

Given the spectrum of such a system — a heavy nuclei say — one may won-
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der if its apparent complexity is due to a fundamental lack of symmetries of the
underlying Hamiltonian or is simply a consequences of one’s limited mathemati-
cal skills. Hence, one would like to determine whether the system possesses some
symmetries without having to explicitly determine them.

This is the situation Wigner was facing when he introduced random matrix
theory into the picture. His idea was to model the statistical properties of the
Hamiltonian with those of a random Hermitian matrices satisfying some symme-
tries. Symmetries act as constraints on the set of all Hermitian matrices, only
a subset of all these matrices can satisfy the required symmetries. To compute
statistical properties over this set, we need to define a probability distribution on
it. This is achieved by defining a probability distribution over matrix elements
P ({Mij}) of the matrixM and subjecting it to a maximum entropy criterion, re-
stricted by the constraints imposed by Hermiticity and the symmetries. It turns out
that in this maximally random distribution, the matrix elements are uncorrelated,
i.e. P ({Mij}) =

∏
ij P (Mij), and have a Gaussian-like distribution.

It is often quite useful to deal directly with the evolution operator generated
by the Hamiltonian instead of the Hamiltonian itself. This is specially true when
the Hamiltonian of the system is time dependent and periodic. Then, one defines
the Floquet operator which maps the state of the system from one oscillation pe-
riod to the next. Unitary operators too can be constrained by symmetries. Hence,
in a very similar fashion as for Hermitian matrices, one can derive a maximally
random probability distribution over the set of unitary operators restricted by some
symmetries.

With these tools in hand, we can compute the average value of some quantities
over the set of Hamiltonians1 satisfying some symmetries. Thus, we seek for sta-
tistical signatures distinguishing the Hamiltonians with different symmetries; these
differences may be with respect to the nature of the symmetries or their numbers.
In particular, we are interested in determining whether the system possesses many
symmetries — roughly as many as its number of degrees of freedom — and hence
is integrable or if it possesses just a few symmetries, which we expect to yield
chaotic dynamics in the classical limit.

As mentioned in the first section, these techniques can also be used to study
complex systems with just a few degrees of freedom: quantized deterministic chaos.
The random matrix conjecture asserts that some statistical properties of quantized
chaotic systems are typically well modeled by those of random matrices with ap-
propriate symmetries. While many important mathematical results underpin the

1Here and henceforth, we will refer to Hamiltonians to address issues which apply equally well
to constants Hamiltonians and time dependent periodic Hamiltonians, hence to Floquet operators.
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conjecture, a rigorous proof is lacking and support rests on a very large accumula-
tion of numerical results.

Energy distribution

Perhaps the most famous of all “quantum signatures of chaos” is the level spacing
distribution. Before discussing it in detail, let us digress to generalities about energy
statistics. The eigenvalues of a Hamiltonian represent the energies of the system,
each energy is associated with a eigenstate or eigensubspace in the case where it
is degenerated2. It follows from Hermiticity that these eigenstates/subspaces are
perfectly distinguishable. Thus, a Hermitian matrix can be parametrized in terms
of its “energies” and their associated states. This allows to go from the probability
distribution over matrix elementsP ({Mij})dM to a distribution over energies and
“angles” in Hilbert spaceP ({Ei}, {~θi})J({Ei}, {~θi})dEd~θ whereJ is the appro-
priate Jacobian. It turns out that this Jacobian is always separable in energies and
angles and so is the probability distribution in the case of maximal randomness.
This indicates that for those random matrices, the eigenvectors and eigenvalues are
uncorrelated. Thus, integrating over the angles only yields a multiplicative constant
and one is left with the marginal distribution over energiesP ({Ei}).

Level spacing distribution

The probability distribution over energies will allows us to compute the mean level
spacing distribution over a set of random matrices. The level spacing distribution
of a given Hamiltonian is a profile of the nearest neighbor distance of energy levels.
Assuming that the eigenvaluesEi are arranged in increasing order, the level spacing
distribution is the distribution of the variableS = Ei+1 − Ei. It is thus a simple
mathematical exercise (!) to compute the mean distribution of this variable over
a set of random Hermitian matrices constrained by some symmetries:P (S) =∫

(Ei+1 − Ei)δ(s − [Ei+1 − Ei])P ({Ei})dE. The outcome of this integration
is astonishing: when the Hamiltonian possesses many symmetries, the resulting
distribution is Poissonian; for Hamiltonians with but a few symmetries, it follows
some low power law before decreasing exponentially for large values ofS.3 The
exact details of the power law depends in the nature and number of symmetries
imposed on the set, but these details are not important. What is crucial is that

2For Floquet operators, the following applies to eigenphases or quasi-energies: the phases of the
complex eigenvalues of a unitary operator

3Actually, this result is obtained when the average is carried over an invariant subspace of the
symmetries, not the entire energy spectrum; this technical detail, although important, is not relevant
to the curent discussion.
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for systems with many symmetries, the distribution reaches a maximum whenS
approaches zero while it reaches a minimum for systems with no of just a few
symmetries. In short, quantized chaotic systems tend to exhibitlevel repulsion
while quantized regular systems typically showlevel clustering.

