Physics of Condensed Matter I

1100-4INZ`PC

"I HAVE TO GET OUT OF HERE AND READ SOME POETRY."

Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl

Solid state 3

Crystalography

Maximal value of the intensity

$$\left[\sum_{n_1} e^{-i\Delta \vec{k}(n_1 \vec{t}_1)}\right] \left[\sum_{n_2} e^{-i\Delta \vec{k}(n_2 \vec{t}_2)}\right] \left[\sum_{n_3} e^{-i\Delta \vec{k}(n_3 \vec{t}_3)}\right]$$

When $e^{-i\Delta \vec{k}(n_1 \vec{t}_1)} = 1$

 $\Delta \vec{k} \vec{t}_1 = 2\pi h$

 $\Delta \vec{k} \vec{t}_2 = 2\pi k$

 $\Delta \vec{k} \vec{t}_3 = 2\pi l$

Laue conditions

$$\Delta \vec{k} \equiv G = h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3 \qquad \vec{g}_i\vec{t}_j = 2\pi\delta_{ij}$$

$$|\vec{g}_i| = \frac{2\pi}{a_i} \qquad \vec{g}_i = 2\pi \ \frac{\vec{t}_j \times \vec{t}_k}{\vec{t}_i (\vec{t}_j \times \vec{t}_k)}$$

reciprocal lattice

 $\vec{T} = n_1 \vec{t}_1 + n_2 \vec{t}_2 + n_3 \vec{t}_3$

Structure factor
$$S_G$$
 $S_G = \int_{cell} dV \rho(\vec{R}) e^{-i\vec{G}\vec{R}}$

Types of chemical bonds

Metalic bonding

The chemical bond in metals, formed by the electrodynamic interaction between the positively charged atom cores, which are located in nodes of the lattice, and negatively charged **plasma electrons** (**delocalized electrons**, **electron gas**). Similar to a covalent bond, but electrons forming a bond are common to a large number of atoms.

Na

Na¹

Na¹

Na

Electrons in crystal

Metalic bonding

- Strict mathematical description is impossible these systems are too complicated, (typically $1 \text{ cm}^3 \rightarrow 2,2 \times 10^{22}$ atoms (GaAs)).
- Nuclei + closed electrons shells \rightarrow atomic cores or ions
- Valence electrons relatively weakly bound

As a result of interaction electrons detach from the parent core and move almost freely throughout the crystal volume.
 e⁻ e⁻

• Crystal bound through electrostatic interaction between negative cloud of electrons and positive ions.

Features:

a) high electrical conductivity
b) ductility (*ciqgliwość*) ↔ Hardening (*hartowanie*)

Classical theory for the index of refraction

The wave in the media (different):

$$\frac{d^2 \vec{x}}{dt^2} + \gamma \frac{d \vec{x}}{dt} + \omega_0^2 \vec{x} = \frac{q}{m} \vec{E} e^{i\omega t} \quad \text{Lorentz model}$$

$$\frac{d^2\vec{x}}{dt^2} + \gamma \frac{d\vec{x}}{dt} + \omega_0^2 \vec{x} = \mathbf{0}$$

Emission spectrum

$$\frac{d^2\vec{x}}{dt^2} + \mathbf{0} + \mathbf{0} = \frac{q}{m}\vec{E}e^{i\omega t}$$

the steady state solution: $\vec{x}(t) = \vec{x}_0 e^{i\omega t}$

Classical theory for the index of refraction

$$\frac{d^{2}\vec{x}}{dt^{2}} + \mathbf{0} + \mathbf{0} = \frac{q}{m}\vec{E}e^{i\omega t}$$
Free carriers: $\vec{j} = \sigma \vec{E}$

$$-\vec{k}(\vec{E}_{0}\vec{k}) + k^{2}\vec{E}_{0} = \frac{\omega^{2}}{c^{2}}\left(\varepsilon_{L} - \frac{Nq^{2}}{\varepsilon_{0}m\omega^{2}}\right)\vec{E}$$
the steady state solution:
 $\vec{x}(t) = \vec{x}_{0}e^{i\omega t}$
the steady state solution:
 $\vec{x}(t) = \vec{x}_{0}e^{i\omega t}$

