

Gęstość ładunku i prądu
Gęstość prądu: $J(\vec{r},t) = J(\vec{r}) = \frac{\hbar q}{2 i m} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$
W przypadku fali de Broigla: $\Psi(x,t) = \left[A_+e^{ikx} + Ae^{-ikx}\right]e^{-i\omega t}$
$J(\vec{r}) = \frac{\hbar q k}{m} (A_+ ^2 - A ^2) \qquad \text{czyli każda fala niesie z sobą prąd}$
W przypadku fali zanikającej: $\Psi(x,t) = [B_+e^{\kappa x} + Be^{\kappa x}]e^{-i\omega t}$
$J(\vec{r}) = \frac{\hbar q \kappa}{i m} (B_+ B^* - B_+^* B) = \frac{2 \hbar q \kappa}{m} \operatorname{Im} (B_+ B^*)$
(a) Tylko złożenie amplitud + i – daje rzeczywisty prąd!
FIGURE 1.5. Current carried by counter-propagating decaying waves. (a) An infinitely thick barrier contains a single decaying exponential that carries no current. (h) A finite barrier contains horb growing and decaying exponentials and passes current. (The wave function is complex, so the figure is only a rough guide.)
2014-02-14 7

Gęstość prądu:	$J(\vec{r},t) = J$	$f(\vec{r}) = \frac{\hbar q}{2 i m} (\Psi$	ν* <i>Φ</i> Ψ – Ψ	₩₽Ψ*)		
W przypadku fa	li de Broigla: 🕚	$\Psi(x,t) = \left[A_+e^{i}\right]$	ikx + A	$e^{-ikx}]e^{-i\omega t}$		
	$J(\vec{r}) = \frac{\hbar q k}{m} (A)$	$ A_+ ^2 - A ^2)$	czyli l	każda fala ni	esie z sobą pr	ąd
W przypadku fa	li zanikającej:	$\Psi(x,t) = [B_+$	$_+e^{\kappa x}+B$	$e^{\kappa x}]e^{-i\omega t}$		
	$J(\vec{r}) = \frac{\hbar q \kappa}{i m} (B)$	$B_+B^*-B_+^*B)$	$=\frac{2\hbar q}{m}$	$\frac{\kappa}{-}$ Im (B_+B^*)	
		Tylk	o złożeni	ie amplitud	⊦ i – daje rzec	zywisty prąd
Fala klasyczna:	$\Psi(x,t) = Re\{$	$[A_+e^{ikx} + Ae^{ikx}]$	$-ikx$] e^{-id}	ωt		

<section-header><figure><figure>

Physica E 24 (2004) 63–69

2014-02-14

Bloka	ida Kulombowska		
nature physics	LETTERS PUBLISHED ONLINE & APRIL 2009 (DOI: 10.2033//JPH/151234		
Franck-Co nanotube Renaud Leturcq ¹²⁺ Eros Mariani ⁴ , Max	ondon blockade in suspended carbon quantum dots , Christoph Stampfer ¹³ *, Kevin Inderbitzin ¹ , Lukas Durrer ² , Christofer Hierold ³ , milian G. Schulz ¹ , Felix von Oppert ⁴ and Klaus Ensslin ¹		
a	Source Top gate Drain	c 3 10 10 10 10 10 10 10 10 10 10	
Blas V _{isi} (mV)	0 5 5 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7	15 10 -05 -0 -05 -0 -0 -05 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	
2014-02-14			39

Identification of atomic-like electronic states in indium arsenide nanocrystal

Uri Banin*, YunWei Cao*, David Katz† & Oded Millo† * Department of Physical Chemistry and the Farkas Center for Light Induced Processes, † Raah Institute of Physics, The Hebrew University, Jerusalem 9190

Figure 1 Scanning tunnelling microscopy and spectroscopy of a single InA nanocrystal 32 Å in radius, acquired at 42 K. The nanocrystal quantum dots (QI are linked to the gold substrate by hexane dithiol molecules (DT), as show schematically in the right inset. Left inset, a 10 × 10 nm STM topographic image showing the nanocrystal. For measuring the /- // characteristics, the STM tip wa positioned above the QD, thus realizing a double-barrier tunnel junction configu ration. a, The tunnelling /-V characteristic, exhibiting single-electron tunnelli effects. b, The tunnelling conductance spectrum, dl/dl/ versus V, obtained b numerical differentiation of the /-V curve (a.u., arbitrary units). The arrows depir the main energy separations: E_c is the single-electron charging energy, E_g is th nanocrystal bandgap, and Δ_{VR} and Δ_{CR} are the spacing between levels in th

letters to nature

Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots

Uri Banin*, YunWei Cao*, David Katz† & Oded Millo† * Department of Physical Chemistry and the Farkas Center for Light Induced Processes, † Racah Institute of Physics, The Hebrew University, Jerusalem 91904,

Figure 2 Size evolution of representative tunnelling dl/dl/ versus V characteristics, displaced vertically. The position of the centre of the observed zero-current gap showed non-systematic variations with respect to zero bias, of the order of 0.2 eV, probably due to variations of local offset potentials. For clarity of presentation, we offset the spectra along the V direction to situate the centres of the observed zero-current gaps at zero bias. The nanocrystal radii are denoted in the figure. The range of displayed voltage for each curve reflects the experimental saturation limit of the detected current.

