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Following the demonstration of coherent control of the quantum
state of a superconducting charge qubit1, a variety of qubits based
on Josephson junctions have been implemented2–5. Although
such solid-state devices are not currently as advanced as micro-
scopic qubits based on nuclear magnetic resonance6 and ion trap7

technologies, the potential scalability of the former systems—
together with progress in their coherence times and read-out
schemes—makes them strong candidates for the building block of
a quantum computer8. Recently, coherent oscillations9 and
microwave spectroscopy10 of capacitively coupled superconduct-
ing qubits have been reported; the next challenging step towards
quantum computation is the realization of logic gates11,12. Here
we demonstrate conditional gate operation using a pair of
coupled superconducting charge qubits. Using a pulse technique,
we prepare different input states and show that their amplitude

can be transformed by controlled-NOT (C-NOT) gate operation,
although the phase evolution during the gate operation remains
to be clarified.

A Cooper-pair box provides an artificial two-level system, where
two charge states, say j0l and j1l, differing by 2e of one Cooper pair
(e is the electronic charge) are coherently superposed by Josephson
coupling13. When two Cooper-pair boxes are connected by a
capacitor, the quantum states of the boxes interfere with each
other. This results in quantum beating, as has been demonstrated
recently9. Using this coherent four-level system formed by the
charge states j00l, j01l, j10l and j11l, we show how to implement
a logic gate and demonstrate that it works as a quantum gate.

A scanning electron micrograph of the sample is shown in Fig. 1a.
Two qubits are electrostatically coupled by an on-chip capacitor9.
The right qubit has SQUID (superconducting quantum interference
device) geometry, and we use this qubit as the control qubit and the
left one as the target qubit. Unlike the previous coupled-qubit
sample9, there are two independent pulse gates so that we can
address each qubit individually. This is essential to the logic
operation, as explained below.

In the two-qubit charge basis j00l, j10l, j01l and j11l, the
hamiltonian of the system is given as

H ¼
n1;n2¼0;1

X
En1n2

jn1;n2lkn1;n2j2
EJ1

2 n2¼0;1

X
ðj0lk1j

þ j1lk0jÞ^jn2lkn2j2
EJ2

2 n1¼0;1

X
jn1lkn1j^ðj0lk1j þ j1lk0jÞ; ð1Þ

where E J1 (E J2) is the Josephson coupling energy of the first
(second) box to the reservoir and En1n2

¼ Ec1ðng1 2 n1Þ
2 þ

    

Figure 1 Pulse operation of the coupled-qubit device. a, Scanning electron micrograph of

the sample. The qubits were fabricated by electron-beam lithography and three-angle

evaporation of Al on a SiNx insulating layer above a gold ground plane on the oxidized Si

substrate. The two strips enclosed by red lines are the Cooper-pair boxes, which are

coupled by an on-chip capacitor9. fex represents magnetic flux penetrating the SQUID

loop. An electrode between the two pulse gates is connected to the ground to reduce the

cross capacitance. Although there is a finite cross capacitance between one gate and the

other box (about 15% of the main coupling), it does not play any essential role in the

present experiment and so we can neglect it in this Letter. The sample was cooled to

40 mK in a dilution refrigerator. The characteristic energies of this sample estimated from

the d.c. current–voltage measurements are Ec1 ¼ 580 meV, Ec2 ¼ 671 meV and

Em ¼ 95 meV. From the pulse measurements, EJ1 is found to be 45 meV at a maximum

and E J2 to be 41 meV. The superconducting energy gap is 209 meV. Probe junction tunnel

resistance is equal to 48 MQ (left) and 33 MQ (right). b, Energy band diagram along two

lines of ng1 ¼ n0
g1 and ng2 ¼ n0

g2; where n0
g1 and n0

g2 are constants. Here ðn0
g1;n

0
g2Þ ¼

ð0:24; 0:26Þ; corresponding to the actual experimental condition. In the energy band

diagram, black lines show the eigenenergies. The four coloured lines are the charging

energies of the states shown in the cells of the charging diagram of the base plane with

the corresponding colour. c, Pulse sequences used in the experiment. In both sequences

(i) and (ii), the upper and lower patterns show the pulse patterns applied to pulse gates 1

and 2, respectively. The expected quantum states after each pulse are also shown.