λ

ionized gases (eg. in gas lamps, ionosphere in the atmospheres of stars and planets),
plasma,

- plasma in a solid the gas free carriers in metals or semiconductors,
- liquids as electrolytes or molten conductors.

$$\frac{d^2\vec{x}}{dt^2} + \mathbf{0} + \mathbf{0} = \frac{q}{m}\vec{E}e^{i\omega t}$$

$$-\vec{k}(\vec{E}_0\vec{k}) + k^2\vec{E}_0 = -\frac{\omega^2}{c^2}\left(\varepsilon_L - \frac{Nq^2}{\varepsilon_0m\omega^2}\right)\vec{E}$$

Longitudinal wave (fala podłużna): $\vec{k} \parallel \vec{E}$

$$-\vec{k}(\vec{E}_0\vec{k}) + k^2\vec{E}_0 = 0 \qquad \qquad \omega_p^2 = \frac{Nq^2}{\varepsilon_0\varepsilon_Lm}$$

The transverse wave (fala poprzeczna): $\vec{k} \perp \vec{E}$

$$-\vec{k}(\vec{E}_{0}\vec{k}) + k^{2}\vec{E}_{0} = \frac{\omega^{2}}{c^{2}}\varepsilon_{L}\left(1 - \frac{\omega_{p}^{2}}{\omega^{2}}\right)\vec{E} = \frac{\omega^{2}}{c^{2}}\varepsilon_{L}\varepsilon(\omega) \qquad R = \left|\frac{n-1}{n+1}\right|^{2} = \left|\frac{\sqrt{\varepsilon(\omega)} - 1}{\sqrt{\varepsilon(\omega)} + 1}\right|^{2}$$

Plasma waves

$$\frac{d^{2}\vec{x}}{dt^{2}} + \mathbf{0} + \mathbf{0} = \frac{q}{m}\vec{E}e^{i\omega t}$$

$$-\vec{k}(\vec{E}_{0}\vec{k}) + k^{2}\vec{E}_{0} = -\frac{\omega^{2}}{c^{2}}\left(\varepsilon_{L} - \frac{Nq^{2}}{\varepsilon_{0}m\omega^{2}}\right)\vec{E}$$
Longitudinal wave (fala podłużna): $\vec{k} \parallel \vec{E}$

$$-\vec{k}(\vec{E}_{0}\vec{k}) + k^{2}\vec{E}_{0} = 0 \qquad \omega_{p}^{2} = \frac{Nq^{2}}{\varepsilon_{0}\varepsilon_{L}m}$$
The transverse wave (fala poprzeczna): $\vec{k} \perp \vec{E}$

$$-\vec{k}(\vec{E}_{0}\vec{k}) + k^{2}\vec{E}_{0} = \frac{\omega^{2}}{c^{2}}\varepsilon_{L}\left(1 - \frac{\omega_{p}^{2}}{\omega^{2}}\right)\vec{E} = \frac{\omega^{2}}{c^{2}}\varepsilon_{L}\varepsilon(dz)$$

$$R = \left|\frac{n-1}{n+1}\right|^{2} = \left|\frac{\sqrt{\varepsilon(\omega)}-1}{\sqrt{\varepsilon(\omega)}+1}\right|^{2}$$
(with damping)

FIG. 8. Reflectivity vs wavelength for five *n*-type indium antimonide samples. The refractive index curve labeled *n* is for the sample with $N = 6.2 \times 10^{17}$ cm⁻³.

