Physics of Condensed Matter I

1100-4INZ`PC

Molecules 4

Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl

Born Oppenheimer approximation

Max Born (1882-1970)

Jacob R. Oppenheimer (1904-1967)

Molecules

Hybridization

A summary of hybrid orbitals, valence bond theory, VSEPR, resonance structures, and octet rule. Trigonal Trigonal Linear Tetrahedral Octahedral bipyramidal planar sp^2 sp³ dsp³ d^2sp^3 sp BeH₂ BH₃ CH₄ PF₅ SF₆ BF₃ CF₄ PCI₅ IOF₅ BeF₂ CO_2 CH₂O **CCl**₄ **PFCl**₄ PF6 HCN (>C=O) CH₃Cl :SF₄ SiF62->C=C< **HC°CH** :TeF4 NH4⁺ :BrF5 CO32-::CIF3 :NH₃ :IF5 ::BrF3 benzene :PF3 ::XeF4 :::XeF2 graphite :SOF₂ fullerenes ::OH2 :::I3 •NO2 ::SF2 (:::I I2) N_3 :::ICh2 $:00_{2}(0_{3})$ SiO44-:SO2 PO4³⁻ SO₃ SO42-ClO₄⁻ a lone odd electron : a lone electron pair

http://www.science.uwaterloo.ca/~cchieh/cact/c120/hybrid.html

2015-1

 $\chi^n(\vec{R})$ is the wave function describing the motion of nuclei (ions) in their mutual interaction potential $G(\vec{R})$ adiabatic electron contribution to the energy of the motion of nuclei (ions) $E_{el}^k(\vec{R})$

Born-Oppenheimer approximation **is not fulfilled** when the potential energy surfaces of two electronic states are too close.

the potential energy surface

Schrodinger equation of the motion of nuclei with repulsive potential $G(\vec{R})$:

$$[\widehat{T}_N + E_{el}(\vec{r}, \vec{R}) + G(\vec{R})]\chi^n(\vec{R}) = E^n\chi^n(\vec{R})$$

effective potential

Approximations

$$\widehat{T}_N + E_{el}(\vec{r}, \vec{R}) + G(\vec{R})]\chi^n(\vec{R}) = E^n\chi^n(\vec{R})$$

The kinetic energy separates on vibration (oscillation) and rotation energy – we assume "small" oscillations and slow speed of rotataion.

$$\left[\widehat{T}_{osc} + \widehat{T}_{rot} + E_{el}(\vec{r}, \vec{R}) + G(\vec{R})\right] \chi^n(\vec{R}) = E^n \chi^n(\vec{R})$$

Operators act on different coordinates: we can we separate the variables:

$$\chi^{n}(\vec{R}) = \chi^{n}_{osc}(R)\chi^{n}_{rot}(\theta,\varphi)$$
$$E^{n} = E^{n}_{osc} + E^{n}_{rot}$$

Altogether:

$$\Psi(\vec{r},\vec{R}) = \chi^n(\vec{R})\Psi_{el}^n(\vec{r},\vec{R}) = \chi_{osc}^n(R)\chi_{rot}^n(\theta,\varphi)\Psi_{el}^n(\vec{r},\vec{R})$$
$$E^n = E_{osc}^n + E_{rot}^n + E_{el}$$

Approximations

$$\widehat{T}_N + E_{el}(\vec{r}, \vec{R}) + G(\vec{R})]\chi^n(\vec{R}) = E^n\chi^n(\vec{R})$$

The kinetic energy separates on vibration (oscillation) and rotation energy – we assume "small" oscillations and slow speed of rotataion.

$$\left[\widehat{T}_{osc} + \widehat{T}_{rot} + E_{el}(\vec{r}, \vec{R}) + G(\vec{R})\right] \chi^n(\vec{R}) = E^n \chi^n(\vec{R})$$

Operators act on different coordinates: we can we separate the variables:

$$\chi^{n}(\vec{R}) = \chi^{n}_{osc}(R)\chi^{n}_{rot}(\theta,\varphi)$$
$$E^{n} = E^{n}_{osc} + E^{n}_{rot}$$

Altogether:

$$\Psi(\vec{r},\vec{R}) = \chi^n(\vec{R})\Psi_{el}^n(\vec{r},\vec{R}) = \chi_{osc}^n(R)\chi_{rot}^n(\theta,\varphi)\Psi_{el}^n(\vec{r},\vec{R})$$
$$E^n = E_{osc}^n + E_{rot}^n + E_{el}$$