The symbols j0l or j1l with subscripts C and T mean the state of the control and target

qubits, respectively.
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Ec2ðng2 2 n2Þ
2 þ Emðng1 2 n1Þðng2 2 n2Þ is the total electrostatic

energy of the system (n 1, n2 ¼ 0, 1 is the number of excess Cooper
pairs in the first and second boxes, and ng1,2 are the gate-induced
charges on the corresponding qubit divided by 2e). Ec1ð2Þ ¼
4e2CS2ð1Þ=2ðCS1CS2 2C2

mÞ are the effective Cooper-pair charging
energies (CS1(2) are the sum of all capacitances connected to the
corresponding island including the coupling capacitance Cm between
two boxes). Finally, Em ¼ 4e2Cm=ðCS1CS2 2C2

mÞ is the coupling
energy. In our notation of jn1, n2l for the charge basis, n1 and n2

represent the states of the control and target qubits, respectively.
Figure 1b represents the idea for the gate operation. Using

equation (1), we calculate the eigenenergies of the two-qubit system
and plot them in the planes ng1 ¼ n0

g1 and ng2 ¼ n0
g2; where n0

g1 and
n0

g2 are constants. In these planes, if ðn0
g1;n

0
g2Þ is sufficiently far away

from the co-resonant point9 (0.5, 0.5), four energy bands can be
regarded as two pairs of nearly independent single-qubit energy
bands. In the plane of ng1 ¼ n0

g1; for example, our system is divided
into a pair of independent two-level systems j00l, j01l and j10l, j11l.
Importantly, the charging energies of each of the two-level systems
degenerate at different ng2, namely, at n g2L for the states j00l and
j01l and at ng2U for the states j10l and j11l, as shown in Fig. 1b. This
difference (dn g2) originates from the electrostatic coupling between
the qubits, and is given as E m/2E c2. Similarly, we define ng1L and
ng1U as shown in the plane of ng2 ¼ n0

g2:
Now we consider the pulse operation. Applying pulses to pulse

gate 1 (2) shifts the system non-adiabatically in the plane of ng2 ¼
n0

g2ðng1 ¼ n0
g1Þ: For convenience, we define the distances from

ðn0
g1;n

0
g2Þ to the degeneracy points as follows: dnp1L ¼ ng1L 2 n0

g1;
dnp1U ¼ ng1U 2 n0

g1 and dnp2L ¼ ng2L 2 n0
g2: Suppose we start from

the j00l state (point A) and apply an ideal rectangular pulse with an
amplitude Vp2L ¼ 2e dnp2L=Cp2 to pulse gate 2, where C p2 is the
capacitance between pulse gate 2 and box 2. This pulse is rep-
resented by the arrow in the ground-state charging diagram14 of the
base plane. In this case, the system is brought to the degeneracy
point n g2L and evolves during a pulse duration Dt with a frequency
Q¼ EJ2=�h between the j00l and the j01l states: cosðQDt=2Þj00lþ
sinðQDt=2Þ j01l. By adjusting Dt so that QDt ¼ p (p-pulse), we can
stop the evolution when the system is in the j01l state. The system is
finally in the state at point C after the termination of the pulse.

On the other hand, if we start from the j10l state (point B) and
apply the same pulse, the system does not reach the degeneracy
point for states j10l and j11l (n g2U). In this case, the amplitude of
the oscillation between the j10l and the j11l states is suppressed by
E2

J2=ðE
2
m þ E2

J2Þ: If E m is sufficiently large, the state j10l remains
almost unchanged (except for the phase factor), coming back to
point B after the termination of the pulse. Similarly, we can realize
the transition from the j01l state to the j00l state by the same pulse,
and suppress the transition out of the j11l state. Therefore,
conditional gate operation can be carried out based on this
operation pulse: the target bit is flipped only when the control bit
is j0l.

To experimentally demonstrate the above gate operation, we
prepare different input states from the ground state j00l by applying
pulses and measure the output of the gate operation. Figure 1c shows
two pulse sequences that are used in the present experiment. For
convenience, each of the pulses in the sequences is labelled by an
index m (m ¼ 1, …, 4, 5), which we will refer to as ‘pulse m’. In
sequence (i) of Fig. 1c, a superposition of the states j00l and j10l
is created by applying pulse 1 with the amplitude Vp1L ¼
2e dnp1L=Cp1; where Cp1 is the capacitance between pulse gate 1
and box 1. In sequence (ii) of Fig. 1c, a superposition of the states j01l
and j11l is created by two sequential pulses. First, pulse 3, the same
pulse as that for the gate operation, brings the system to the j01l state
at point C. Then, pulse 4 with amplitude Vp1U ¼ 2e dnp1U=Cp1 is
applied.