1/25/2016

Electrical conductivity of plasma:

Current density:

$$\vec{j} = \frac{1}{S} \frac{\Delta Q}{\Delta t} = \frac{1}{S} \frac{\Delta(-enV)}{\Delta t} = \frac{ne}{S} \frac{S\vec{v}_D \Delta t}{\Delta t}$$

$$\vec{j} = -en\vec{v}_D$$

Drift velocity $\vec{v}_D = \vec{v} - \vec{v}_{therm}$

Paul Karl Ludwig Drude 1863-1906

Drude model. Model of the conductivity of metals proposed by Drude approx. 1900, soon after the discovery of the electron.

$$m\frac{d\vec{v}}{dt} + \frac{m}{\tau}\vec{v}_D = -e\vec{E}$$

After switching off the electric field \vec{v} returns to thermal velocity (exponentially: τ)

 $\vec{v}_D \Delta t$

S

For the stationary case:
$$\frac{d\vec{v}}{dt} = 0 \Rightarrow \vec{v}_D = -\frac{e\tau}{m}\vec{E}$$
 Mobility: $\mu = \frac{e\tau}{m}$

Electrical conductivity of plasma:

Current density:

$$\vec{j} = \frac{1}{S} \frac{\Delta Q}{\Delta t} = \frac{1}{S} \frac{\Delta(-enV)}{\Delta t} = \frac{ne}{S} \frac{S\vec{v}_D \Delta t}{\Delta t}$$

Paul Karl Ludwig Drude 1863-1906

$$\sigma = ne\mu = \frac{ne^2}{m}\tau \approx \frac{ne^2}{m}\frac{l}{\langle v \rangle}$$

How can we calculate the average speed of electrons?

 $\vec{v}_D \Delta t$

S

Electrical conductivity of plasma:

How can we calculate the average speed of electrons?

Drude: Ideal gas, Boltzman distribution

$$\langle v \rangle = \sqrt{\frac{3k_BT}{m}} = \dots 300K \dots = 1,2 \cdot 10^5 \frac{m}{s}$$

Pure metals at T = 300 K $\langle l \rangle \approx 5 \times 10^{-6}$ m, at T = 4 K $\langle l \rangle \approx 1$ cm

$$\frac{1}{2} m \langle v \rangle^2 = \frac{3}{2} k_B T$$

Arnold Johannes Wilhelm Sommerfeld (1868–1951)

Paul Karl Ludwig Drude 1863-1906

Sommerfeld: degenerated Fermi gas (Fermi-Dirac distribution):

$$\langle v \rangle = \sqrt{\frac{2E_F}{m}} = 1.6 \cdot 10^6 \frac{m}{s} \qquad \langle l \rangle \approx 40 \ nm$$

Electrical conductivity of plasma:

Electrical conductivity of plasma:

$$\langle v \rangle = \sqrt{\frac{2E_F}{m}} = 1.6 \cdot 10^6 \frac{m}{s} \qquad \langle l \rangle \approx 40 \ nm$$

Arnold Johannes Wilhelm Sommerfeld (1868–1951)

Wiedemann-Franz law: the ratio of the thermal conductivity κ and electrical conductivity σ in any metal is directly proportional to the temperature (L - constant Lorentz) $\frac{\kappa}{-} = L_1^{-}$

$$L_{Drude} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 = 1.11 \cdot 10^{-8} \frac{W\Omega}{K^2}$$

$$= 1,11 \cdot 10^{-8} \frac{W\Omega}{K^2} \qquad \sigma$$

 $L_{Sommerfeld} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 = 2,44 \cdot 10^{-8} \frac{W\Omega}{K^2}$ Table 5 Experimental Lorenz numbers Better result!

$L \times 10^8$ watt-ohm/deg ²			$L \times 10^8$ watt-ohm/deg ²		
Metal	0°C	100°C	Metal	0°C	100°C
	0.21	9 37	Pb	2.47	2.56
Ag	2.31	2.01	Pt	2.51	2.60
Au	2.35	0.42	Sn	2.52	2.49
Cd	2.42	2.40	W	3.04	3.20
Cu	2.23	2.33	7.	2.31	2.33
Mo	2.61	2.79	Zn	2.01	