Diatomic molecules

Approximations

Diatomic molecule in the center-of-mass coordinates

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu}\nabla_R^2 + E_{el}^n(\vec{R}) \end{bmatrix} \chi^n(\vec{R}) = E^n \chi^n(\vec{R})$$
$$\begin{bmatrix} -\frac{\hbar^2}{2\mu R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial}{\partial R} \right) + \frac{\hat{L}^2}{2\mu R^2} + E_{el}^n(\vec{R}) \end{bmatrix} \chi^n(\vec{R}) = E^n \chi^n(\vec{R})$$

Operators act on different coordinates, we can separate the variables in spherical coordinate system.

$$\chi^n(\vec{R}) = \frac{1}{R} \chi^n_{osc}(R) \chi^n_{rot}(\theta, \varphi)$$

radial coordinates

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2} + \left(\frac{\lambda}{2\mu R^2} + E_{el}^n(\vec{R})\right)\right]\chi_{osc}^n(R) = E\chi_{osc}^n(R)$$

angular coordinates

$$\hat{L}^2 \chi_{rot}^n(\theta, \varphi) = \lambda \chi_{rot}^n(\theta, \varphi)$$

Rotation

Diatomic molecule in the center-of-mass coordinates

$$\hat{L}^{2}\chi_{rot}^{n}(\theta,\varphi) = \lambda\chi_{rot}^{n}(\theta,\varphi)$$

$$\chi_{rot}^{n}(\theta,\varphi) = Y_{J}^{M}(\theta,\varphi) \qquad J = 0, 1, 2 \dots M = -J, -J + 1, \dots, J - 1, J$$

$$\lambda = \hbar^{2}J(J + 1)$$

$$E_{rot}^{J} = \frac{\hbar^{2}J(J + 1)}{2\mu R^{2}} = \frac{\hbar^{2}J(J + 1)}{2I}$$
Moment of inertia (or angular mass or rotational inertia)

$$I = \int_{m \ (mass)} r^2 \ dm$$

Moment of inertia nuclei with respect to the axis passing through the center of the mass perpendicular to the molecule axis

I –

Rotation

Generaly:

$$\widehat{H} = \frac{\widehat{J}_{x}^{2}}{2I_{xx}} + \frac{\widehat{J}_{y}^{2}}{2I_{yy}} + \frac{\widehat{J}_{z}^{2}}{2I_{zz}}$$

$$E(J, K, M_J) = \frac{\hbar^2 J(J+1)}{2I_{\perp}} + \hbar^2 \left(\frac{1}{2I_{\parallel}} - \frac{1}{2I_{\perp}}\right) K^2$$

See: Atkins, Fridman Molecular QM

Table 10.1 Moments of inertia*

1. Diatomic molecules

$$I = \mu R^2 \quad \mu = \frac{m_{\rm A} m_{\rm B}}{m}$$

2. Triatomic linear rotors

$$R = m_{\rm A}R^2 + m_{\rm C}R^2 - \frac{(m_{\rm A}R - m_{\rm C}R')^2}{m}$$

$$I = 2m_A R^2$$

3. Symmetric rotors

$$\begin{split} I_{\parallel} &= 2m_{\rm A}(1-\cos\theta)R^2 \\ I_{\perp} &= m_{\rm A}(1-\cos\theta)R^2 + \frac{m_{\rm A}}{m}(m_{\rm B}+m_{\rm C})(1+2\cos\theta)R^2 \\ &+ \frac{m_{\rm C}}{m} \Big\{ (3m_{\rm A}+m_{\rm B})R' + 6m_{\rm A}R[\frac{1}{3}(1+2\cos\theta)]^{1/2} \Big\} R' \end{split}$$

$$I_{\parallel} = 2m_{\rm A}(1 - \cos\theta)R^2$$
$$I_{\perp} = m_{\rm A}(1 - \cos\theta)R^2 + \frac{m_{\rm A}m_{\rm B}}{m}(1 + 2\cos\theta)R^2$$

Rigid rotor approximation

Optical transitions:

 $\Delta E_{rot}^{J} = E_{rot}^{J} - E_{rot}^{J-1} = 2BJ \qquad (0,1-10 \text{ cm}^{-1})$

The molecule must be polar i.e. it must have **permanent dipole moment**.

Homonuclear diatomic molecules and symmetric linear molecules, for example CO₂ are **inactive**.