In both sequences, an operation pulse (pulse 2 or 5) creating an

Figure 2 Magnetic-flux dependence of the current of the control (top) and target (bottom)

qubits under the application of pulses shown in Fig. 1c (i). The lengths of the pulses are

Dt 1 ¼ 85 ps, Dt 2 ¼ 255 ps and Dt 12 ¼ 85 ps, where we define the pulse length of

pulse m in Fig. 1c as Dt m and the interval between pulses l and m as Dt lm.

Figure 3 Pulse-induced current as a function of the Josephson energy of the control

qubit. Pulse sequences used are a, that shown in Fig. 1c (i), and b, that shown in Fig. 1c

(ii). The lengths of the pulses in Fig. 1c (ii) are Dt 3 ¼ 264 ps, Dt 4 ¼ 88 ps,

Dt 5 ¼ 264 ps, Dt 34 ¼ 88 ps and Dt 45 ¼ 88 ps. The black curves represent the

simulation obtained by calculating the time evolution of the density matrix. In the

calculation, we assumed a trapezoidal pulse shape with both rise and fall times equal to

40 ps, which is close to the real pulse shape. To take into account the effect of dephasing,

all the off-diagonal terms of the density matrix are set to zero before applying the operation

pulse. This is a reasonable approximation because the dephasing time at an off-

degeneracy point is reported to be a few hundred picoseconds16, which is comparable to

the time needed for the input preparation for the present experiment. We did not take into

account the energy relaxation, which is known to be much slower.
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entangled state ðaj01lþ bj10l or aj00lþ bj11lÞ is applied after the
preparation pulses. To change the coefficients a and b, we change
the Josephson energy of the control qubit E J1 by a magnetic field,
while keeping the pulse lengths constant. Because the control qubit
has SQUID geometry, E J1 is periodically modulated as EJ1 ¼

EJ1maxjcosðp fex=f0Þj; where E J1max is the maximum value of E J1

and f0 is the flux quantum. By repeatedly applying the sequential
pulses (with a repetition time Tr ¼ 128 ns), we measure the pulse-
induced currents through probes 1 and 2, which are biased at
,650 mV to enable a Josephson-quasiparticle (JQP) cycle15. These
currents are proportional to the probability of the respective qubit
having one extra Cooper pair1,9.

Figure 2 shows the output currents of the control qubit (I C) and
the target qubit (I T) as a function of fex=f0 under the application of
pulses shown in Fig. 1c (i). When no pulse is applied, both qubits
show a finite current owing to the finite width of the JQP peak (red
curves in Fig. 2). Because this current depends on the Josephson
energy, I C is periodically modulated by f ex. First, we determine the
length of the operation pulse (pulse 2) by adjusting it to the peak in
the single-qubit oscillation of I T. When we apply pulse 2 of this
length (blue curves in Fig. 2), I T is enhanced and does not depend
on f ex, as was expected. Also, this pulse has no effect on IC. Next, we
apply the preparation pulse (pulse 1) only. This pulse, in turn,
induces current in IC while not affecting I T (green curves in Fig. 2).

Furthermore, the magnitude of the induced current depends on
f ex, indicating that input states with different coefficients a and b
are prepared. Finally, we apply both pulse 1 and pulse 2 with an
interval of 85 ps (orange curves in Fig. 2). In this case, I C shows the
same dependence as that when only pulse 1 is applied. However, IT

also shows clear dependence on f ex and is anti-correlated with I C

as the target qubit feels the state of the control qubit. In Fig. 3a, we
re-plot this data as a function of E J1. We present only pulse-induced
currents by subtracting the d.c. background currents from each
curve. Both IT and I C show cosine-like dependence but their phases
are opposite. That is, I T is maximal when I C is minimal, and vice
versa. This is consistent with the expectation that the state aj01lþ
bj10l is created by the pulse sequence used.