Ch. Kittel

7

Born – Oppenheimer approximation

Full non-relativistic Hamiltonian of the system of nuclei and electrons:

$$\begin{split} H(\vec{r},\vec{R})\Psi(\vec{r},\vec{R}) &= E\Psi(\vec{r},\vec{R}) \\ = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 - \sum_N \frac{\hbar^2}{2M_N} \nabla_N^2 - \frac{1}{4\pi\varepsilon_0} \sum_{N,i} \frac{Z_N e^2}{|\vec{r}_i - \vec{R}_N|} + \\ &+ \frac{1}{4\pi\varepsilon_0} \sum_{N < K} \frac{Z_N Z_K e^2}{|\vec{R}_N - \vec{R}_K|} + \frac{1}{4\pi\varepsilon_0} \sum_{i < j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} = \\ &= \hat{T}_e + \hat{T}_N + V(\vec{r},\vec{R}) + V_e(\vec{r}) + G(\vec{R}) \end{split}$$

Electron and nuclear (ions) subsystems coordinates are intermixed, separation of electronic and nuclear variables is impossible

Assumption: motion of atomic nuclei and electrons in a molecule can be separated **Born-Oppenheimer adiabatic approximation**

2016-01-25

LCAO method

The solution of the equation of electron states requires numerical methods

$$H_{el}(\vec{r},\vec{R})\Psi_{el}^{k}(\vec{r},\vec{R}) = \left[\hat{T}_{e} + V(\vec{r},\vec{R}) + V_{e}(\vec{r})\right]\Psi_{el}^{k}(\vec{r},\vec{R}) = E_{el}^{k}(\vec{R})\Psi_{el}^{k}(\vec{r},\vec{R})$$

One of methods: LCAO-MO with Hartree-Fock approximation – **self-consistent field method** (iterative method), *n*-electron wave function as Slater determinant, trivially satisfies the antisymmetric property of the exact solution:

$$\Psi_{el}^{k}(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3},\dots,s_{1},s_{2},s_{3},\dots) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \varphi_{1}^{sp}(\vec{r}_{1},s_{1}) & \varphi_{1}^{sp}(\vec{r}_{2},s_{2}) & \dots & \varphi_{1}^{sp}(\vec{r}_{n},s_{n}) \\ \varphi_{2}^{sp}(\vec{r}_{1},s_{1}) & \varphi_{2}^{sp}(\vec{r}_{2},s_{2}) & \dots & \varphi_{2}^{sp}(\vec{r}_{n},s_{2}) \\ \dots & \dots & \dots & \dots \\ \varphi_{n}^{sp}(\vec{r}_{1},s_{1}) & \varphi_{n}^{sp}(\vec{r}_{2},s_{2}) & \dots & \varphi_{n}^{sp}(\vec{r}_{n},s_{n}) \end{vmatrix}$$

Each of the single-electron spin-orbital $\varphi_n^{sp}(\vec{r}_n, s_n)$ must be different – two spin-orbital can for instance share the same orbital function, but then theirs spins are different

$$\varphi_n^{sp}(\vec{r}_n, s_n) = \varphi_n^{sp}(\vec{r}_n) \begin{bmatrix} 0\\1 \end{bmatrix} \text{ or } \varphi_n^{sp}(\vec{r}_n) \begin{bmatrix} 1\\0 \end{bmatrix}$$

DFT method

The Nobel Prize in Chemistry 1998		
Nobel Prize Award Ceremony	W	
Walter Kohn	v	
John Pople	v	

Walter Kohn

John A. Pople

The Nobel Prize in Chemistry 1998 was divided equally between Walter Kohn "for his development of the density-functional theory" and John A. Pople "for his development of computational methods in quantum chemistry".