Heteronuclear molecules are active (plus e.g. np. H_2O , OCS)

Selection rules:
$$\Delta J = \pm 1$$

13

Rigid rotor approximation

Optical transitions:

$$\Delta E_{rot}^{J} = E_{rot}^{J} - E_{rot}^{J-1} = 2BJ$$

taking into account the centrifugal force

Cząsteczka	B (meV)	R _o Å
ОН	2,341	0,97
HCI	1,32	1,27
NO	0,211	1,15
СО	0,239	1,13
KBr	0,01	2,94

Occupation of states

Rotational Raman Transitions

Rotational Raman selection rules

The general rule:

Polarizability of the molecule must be anisotropic.

For the linear rotor it means: $\Delta J = 0, \pm 2$

16.27 Poziomy energii rotacyjnej rotatora liniowego oraz przejścia dozwolone przez ramanowską regułę wyboru $\Delta J = \pm 2$. Pokazano także typową postać rotacyjnego widma ramanowskiego

Rotational Raman Transitions

Rotational Raman selection rules

The general rule:

Polarizability of the molecule must be anisotropic.

For the linear rotor it means: $\Delta J = 0, \pm 2$

Fig. 10.12 The rotational Raman transitions of a linear molecule.

P. Atkins

Classical theory for the index of refraction

The Lorentz Oscillator model

V. M. Zoloratev and A. V. Demin, "Optical Constants of Water over a Broad Range of Wavelengths, 0.1 Å-1 m," Opt. Spectrosc. (U.S.S.R.) 43(2):157 (Aug. 1977).

In 1946 first microwave oven called "Radarange" was sold. It was almost 1.8 metres tall, weighed 340 kilograms and cost about US\$5,000 (\$52,809 in today's dollars).

In 1946 first microwave oven called "Radarange" was sold. It was almost 1.8 metres tall, weighed 340 kilograms and cost about US\$5,000 (\$52,809 in today's dollars).

Electronic states

Electrons energy strongly depends on the distance between nuclei.

E(R) - usually in numerical form.

Approximations: Morse potential eg. Lithium

 $V(r) = D_e [1 - e^{-\alpha(r - r_0)}] + V(r_0)$

Approximations: Lenard-Jones potential

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] + V(r_{0})$$

P. Kowalczyk

Electronic states

Electrons energy strongly depends on the distance between nuclei.

E(R) - usually in numerical form.

Approximations: Morse potential eg. Lithium

$$V(r) = D_e [1 - e^{-\alpha(r - r_0)}] + V(r_0)$$

Approximations: Lenard-Jones potential

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] + V(r_0)$$

Electronic states

Electrons energy strongly depends on the distance between nuclei.

The vibrations of diatomic molecules

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dR^2} + \left(\frac{\hbar J(J+1)}{2\mu R^2} + E_{el}^n(\vec{R})\right)\right]\chi_{osc}^{n\nu J}(R) = E\chi_{osc}^{n\nu J}(R)$$

$$\frac{\hbar J(J+1)}{2\mu R^2} + E_{el}^n(\vec{R}) = V_{eff}(\vec{R})$$

The energy of electrons does not only depend on the distance between nuclei, but also on how quickly molecule rotates.

$$\Psi(\vec{r}, \vec{R}) = \chi_{osc}^{n}(R)\chi_{rot}^{n}(\theta, \varphi)\Psi_{el}^{n}(\vec{r}, \vec{R})$$
$$E^{n} = E_{osc}^{n} + E_{rot}^{n} + E_{el}$$

Harmonic approximation

We are expanding potential around the equilibrium point

$$V(r) = D_e \left[1 - e^{-\alpha(r-r_0)} \right] + V(r_0)$$

$$E_{el}^n(R) \approx \frac{1}{2} k_n (R - R_e)^2$$
Harmonic oscillator
$$\chi_{osc}^v = N_v e^{-\frac{x^2}{2}} H_v(x)$$

$$E_v = \hbar \omega_e \left(v + \frac{1}{2} \right) \quad 10^2 - 10^3 \text{ cm}^{-1}$$

$$R_e$$
Internuclear separation (R)

Wikipedia

Harmonic approximation

We are expanding potential around the equilibrium point

$$V(r) = D_e \left[1 - e^{-\alpha(r-r_0)} \right] + V(r_0)$$

$$E_{el}^n(R) \approx \frac{1}{2} k_n (R - R_e)^2$$
Harmonic oscillator
$$\chi_{osc}^v = N_v e^{-\frac{x^2}{2}} H_v(x)$$

$$E_v = \hbar \omega_e \left(v + \frac{1}{2} \right) \quad 10^2 \cdot 10^3 \text{cm}^{-1}$$

$$R_e$$
Internuclear separation (R)