Tunelowanie

"Kolokwium WAN IN"

014-02-14

- 1. Znajdź w literaturze parametry pasmowe InAs (masy efektywne, powinowactwo elektr., ε_r) [00]
- 2. Na podstawie danych z rys. 1 wyznacz pojemność kropki kwantowej o średnicy 32 A. [5p]
- 3. Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu nieskończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [10p]
- 4. Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu skończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [30p] (zadanie numeryczne).
- Oszacuj powinowactwo elektronowe (electron affinity, energię jonizacji z poziomu studni) oraz pojemność kropek kwantowych z rys. 2. (zadanie numeryczne). Porównaj wyniki z danymi tablicowymi (pkt 1) oraz ze wzorem na pojemność kuli i wyznacz ε_r nanocząstki. [30p]

2014-02-14

letters to nature

Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots

Uri Banin*, YunWei Cao*, David Katz† & Oded Millo†

* Department of Physical Chemistry and the Farkas Center for Light Induced Processes, † Raash Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Pola skalarne i wektorowe Równania Maxwella w ośrodku materialnym $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{H} = \vec{J}_{sw} + \frac{\partial \vec{D}}{\partial t}$ Równania materiałowe (linowe) $\vec{B} = \mu_0 \vec{H} + \vec{M} = \mu_0 (1 + \chi_m) \vec{H} = \mu \vec{H} = \mu_r \mu_0 \vec{H}$ $\nabla \vec{D} = \rho_{sw}$ $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi_e) \vec{E} = \varepsilon \vec{E} = \varepsilon_0 \varepsilon_r \vec{E}$ $\nabla \vec{B} = 0$ $\vec{j}_{sw} = \hat{\sigma}\vec{E}$ Równania zapisane w postaci potencjału $v^2 = \frac{1}{\mu_0 \varepsilon_0} \frac{1}{\mu_r \varepsilon_r} = \frac{c^2}{\mu_r \varepsilon_r} = \frac{c^2}{n^2}$ skalarnego φ i wektorowego A: $\vec{B} = \nabla \times \vec{A}$ We tedy $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{A}) \Rightarrow \nabla \times \vec{E} + \frac{\partial}{\partial t} (\nabla \times \vec{A}) = 0 \Rightarrow \nabla \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$ Skoro rotacja gradientu znika, to wprowadzamy $-\nabla \varphi = \vec{E} + \frac{\partial \vec{A}}{\partial t}$ czyli $\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t}$ 2014-02-14

$2m dz^2 + q \varphi(r) \phi(r) \varphi(z) + e \varphi(z) + ry blocking decidence q \varphi(r) \phi(r) + dr Z = Rozwiązania STACJONARNE w postaci funkcji Airy: A gdzie jest ruch elektronu w polu??? Funkcja falowa • rozwiązanie przypomina fale stojące! • 4 • funkcja tuneluje w barierę • 3 z > \frac{e}{eF},• 2 znika szybciej dlarosnącego potencjału,• 1 • oscyluje dla z < \frac{e}{eF} tymszybciej im z - \frac{e}{eF} \to (-\infty),czyli rośnie energiakinetyczna cząsteczki• Dodanie stałej dopotencjału ZMIENIA funkcjefalowe!$	Pola skalarne i w $\left[-\frac{\hbar^2}{2}\frac{d^2}{d^2} + ag(\vec{r}, t)\right]\psi(z) = z\psi(z)$	ektorowe	$aa(\vec{r}, t) = eFz$
A gdzie jest ruch elektronu w polu??? Funkcja falowa 5 • rozwiązanie przypomina fale stojące! 0.4 • funkcja talowa 0.5 • rozwiązanie przypomina fale stojące! 0.4 • funkcja talowa 0.2 · rosnącego potencjału, 0.1 • oscyluje dla $z < \frac{e}{eF}$ tym szybciej im $z - \frac{e}{eF} \to (-\infty)$, czyli rośnie energia kinetyczna cząsteczki D odanie stałej do potencjału ZMIENIA funkcje falowe!	$\left[2mdz^2+q\varphi(z,z)\right]\varphi(z)=c\varphi(z)$	Rozwiązania STACJO	NARNE w postaci funkcji Airy:
Funkcja tuneluje w barierę $v_{1} = \frac{1}{2} = \frac{1}{2}$ $v_{2} = eFz$ $v_{1} = \frac{1}{2} = \frac{1}{2}$ Figure 6.1. (a) Potential energy eFz , three wave functions, and energies for electrons in GiAX Figure 6.1. (a) Potential energy eFz , three wave functions, and energies for electrons in GiAX Figure 6.1. (a) Potential energy eFz , three wave functions, and energies for electrons in GiAX Figure 6.5. • rozwiązanie przypomina fale stojącel 0.4. • funkcja tuneluje w barierę $z > \frac{k}{eF}$, $z = \frac{k}{eF}$, $z = \frac{k}{eF} + (row)$, czyli rośnie energia kinetyczna cząsteczki • Dodanie stałej do potencjału ZMIENIA funkcje falowel		+∞ A gdzie j	jest ruch elektronu w polu???
Reades conception to the wave functions.	6.5 6.6 6.7 6.7 6.7 6.7 6.7 6.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 	(b) 0.5 • 0.4 • 0.3 • 0.2 • 0.1 • 0 0.1 • 0 0.1 • 0 0.1 • 0 0.5 •	rozwiązanie przypomina fale stojące! funkcja tuneluje w barierę $z > \frac{e}{e_F}$, zanika szybciej dla rosnącego potencjału, oscyluje dla $z < \frac{e}{e_F}$ tym szybciej im $z - \frac{e}{e_F} \rightarrow (-\infty)$, czyli rośnie energia kinetyczna cząsteczki Dodanie stałej do potencjału ZMIENIA funkcje falowe!