Hartree approximation (one-electron)

 $\Psi_{el}^k(\vec{r}_1, \vec{r}_2, \vec{r}_3, \dots) = \varphi_1(\vec{r}_1) \cdot \varphi_2(\vec{r}_2) \cdot \varphi_3(\vec{r}_3) \cdot \dots \cdot \varphi_n(\vec{r}_n)$

We assume that an average potential from other ions and electrons acts on each electron:

$$\left(\sum_{i} \frac{p_i^2}{2m} + \sum_{i} V_i(\vec{r}_i)\right) \Psi_{el}^k(\vec{r}_1, \vec{r}_2, \vec{r}_3, \dots) = E_{tot}^k \Psi_{el}^k(\vec{r}_1, \vec{r}_2, \vec{r}_3, \dots)$$

Thus

$$\left(\frac{p_i^2}{2m} + V_i(\vec{r}_i)\right)\varphi_i(\vec{r}_i) = E_i\varphi_i(\vec{r}_i)$$

If every potential is the same $V_1(\vec{r}_1) \approx V_2(\vec{r}_2) \approx \cdots \approx V_n(\vec{r}_n) \approx V(\vec{r})$ we get $\sum_i E_i = E_{tot}$ One-electron Schrödinger equation:

$$\left(\frac{p^2}{2m} + V(\vec{r})\right)\varphi_i(\vec{r}_i) = E_i\varphi_i(\vec{r}_i)$$

This time *i* is the set of quantum numbers of one-electron quantum states $\varphi_i(\vec{r_i})$ of energies E_i . One-electron states are subject to the Pauli exclusion principle.

A significant change in the number of electrons in a given band, leads to the change of $V(\vec{r})$ and of the one –particle spectra! (for instance energy gap renormalization)

Bloch theorem

Assumptions:

Motionless atoms, crystal (periodic) lattice . One-electron Hartree approximation

 $\Psi_{el}^k(\vec{r}_1,\vec{r}_2,\vec{r}_3,\dots) = \varphi_1(\vec{r}_1) \cdot \varphi_2(\vec{r}_2) \cdot \varphi_3(\vec{r}_3) \cdot \dots \cdot \varphi_n(\vec{r}_n)$

or Hartree-Fock approximation (Slater determinant).

Self-consistent field method – the multi-electron issue is reduced to the solution of one-electron problem in a potential of all other electrons and atoms

$$\left(\frac{p^2}{2m} + V(\vec{r})\right)\varphi_n(\vec{r}_n) = E_n\varphi_n(\vec{r}_n)$$
 "One-electron" Schrödinger equation

Effective potential, periodic potential of the crystal lattice, the same for all electrons.

$$V(\vec{r}) = V\left(\vec{r} + \vec{R}\right)$$

Bloch theorem

For every periodic potential

$$V(\vec{r}) = V(\vec{r} + \vec{R})$$

The solutions of the Schrodinger equation:

$$\begin{pmatrix} \frac{p^2}{2m} + V(\vec{r}) \end{pmatrix} \psi_n(\vec{r}_n) = E_n \psi_n(\vec{r}_n)$$
have a form: $\psi_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r}) e^{i\vec{k}\vec{r}}$
Bloch wave,
Bloch function
Bloch envelope

The solution of the one-electron Schrödinger equation for a periodic potential has a form of modulated plane wave:

$$u_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r} + \vec{R})$$

Bloch theorem

Proof:

Translation operator $\hat{T}_{\vec{R}}$ $\hat{T}_{\vec{R}} \left(f(\vec{r}) \right) = f(\vec{r} + \vec{R})$

Perodic potential of the crystal lattice: $\hat{T}_{\vec{R}}(V(\vec{r})) = V(\vec{r} + \vec{R})$

Hamiltonian with periodic potential

$$\hat{T}_{\vec{R}} \left(\hat{H}(\vec{r}) \psi(\vec{r}) \right) = \hat{H}(\vec{r} + \vec{R}) \psi(\vec{r} + \vec{R}) = \hat{H}(\vec{r}) \psi(\vec{r} + \vec{R}) = \hat{H}(\vec{r}) \hat{T}_{\vec{R}} \left(\psi(\vec{r}) \right)$$

$$\hat{T}_{\vec{R}} \hat{T}_{\vec{R}'} \psi(\vec{r}) = \psi(\vec{r} + \vec{R} + \vec{R}') = \hat{T}_{\vec{R}'} \hat{T}_{\vec{R}} \psi(\vec{r})$$
operators are commutative!