Wikipedia

Harmonic approximation

We are expanding potential around the equilibrium point

$$V(r) = D_e \left[1 - e^{-\alpha(r - r_0)} \right] + V(r_0)$$

$$E_{el}^n(R) \approx \frac{1}{2}k_n(R - R_e)^2$$

Harmonic oscillator

$$\chi_{osc}^{\nu} = N_{\nu}e^{-\frac{x^2}{2}}H_{\nu}(x)$$

$$E_{\nu} = \hbar \omega_e \left(\nu + \frac{1}{2} \right) \qquad 10^2 \text{--}10^3 \text{cm}^{-1}$$

Molecule	Energy hv (eV)
C ₂	0,204
N_2	0,293
0 ₂	0,196
HCI	0,357
HBr	0,316
HJ	0,491

Anharmonicity:
$$E_{\nu} = \hbar \omega_e \left(\nu + \frac{1}{2}\right) - \hbar \omega_e \chi_e \left(\nu + \frac{1}{2}\right)^2$$

Harmonic approximation

Vibration-rotation energy levels

$$\Psi(\vec{r}, \vec{R}) = \chi_{osc}^{n}(R)\chi_{rot}^{n}(\theta, \varphi)\Psi_{el}^{n}(\vec{r}, \vec{R})$$
$$E^{n} = E_{el} + E_{rot}^{n} + E_{osc}^{n}$$

$$E = E_{el}^n + BJ(J+1) + \hbar\omega_e \left(\nu + \frac{1}{2}\right)$$

Energy J = 6*J* = 5 J = 4J = 3*J* = 2 *J* = 1

J=0

Harmonic approximation

Vibration-rotation energy levels

$$\Psi(\vec{r}, \vec{R}) = \chi_{osc}^{n}(R)\chi_{rot}^{n}(\theta, \varphi)\Psi_{el}^{n}(\vec{r}, \vec{R})$$
$$E^{n} = E_{el} + E_{rot}^{n} + E_{osc}^{n}$$

$$E = E_{el}^n + BJ(J+1) + \hbar\omega_e \left(\nu + \frac{1}{2}\right)$$

J = 6

Harmonic approximation

Vibration-rotation energy levels

Selection rule: $\Delta v = \pm 1$

Typically for vibration-rotation transitions: $B_{v'} \approx B_{v''}$

R branch

 $\Delta J = J' - J'' = +1$

$$\Delta E = \hbar \omega_e + 2B_{\nu \prime} + (3B_{\nu \prime} - B_{\nu \prime \prime})J^{\prime \prime} + (B_{\nu \prime} - B_{\nu \prime \prime})J^{\prime \prime 2}$$

Q branch

$$\Delta J = 0$$

$$\Delta E = \hbar \omega_e + (B_{\nu \prime} - B_{\nu \prime \prime}) J^{\prime \prime} + (B_{\nu \prime} - B_{\nu \prime \prime}) {J^{\prime \prime}}^2$$

P branch

 $\Delta J = J' - J'' = -1$

$$\Delta E = \hbar \omega_e - (B_{\nu \prime} + B_{\nu \prime \prime}) J^{\prime \prime} + (B_{\nu \prime} - B_{\nu \prime \prime}) {J^{\prime \prime}}^2$$

On exercises!

²''1(ייע

Harmonic approximation

Vibration-rotation energy levels

Selection rule: $\Delta v = \pm 1$

Typically for vibration-rotation transitions: $B_{v'} \approx B_{v''}$

R branch

 $\Delta J = J' - J'' = +1$

$$\Delta E = \hbar \omega_e + 2B_{\nu \prime} + (3B_{\nu \prime} - B_{\nu \prime \prime})I$$

Q branch

$$\Delta J = 0$$

$$\Delta E = \hbar \omega_e + (B_{\nu}, - B_{\nu})$$

P branch

 $\Delta J = J' - J'' = -1$

$$\Delta E = \hbar \omega_e - (B_{\nu \prime} + B_{\nu \prime \prime}) J^{\prime \prime} + (B_{\nu \prime} - B_{\nu \prime \prime}) J^{\prime \prime 2}$$

0 =

P. Kowalczyk

9

8

http://www.odinity.com/vibration-rotation-spectroscopy-hcl/

2015-11-27

Harmonic approximation

Vibration-rotation energy levels

$$\Psi(\vec{r}, \vec{R}) = \chi_{osc}^{n}(R)\chi_{rot}^{n}(\theta, \varphi)\Psi_{el}^{n}(\vec{r}, \vec{R})$$
$$E^{n} = E_{el} + E_{rot}^{n} + E_{osc}^{n}$$

$$E = E_{el}^n + BJ(J+1) + \hbar\omega_e \left(\nu + \frac{1}{2}\right)$$

Franck-Condon principle

The nuclei are much heavier than electrons, therefore electron transitions occur much faster than nuclei are able to respond.