Level repulsion can be understood from a simple fact: no level crossing with-
out symmetries. Assume that the Hamiltonian depends on some parameterλ, for
example,λ could be the strength of a perturbation. Of course, the eigenvalues of
H(λ) also depend on this parameter. As the value ofλ is varied, the energies levels
will change but cannot cross each other unless there is a symmetry in the Hamilto-
nian. Thus, the tendency of energy levels to avoid approaching at a short distance
from one another is a consequence of the lack of symmetries of chaotic systems:
the absence of symmetries forces the energy levels to be correlated in order to avoid
each other.

For integrable systems on the other hand, the presence of many symmetries al-
lows one to write the Hamiltonian in a block diagonal way; one block per invariant
subspace. This fact can be seen as the direct and only consequence of the im-
posed symmetries: two states|i〉 and|j〉 associated to different eigenvalues of the
symmetries cannot have a finite matrix element〈i|H|j〉 if H satisfies these sym-
metries. Hence, we know thatH must be block diagonal. As a consequence of the
maximum entropy requirement, these blocks are statistically independent. Within
a block, the energy distribution has a certain structure, energy levels are somehow
correlated. Nevertheless, when looking at the spectrum of the entire Hamiltonian,
one is not distinguishing the levels belonging to different blocks: a large number
of levels associated to statistically independent blocks pile up, washing out the ex-
isting inner-block correlation. It is thus not surprising that the emerging spacing
distribution is Poissonian, a characteristic ofuncorrelatedrandom variables.

While all these statistical predictions rely on the random matrix conjecture, they
are in overwhelming agreement with experiments, either numerical or “physical”.
Experimental results however, cannot bedirectly compared to those predictions.
Indeed, these predictions are established for an ensemble average, there is no reason
to expect that a single instance of an Hamiltonian should reproduce this statistical
mean. Thus, we need to simulate the effect of an ensemble average. For physical
experiments, the most convenient way of simulating this average is to convolute the
energy spectrum with some normalized tunable-width function, e.g. a Gaussian.
The width of this function is fixed by a self consistency test: the smoothed density
should not vary considerably over an interval of the order of the mean level spacing,
furthermore it should be quite larger than the mean level spacing so the average is
taken over many levels. For numerical experiments, the ensemble average can be
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reproduced by averaging over some parameter of the Hamiltonian on a conveniently
chosen range. In our previous example, one could average the energy spectrum over
increasing ranges ofλ until the fluctuations on a scale of the mean level spacing
vanish, i.e. till the effect of the discreteness of the energy levels disappear.

Form factors and secular coefficients

There is a huge amount of literature devoted to the connection between random
matrix theory and quantum chaos, our goal here is obviously not to give a fair
account of this field but rather to relate its general framework. Thus, we shall
introduce two last spectral properties of Floquet operators. One could also study
these properties for a time independent Hamiltonian by suitably choosing a timeT
and computing the associated unitary time evolution operator for this period. This
time should be chosen so the maximal action is roughly equal to2π. This is to
make sure that the eigenphases are nicely distributed over the entire complex circle
while at the same time, are not “wrapped around it” too many times; this would
fade out the existing correlations.

The form factorTn of a Floquet operatorF is simply the modulus square of the
trace ofF to the powern: Tn = |Tr{Fn}|2. In the jargon of random matrix theory,
the secular coefficientsan are the coefficients of the characteristic polynomial of a
Floquet operator: Det{F − x1l} =

∑N
n anx

n whereN is the dimension ofF . It
may seem curious that form factors and secular coefficients are intimately related,
the knowledge of the form factors allows one to compute the secular coefficients
and vice versa. In fact, this is no mystery: the firstN/2 values of either the form
factor or the secular coefficients uniquely determines the quasi-energy spectrum.
On the other hand, it is obvious how to compute anyFn or an given that spectrum.