Eigenfunctions $\psi_{n,\vec{k}}(\vec{r})$ of the translation operator $\hat{T}_{\vec{R}}$:

$$\begin{aligned} \widehat{T}_{\vec{R}}\psi_{n,\vec{k}}(\vec{r}) &= C\left(\vec{R}\right)\psi_{n,\vec{k}}(\vec{r}) = e^{if\left(\vec{R}\right)}\psi_{n,\vec{k}}(\vec{r}) \qquad \left|C\left(\vec{R}\right)\right|^2 = 1\\ \text{where } f\left(\vec{R} + \vec{R}'\right) &= f\left(\vec{R}\right) + f\left(\vec{R}'\right)\\ f(0) &= 0 \qquad \Rightarrow f\left(\vec{R}\right) = \vec{k}\vec{R} \end{aligned}$$

Bloch theorem

Proof:

Translation operator $\hat{T}_{\vec{R}}$ $\hat{T}_{\vec{R}} \left(f(\vec{r}) \right) = f(\vec{r} + \vec{R})$ Eigenfunctions $\psi_{n,\vec{k}}(\vec{r})$ of the operator $\hat{T}_{\vec{R}}$ $\hat{T}_{\vec{R}} \psi(\vec{r}) = C(\vec{R}) \psi_{n,\vec{k}}(\vec{r}) = e^{i\vec{k}\vec{R}} \psi_{n,\vec{k}}(\vec{r})$

We denote our eigenfunction $\psi_{n,\vec{k}}(\vec{r})$ where n distinguishes the different functions of the same \vec{k} . Let us define:

$$u_{n,\vec{k}} = \psi_{n,\vec{k}}(\vec{r})e^{-i\vec{k}\vec{r}}$$

periodic function

$$\hat{T}_{\vec{R}}\left(u_{n,\vec{k}}\right) = \hat{T}_{\vec{R}}\left(\psi_{n,\vec{k}}(\vec{r})e^{-i\vec{k}\vec{r}}\right) = e^{i\vec{k}\vec{R}}\psi_{n,\vec{k}}(\vec{r})e^{-i\vec{k}(\vec{r}+\vec{R})} = \psi_{n,\vec{k}}(\vec{r})e^{-i\vec{k}\vec{r}} = u_{n,\vec{k}}$$

Thus:

$$\psi_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}} e^{i\vec{k}\vec{r}}$$

The eigenstates of the electron in a periodic potential are characterized by two quantum numbers \vec{k} and n \vec{k} – wave vector

n – describes the energy bands (for a moment!)

Bloch theorem

Bloch function:

$$\psi_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r}) e^{i\vec{k}\vec{r}}$$
Bloch wave,
Bloch function
Bloch envelope

Example:

Motion of the electron in a constant potential

$$\begin{split} \widehat{H} &= \frac{\widehat{p}^2}{2m} + V = -\frac{\hbar^2}{2m} \Delta + V \\ \psi_{n,\vec{k}}(\vec{r}) &= e^{i\vec{k}\vec{r}} \quad \Rightarrow \quad E = -\frac{\hbar^2 k^2}{2m} + V \end{split}$$

Momentum operator $\hat{p} = -i\hbar\nabla$ we get: $\hat{p}\psi_{n,\vec{k}}(\vec{r}) = \hbar\vec{k}\,\psi_{n,\vec{k}}(\vec{r})$

The solutions of the Schrödinger equation are eigenfunctions of the momentum operator \hat{p} . The momentum is well defined, the eigenvalues of the operator are $\hbar \vec{k}$ (the physical meaning of the wave vector \vec{k})

Bloch theorem

Bloch function:

$$\psi_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r}) e^{i\vec{k}\vec{r}}$$
Bloch wave,
Bloch function
Bloch envelope

Example:

Motion of the electron in a periodic potential

 $V(\vec{r}) = V(\vec{r} + \vec{R})$ $V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} \exp(i\vec{G}\vec{r})$ the Fourier series expansion