Next we measure the f ex dependence of I C and I T for pulse
sequence (ii) of Fig. 1c (not shown) and plot it as E J1 dependence in
Fig. 3b. In this case, as in Fig. 3a, I T and I C show cosine-like
dependence. However, most importantly, their correlation is now
opposite to that in Fig. 3a. This is consistent with the expectation
that the state aj00lþ bj11l is created.

The above data show that we have succeeded with the conditional
gate operation. However, to understand our results more quanti-
tatively, we compare the data with simulation data obtained by
numerically calculating the time evolution of the density matrix.
The results of the simulation are shown as black curves in Fig. 3. We
stress that no fitting parameters are used in the calculation.

First, we consider the target qubit. Apart from the offset in Fig. 3a,
the simulated curves agree well with the experiment, suggesting that
the oscillation amplitude of the measured I T is reasonable. Second,
in contrast, we have some discrepancy in I C. We attribute this
discrepancy to the unknown current channel in our present read-
out scheme. As long as the JQP process is considered, the pulse-
induced current should not be able to exceed 2e=Tr ¼ 2:5 pA; but in
reality it does. This means that the pulse-induced current has an
extra component that does not originate from the JQP process. We
do not yet know the origin of this current. It may be other processes
involving higher-order Cooper-pair tunnelling. The magnitude of
this current probably depends on the Josephson energy (but does
not depend strongly on the pulse length), and produces the E J1-
dependent deviation between the simulated and measured curves.
In the target qubit, the similar current channel simply gives a
constant offset in Fig. 3 as E J2 is fixed and does not affect the overall
E J1-dependence. Although quantitative analysis for I C is difficult at
present, the simulation suggests that the oscillation amplitude of the
measured IT is reasonable, whereas that of I C is enhanced by this
extrinsic factor originating from the imperfection of our read-out
scheme.

Last, we estimate the accuracy of our gate operation and propose
possible ways for improvement. Our present read-out scheme,
which does not allow us to measure the probability of the four
states individually9, makes it difficult to obtain the complete truth
table of our gate operation solely from the experimental data.
Instead, here we do it on the basis of the simulation that turned
out a reasonable description of our two-qubit system, as shown in
Fig. 3. We calculate the time evolution of four perfect input states,
j00l, j01l, j10l and j11l, under the application of the operation
pulse, namely pulse 2 or 5 in Fig. 1c, and plot the output
probabilities as solid blue bars in Fig. 4. For the input states of
j10l and j11l, our gate operation is almost ideal. Note that the
accuracy is better than that expected for the case of the ideal pulse
shape, that is, 12 E2

J2=ðE
2
m þE2

J2Þ< 0:84: This is due to the finite
rise/fall time (40 ps) of the operation pulse, which suppresses the
unwanted oscillation. On the other hand, for the input states of j00l
and j01l, the output states have an unwanted component of j00l or
j01l with a rather high probability. This is also due to the finite rise/
fall time, which in this case suppresses the desired oscillation. To
improve this, increasing E m as well as making the pulse shape ideal
would be the best solution. However, even with the present value of

Figure 4 Truth table of the present C-NOT operation estimated by the numerical

calculation (solid blue bars). Detailed values of the probabilities are

0:37 0:62 0:004 0:003

0:62 0:37 0:004 0:007

0:004 0:004 0:97 0:018

0:003 0:007 0:018 0:97

0
BBBBB@

1
CCCCCA
:

Ideally, they should be

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA
:

We can partly see the correspondence of this figure to the experimental data in Fig. 3.

Because the prepared input state in sequence (i) of Fig. 1c is almost pure j00l state when

E J1 equals zero, the I T at E J1 ¼ 0 in Fig. 3a normalized by the possible maximum current

2e/Tr (2.5 pA) should be close to 0.62 (the second element of the first column of the above

truth table). The experimental data gives a slightly larger value of ,0.8. This is attributed

to the leak current discussed in the text. The red lines and arrows indicate the expected

improvement after decreasing the rise/fall time of the pulses from 40 to 30 ps.
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E m, the simulation suggests that this matrix becomes much closer to
the ideal one (keeping almost ideal outputs for j10l and j11l input
states) if we slightly decrease the rise/fall time, say by 25% (red lines
in Fig. 4), or decrease E J2 by a similar amount.