Thus, one might legitimately doubt that these functions, so intimately related to
the details of the eigenphases structure, can serve as indicators of universal features
of symmetries classes; nevertheless they do! First, let’s guess what the ensemble
average of these functions should yield for regular and chaotic systems, we will
focus on the form factors.T1 is simply the modulus square of the trace of the Flo-
quet operator, i.e. of the sum of its eigenvalues. As argued above, the large num-
ber of conserved quantities of regular systems washes out all correlations between
quasi-energies — the quasi-energies of an integrable system are random complex
numbers of unit length. The sum ofN of these numbers is thus analog to a random
walk in the plane, each step having unit length but random orientation. We can
thus use standard results of random walk to conclude that for regular systems, the
ensemble average ofT1 isN . For larger values ofn, the same argument holds. If
the anglesφj — eigenphases ofF — are statistically independent, so are the angles
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nφjmod2π — eigenphases ofFn. We conclude that the ensemble average of the
form factorTn of regular systems are equal toN , independently ofn.

For chaotic systems, there is no such simple argument. Nevertheless, using
the random walk analogy, it becomes clear that the average value ofTn for small
n should be less than what it was for regular systems. Indeed, because of level
repulsion, the random walk is biased; each step tend to be taken in a direction anti-
correlated with the other steps. As a result, the distance from the origin afterN
steps should be less than

√
N , the result obtained for statistically independent steps.

As n increases, the anglesnφjmod2π show less and less correlations until they
become completely independent,Tn should thus increase withn before saturating
at the value of unbiased walk. A more sophisticated calculation shows thatTn

should be roughly proportional ton before saturating atN , the value obtained for
the uncorrelated eigenphases of regular systems.

As argued above, one should not expect a fixed Floquet operator to reproduce
these ensemble averages. Nevertheless, there are quite elegant techniques to ex-
tract these universal features from a given system. If the system possesses a free
parameterλ, one can, once again, average the spectral function over some range
of λ to simulate an ensemble average. Needless to say, this technique is mostly
restricted to numerical studies. In the laboratory, the coupling strength and other
parameters are usually fixed. A clever trick to solve this problem is to use a sort
of ergodic theorem, quite similar to the one used in thermodynamics. In short, this
theorem states that the time average of some quantities can reproduce, under some
conditions, an ensemble average. Moreover, the fluctuations from the ensemble
mean drop down as the inverse of the time averaging range. Here,n plays the
role of time, so the theorem tell us that a suitable average ofTn over a range of
n should reproduce quite accurately the universal features of its symmetry class.
These are examples illustrating how random matrix theory can be a useful tool to
study unknown symmetries and hence the emergence of chaos.
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Reading guide

There is a large amount of literature devoted to quantum chaos, much too large to
give it a fair account here. We will simply give references to what was used by the
author as “starting points” from which the rest of the literature can be explored.

• M.V. Berry and M. Tabor,Level clustering in the regular spectrum, Proc. R.
Soc. LondonA 356, 375 (9177).
Contains a proof that the level spacing distribution of regular systems should
follow a Poisson law.

• J.V. Emerson,Chaos and Quantum-Classical Correspondence for two Cou-
pled Spins, Ph.D. thesis, Simon Fraser University, arXiv: quant-ph/0211035
(2001).
A good exposition of the quantum-classical correspondence problem which
emerges from chaotic systems. Presents evidences which indicate that Li-
ouville’s mechanics is in better agreement with the predictions of quantum
mechanics and makes it an argument for the interpretation of the wave func-
tion.

• F. Haake,Quantum Signatures of Chaos, Springer-Verlag, New York, 2nd
Ed. (2000).
A technical book on quantum chaos which addresses most topics covered in
the present tutorial. Emphasizes on the relation to random matrix theory. It
also contains Furtenberg’s theorem used in this manuscript.

• A. Peres,Quantum Theory: Concepts and Methods, Kluwer academic pub-
lisher, Boston (1993).
Presents quantum chaos in terms of extreme sensitivity to perturbation. Con-
tains many numerical examples which are explained with a strong intuition.

• R. Schack and C.M. Caves,Information-theoric characterization of quantum
chaos, Phys. Rev.A 53, 3257 (1996).
Introduces the tradeoff between Landauer’s erasure and work extraction as a
characterization of quantum chaos.

• H.J. Sẗockmann,Quantum Chaos: an Introduction, Cambridge University
Press, Cambridge, (1999).
Also a very general book on quantum chaos covering many topics. Differs
from Haake’s book with an intuitive physicist approach.
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• W.H. Zurek and J.P. Paz,Quantum chaos: a decoherent definition, Physica
D 83, 300 (1995).
It is shown how decoherence can reestablish the quantum-classical corre-
spondence. It is also postulated that the increase of a system’s entropy under
interaction with an environment can serve as a signature of chaos.
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