Bloch theorem

Crystal lattice:

 $\vec{R} = n_1 \vec{a}_1 + n_2 \vec{a}_2 + n_3 \vec{a}_3, \qquad n_i \in \mathbb{Z}$ For periodic functions with the lattice period \vec{R} $f(\vec{r}) = f(\vec{r} + \vec{R})$ a good base in the Fourier series expansion are functions $g(\vec{r}) = \exp(i\vec{G}\vec{r})$ which depend on the reciprocal lattice vectors:

$$\vec{G} = m_1 \vec{a}_1^* + m_2 \vec{a}_2^* + m_3 \vec{a}_3^*, \qquad m_i \in \mathbb{Z}$$

$$\vec{a}_i \vec{a}_j^* = 2\pi \delta_{ij}$$

 $\exp\left[i\vec{G}(\vec{r}+\vec{R})\right] = \\ = \exp\left[i\vec{G}\vec{r}\right] \cdot \exp\left[i\vec{G}\vec{R}\right] = \exp\left[i\vec{G}\vec{r}\right] \exp\left[2\pi\left(n_1m_1 + n_2m_2 + n_3m_3\right)\right] = \exp\left(i\vec{G}\vec{r}\right)$

therefore $g(\vec{r}) = g(\vec{r} + \vec{R})$ and finally we get:

$$V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} \exp(i\vec{G}\vec{r})$$

Bloch theorem

Periodic potenetial we can expand as a Fourier series:

$$V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} \exp\left(i\vec{G}\vec{r}\right)$$

The wavefunction can be represented as a sum of plane waves of different wavelengths satisfying periodic boundary conditions :

$$\varphi(\vec{r}) = \sum_{\vec{k}} C_{\vec{k}} \exp\left(i\vec{k}\vec{r}\right)$$

Schrödinger equation:

$$\left(\frac{\hat{p}^2}{2m} + V(\vec{r})\right)\varphi(\vec{r}) = E \ \varphi(\vec{r})$$

$$\sum_{\vec{k}} \frac{\hbar^2 \vec{k}^2}{2m} C_{\vec{k}} \exp(i\vec{k}\vec{r}) + \sum_{\vec{k},\vec{G}} C_{\vec{k}} V_{\vec{G}} \exp[i(\vec{k}+\vec{G})\vec{r}] = E \sum_{\vec{k}} C_{\vec{k}} \exp(i\vec{k}\vec{r})$$

This is an equation for *E* and $C_{\vec{k}}$ for all vectors \vec{k}, \vec{r} and \vec{G} .

See also: Ibach, Luth "Solid State Physics"

Bloch theorem

$$\sum_{\vec{k}} \frac{\hbar^2 \vec{k}^2}{2m} C_{\vec{k}} \exp(i\vec{k}\vec{r}) + \sum_{\vec{k},\vec{G}} C_{\vec{k}} V_{\vec{G}} \exp[i(\vec{k} + \vec{G})\vec{r}] = E \sum_{\vec{k}} C_{\vec{k}} \exp(i\vec{k}\vec{r})$$

The sum is over all \vec{k} , \vec{G} , therefore:

$$\sum_{\vec{k},\vec{G}} C_{\vec{k}} V_{\vec{G}} \exp[i(\vec{k} + \vec{G})\vec{r}] = \dots \vec{k} + \vec{G} \to \vec{k} \dots$$
$$= \sum_{\vec{k},\vec{G}} C_{\vec{k}-\vec{G}} V_{\vec{G}} \exp[i\vec{k}\vec{r}]$$

We get Schrödinger equation in a form:

$$\sum_{\vec{k}} \exp(i\vec{k}\vec{r}) \left[\left(\frac{\hbar^2 \vec{k}^2}{2m} - E \right) C_{\vec{k}} + \sum_{\vec{G}} C_{\vec{k}-\vec{G}} V_{\vec{G}} \right] = 0$$

That must be met for each vector \vec{r} .