Lokalna gęstość stanów
Gęstość stanów (ogólnie) można zdefiniować jako:
$N(E) = \sum_n \delta(E-arepsilon_n)$ Jak widać po scałkowaniu:
$\int_{E_1}^{E_2} N(E) dE = \int_{E_1}^{E_2} \sum_n \delta(E - \varepsilon_n) dE = \sum_n \int_{E_1}^{E_2} \delta(E - \varepsilon_n) dE$
Przykładowo:
$N^{1D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 2 dk = \frac{1}{\pi} \sqrt{\frac{2m}{E}}$
$N^{2D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 2\pi k dk = \frac{m}{\pi \hbar^2}$
$N^{3D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 4\pi k^2 dk = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$
2014-02-14 Na ćwicze

Lokalna gęstość stanów
Gęstość stanów (ogólnie) można zdefiniować jako:
$N^{3D}(E,z) \sim \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \int_{-\infty}^{E} Ai^2 \left(\frac{eFz - \varepsilon}{\varepsilon_0}\right) d\varepsilon = \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \left[[Ai'(s)]^2 - s[Ai(s)]^2 \right]$ $s = \frac{eFz - E}{\varepsilon_0}$
Przykładowo: $N^{1D}(E, z) \sim \int_{-\infty}^{\infty} Ai^2 \left(\frac{eFz - \varepsilon}{\varepsilon_0}\right) \delta(E - \varepsilon) d\varepsilon \sim \frac{2}{\hbar} \sqrt{\frac{2m}{\varepsilon_0}} Ai^2 \left(\frac{eFz - \varepsilon}{\varepsilon_0}\right)$ $6 - \frac{1}{2} + $
FGUPE 6.2. Local density of states $h^{\mu\nu} [E, z)$ for electrons in GaAs in an electric field of 2014-02-14 SMV m ⁻¹ as a function of local kinetic energy, $s = E - eFz$. The thin curves are the results for free electrons. The units of $n(E, z)$ are $eV^{-1}nn^{-d}$ in d dumensions.

Lokalna gęstość stanów
Gęstość stanów (ogólnie) można zdefiniować jako:
$N^{3D}(E,z) \sim \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \int_{-\infty}^{E} Ai^2 \left(\frac{eFz - \varepsilon}{\varepsilon_0}\right) d\varepsilon = \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \left[[Ai'(s)]^2 - s[Ai(s)]^2 \right]$
Efekt Frantza-Kieldysha – w polu elektrycznym przejścia optyczne zachodzą w niższych energiach – bo przerwa energetyczna się "rozmywa" przez tunelowanie do niej stanów:
band gap valence band $E_c(z)$ $E_e(z)$
and conduction bands are separated by $\Delta L < L_g$ but overlap because of the tail that tunnels into the band gap.
2014-02-14 64

Tensor przewodn	ictwa
Tensor przewodnictwa: $\vec{j}_{sw} = \hat{\sigma}\vec{E}$	Tensor oporności: $\vec{E}=\hat{ ho}\vec{J}_{sw}$
$ \begin{pmatrix} J_x \\ J_y \end{pmatrix} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} $	
Tensor przewodnictwa: $\vec{J}_{SW} = \hat{\sigma}\vec{E}$	
W ośrodku izotropowym $J_x = \sigma_{xx} E_x$	
2014-02-14	6