We controlled our two-qubit solid-state circuit by applying a
sequence of pulses, and demonstrated the conditional gate opera-
tion. Although in the present experiment we paid attention only to
the amplitude of the quantum state, phase evolution during the gate
operation should also be examined for the realization of the
quantum C-NOT gate (probably with additional phase factors),
which is a constituent of the universal gate. A
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Photonic cavities that strongly confine light are finding appli-
cations in many areas of physics and engineering, including
coherent electron–photon interactions1, ultra-small filters2,3,
low-threshold lasers4, photonic chips5, nonlinear optics6 and
quantum information processing7. Critical for these applications

is the realization of a cavity with both high quality factor, Q, and
small modal volume, V. The ratio Q/V determines the strength of
the various cavity interactions, and an ultra-small cavity enables
large-scale integration and single-mode operation for a broad
range of wavelengths. However, a high-Q cavity of optical
wavelength size is difficult to fabricate, as radiation loss increases
in inverse proportion to cavity size. With the exception of a few
recent theoretical studies8–10, definitive theories and experiments
for creating high-Q nanocavities have not been extensively
investigated. Here we use a silicon-based two-dimensional
photonic-crystal slab to fabricate a nanocavity with Q 5 45,000
and V 5 7.0 3 10214 cm3; the value of Q/V is 10–100 times larger
than in previous studies4,11–14. Underlying this development is the
realization that light should be confined gently in order to be
confined strongly. Integration with other photonic elements is
straightforward, and a large free spectral range of 100 nm has
been demonstrated.

The Q of a cavity is determined by the energy loss per cycle versus
the energy stored. With no absorption by the cavity material, Q is
determined by the reflection loss at the interface between the
interior and exterior of the cavity. Total internal reflection (TIR)
and/or Bragg reflection are generally used for light confinement. For
a cavity with a size much larger than the wavelength of light, a very
high Q has already been achieved14,15. In that case, the behaviour of
light confined in a large cavity obeys ray optics theory, and each ray
of light reflected at the interface can be designed to fulfil TIR or
Bragg reflection conditions. For much smaller cavities, deviation
from ray optics becomes serious, and Q is greatly reduced. Light
confined in a very small cavity consists of numerous plane wave
components with wavevectors (k) of various magnitudes (k) and
directions owing to the localization of light. As it is difficult to
design all such plane wave components to obey TIR or Bragg
reflection conditions, photonic nanocavities with very high Q
factors have yet to be realized.

One of the best approaches to resolving the problem is the
extension of the Bragg reflection effect in multiple directions.
Structures having a two- or three-dimensional (2D or 3D) periodic
change of refractive index on the scale of the light wavelength are
required for such extension. These are known as photonic crystals,
from an analogy to solid crystals5,16. For a 3D photonic crystal,
Bragg reflection conditions can be fulfilled for all the propagation
directions of light in a certain frequency range, known as the
photonic bandgap. A small disorder or defect introduced into the
3D photonic crystal would become an ultimate photonic nano-
cavity, with ultra-large Q/V. However, 3D photonic crystals with
sufficiently strong optical confinement have yet to be created5.

A cavity surrounded by a 2D photonic crystal is considered a
feasible solution. A 2D photonic-crystal slab, as shown in Fig. 1a,
with a thickness of the order of the light wavelength is very
promising, owing to strong optical confinement for both in-plane
and vertical directions2,3. The photonic-bandgap effect is used for
light confinement in the in-plane direction, and TIR, at the interface
between the slab and the air clad, in the vertical direction. Appar-
ently, fulfilment of the TIR condition in the vertical direction is
crucial in designing high-Q/V cavities.

To investigate vertical confinement in 2D photonic-crystal slabs,
we first consider a simplified model (Fig. 2a), where the cavity
consists of a dielectric material with thickness T and length L. Both
sides of the cavity are closed by perfect mirrors, confining light in
the x direction. The structure is assumed to be uniform in the y
direction for simplicity. Light is confined by TIR in the z direction
by the air clad, as discussed above. Figure 2b shows an example of
the electric field profile inside a cavity with a very short length, 2.5l,
where l is the resonant wavelength of light in the cavity.

The strength of the vertical (z-direction) confinement by TIR can
be investigated by decomposing the electric field inside a cavity into
a set of plane wave components with various k-vectors by spatial
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