Bloch theorem

$$\sum_{\vec{k}} \exp(i\vec{k}\vec{r}) \left[\left(\frac{\hbar^2 \vec{k}^2}{2m} - E \right) C_{\vec{k}} + \sum_{\vec{G}} C_{\vec{k}-\vec{G}} V_{\vec{G}} \right] = 0$$

for each vector \vec{r} .

Thus, for each vector \vec{k} we got equation for coefficients $C_{\vec{k}}$ and E:

$$\left(\frac{\hbar^2 \vec{k}^2}{2m} - E\right) C_{\vec{k}} + \sum_{\vec{G}} C_{\vec{k} - \vec{G}} V_{\vec{G}} = 0$$

In this equation for $C_{\vec{k}}$ also coefficients shifted by \vec{G} like $C_{\vec{k}-\vec{G}_1}$, $C_{\vec{k}-\vec{G}_2}$, $C_{\vec{k}-\vec{G}_3}$ appear (but others do not, even when we started for any \vec{k} !).

This equation couples those expansion coefficients $\varphi(\vec{r}) = \sum_{\vec{k}} C_{\vec{k}} \exp(i\vec{k}\vec{r})$, whose \vec{k} - values differ from one another by a reciprocal lattice vector \vec{G} .

Bloch theorem

$$\left(\frac{\hbar^2 \vec{k}^2}{2m} - E\right) C_{\vec{k}} + \sum_{\vec{G}} C_{\vec{k} - \vec{G}} V_{\vec{G}} = 0$$

We do not need to solve these equations for all vectors \vec{G} – we can find a solution in **one** unit cell of the reciprocal lattice and copy it *N* times (*N* – number of unit cells)! Thus we can find eigenvalues $E \rightarrow E_{\vec{k}} \rightarrow E(\vec{k})$ corresponding to the wave-function $\varphi_{\vec{k}}(\vec{r})$ represented as a superposition of plane waves whose wave vectors \vec{k} differ only by reciprocal lattice vectors \vec{G} .

Wave vector \vec{k} is a good quantum number according to which the energy eigenvalues and quantum states may be indexed. Thus the function $\varphi(\vec{r})$ is the superposition of $\varphi_{\vec{k}}(\vec{r})$ of energies $E(\vec{k})$

$$\varphi(\vec{r}) = \sum_{\vec{k}} C_{\vec{k}} \exp(i\vec{k}\vec{r}) = \dots = \sum_{\vec{k}} \varphi_{\vec{k}}(\vec{r})$$

(later on we introduce coefficient n for different solutions of $E_{\vec{k}}$ corresponding to the same \vec{k})

1/25/2016

Bloch theorem

Wave-function which is the solution of the Schrodinger equation $\varphi_{\vec{k}}(\vec{r})$ is represented as a superposition of plane waves whose wave vectors \vec{k} differ only by reciprocal lattice vectors \vec{G} and it has energies $E_{\vec{k}} = E(\vec{k})$:

$$\varphi_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} C_{\vec{k}-\vec{G}} \exp\left[i\left(\vec{k}-\vec{G}\right)\vec{r}\right]$$

Each vector $\vec{k} - \vec{G}$ can enumerate states; it is convenient to choose the shortest vector (which belongs to the first Brillouin zone).

$$\varphi_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} C_{\vec{k}-\vec{G}} e^{i(\vec{k}-\vec{G})\vec{r}} = \sum_{\vec{G}} C_{\vec{k}-\vec{G}} e^{-i\vec{G}\vec{r}} e^{i\vec{k}\vec{r}} = u_{\vec{k}}(\vec{r})e^{i\vec{k}\vec{r}}$$

The function $u_{\vec{k}}(\vec{r})$ is a Fourier series over reciprocal lattice points \vec{G} , and thus has the periodicity of the lattice.

Bloch theorem

Bloch waves whose wave vectors differ by a reciprocal lattice vector are IDENTICAL!

 $\vec{k}_1 - \vec{k}_2 = \vec{G}$