The transition between vibronic states $|\varepsilon v\rangle$ to $|\varepsilon' v'\rangle$

$$\mu_{\varepsilon'\varepsilon\nu'\nu} = \mu_{\varepsilon'\varepsilon} + \mu_{\nu'\nu}$$

$$\langle \varepsilon'\nu' | \mu_{\varepsilon'\varepsilon\nu'\nu} | \varepsilon\nu \rangle = \int \Psi'^*_{\varepsilon'\nu'} (\vec{r}, \vec{R}) \mu_{\varepsilon'\varepsilon\nu'\nu} \Psi_{\varepsilon\nu} (\vec{r}, \vec{R}) dR \approx$$

$$\approx \mu_{\varepsilon'\varepsilon} \int \Psi^*_{el} (\vec{r}, \vec{R}) \Psi'_{el} (\vec{r}, \vec{R}) dR = \mu_{\varepsilon'\varepsilon} S(\nu', \nu)$$

overlap integral between the two vibrational states ν', ν

See: Atkins, Fridman Molecular QM

Fig. 11.9 The classical basis of the Franck–Condon principle in which

Franck–Condon principle in which the molecule makes a vertical transition that terminates at the turning point of the excited state. The nuclei neither change their locations nor accelerate while the transition is in progress.

Franck-Condon principle

The nuclei are much heavier than electrons, therefore electron transitions occur much faster than nuclei are able to respond.

The transition between vibronic states $|\varepsilon v\rangle$ to $|\varepsilon' v'\rangle$

$$\mu_{\varepsilon'\varepsilon\nu'\nu} = \mu_{\varepsilon'\varepsilon} + \mu_{\nu'\nu}$$

$$\langle \varepsilon'\nu' | \mu_{\varepsilon'\varepsilon\nu'\nu} | \varepsilon\nu \rangle = \int \Psi_{\varepsilon'\nu\nu}^{*}(\vec{r},\vec{R}) \mu_{\varepsilon'\varepsilon\nu'\nu} \Psi_{\varepsilon\nu}(\vec{r},\vec{R}) dR \approx$$

$$\approx \mu_{\varepsilon'\varepsilon} \int \Psi_{el}^{*}(\vec{r},\vec{R}) \Psi_{el}^{\prime}(\vec{r},\vec{R}) dR = \mu_{\varepsilon'\varepsilon} S(\nu',\nu)$$

overlap integral between the two vibrational states ν', ν

See: Atkins, Fridman Molecular QM

Fig. 11.10 The quantum mechanical version of the Franck–Condon principle. The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction that most strongly resembles the initial vibrational wavefunction.

Franck-Condon principle

The nuclei are much heavier than electrons, therefore electron transitions occur much faster than nuclei are able to respond.

Fig. 11.10 The quantum mechanical version of the Franck–Condon principle. The molecule makes a transition from the ground vibrational state to the state with a vibrational wavefunction that most strongly resembles the initial vibrational wavefunction.

Franck-Condon principle

James Franck 1882 – 1964

Edward U. Condon 1902 – 1974

Rotational spectra are associated only with the change of rotational movement

- $-\lambda^{\sim} 0.1 10$ cm (microwaves)
- **Vibration–rotation spectra** correspond to both the change in vibration and rotation of the molecule $\lambda \sim 1 100 \ \mu m$ (IR)
- **Electronic-vibration–rotation spectra** are related to the change in electron cloud state, which is accompanied by a change in oscillation and rotation– $\lambda \sim 100$ nm 1 µm (UV-VIS)

Fluorescence and phosphorescence

Fluorescence

The Decay is immediate after switching off the excitation radiation $(10^{-8} - 10^{-4} \text{ s})$

Fluorescence and phosphorescence

Phosphorescence

The spontaneous emission may persist for a long time (from 10⁻⁴ seconds to hours)