Pola ska	larne i wektorowe
$\psi_{\vec{k}}(\vec{r},t) = \exp(t)$	$i\vec{k}\vec{r}$) T $(\vec{k},t) = \exp(i\vec{k}\vec{r}) \exp\left(-\frac{i}{\hbar}\int^{t}\frac{\hbar^{2}}{2m}\left[\vec{k}-\frac{e}{\hbar}\vec{E}t'\right]^{2}dt'\right) =$
	$= \exp\left(i\left[\vec{k}\vec{r} - \frac{1}{\hbar}\int^{t}\frac{\hbar^{2}}{2m}\left[\vec{k} - \frac{e}{\hbar}\vec{E}t'\right]^{2}dt'\right]\right)$
Cząstka przyspiesza rośnie. Z drugiej str przestrzennej exp(i	w czasie z pędem $\hbar \vec{k} - e \vec{E} t'$, co odpowiada stałej sile $-e \vec{E}$. Pęd cząstki ony oczekiwalibyśmy, żeby ta zmiana pędu była widoczna w zmianie i $\vec{k} \vec{r}$) (zmiana długości fali, czyli zmiana wektora falowego \vec{k}) - a tego nie ma.
	Trudno też zdefiniować gęstość stanów.
Gęstość prądu jest (DK – stała w przestrzeni i zwiększa się w czasie (stałe przyspieszenie)
$J(\vec{r},t) = \frac{q}{2} \left[\Psi^* \left(\frac{q}{2} \right) \right]$	$\frac{\hat{p}-q\vec{A}(\vec{r},t)}{m}\Psi\bigg) + \left(\frac{\hat{p}-q\vec{A}(\vec{r},t)}{m}\Psi\right)^*\Psi\bigg] = -\frac{e}{m}\left(\hbar\vec{k}-e\vec{E}t\right)$
	$\frac{\hbar^2}{2m} \left[\vec{k} - \frac{e}{\hbar} \vec{E}t \right]^2 \exp(i \vec{k} \vec{r}) \mathrm{T}(\vec{k}, t) = i\hbar \frac{d}{dt} \exp(i \vec{k} \vec{r}) \mathrm{T}(\vec{k}, t)$
2014-02-14	

$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{H} = \vec{J}_{SW} + \frac{\partial \vec{D}}{\partial t}$ $\nabla \vec{D} = \rho_{SW}$ $\nabla \vec{B} = 0$ Równania zapisane w postaci potencjału skalarnego φ i wektorowego A: $\vec{B} = \nabla \times \vec{A}$ Wtedy $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{A}) \Rightarrow \nabla \times \vec{E} + \frac{\partial}{\partial t} (\nabla \times \vec{A}) = 0 \Rightarrow \nabla \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right)$ Skoro rotacja gradientu znika, to wprowadzamy $-\nabla \varphi = \vec{E} + \frac{\partial \vec{A}}{\partial t}$ czyli $\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t}$	Pola skalarne i we	ktorowe
Równania zapisane w postaci potencjału skalarnego φ i wektorowego A: $\overrightarrow{B} = \nabla \times \overrightarrow{A}$ Wtedy $\nabla \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \overrightarrow{A}) \Rightarrow \nabla \times \overrightarrow{E} + \frac{\partial}{\partial t} (\nabla \times \overrightarrow{A}) = 0 \Rightarrow \nabla \times \left(\overrightarrow{E} + \frac{\partial \overrightarrow{A}}{\partial t}\right)$ Skoro rotacja gradientu znika, to wprowadzamy $-\nabla \varphi = \overrightarrow{E} + \frac{\partial \overrightarrow{A}}{\partial t}$ czyli $\overrightarrow{E} = -\nabla \varphi - \frac{\partial \overrightarrow{A}}{\partial t}$	$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{H} = \vec{J}_{sw} + \frac{\partial \vec{D}}{\partial t}$ $\nabla \vec{D} = \rho_{sw}$ $\nabla \vec{B} = 0$	Równania materiałowe (linowe) $\vec{B} = \mu_0 \vec{H} + \vec{M} = \mu_0 (1 + \chi_m) \vec{H} = \mu \vec{H} = \mu_r \mu_0 \vec{H}$ $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi_e) \vec{E} = \varepsilon \vec{E} = \varepsilon_0 \varepsilon_r \vec{E}$ $\vec{j}_{sw} = \partial \vec{E}$
∂t ∂t	Równania zapisane w postaci potencjału skalarnego φ i wektorowego A : $\vec{B} = \nabla \times \vec{A}$ Wtedy $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \vec{A})$ Skoro rotacja gradientu znika, to wprowad	$v^{2} = \frac{1}{\mu_{0}\varepsilon_{0}} \frac{1}{\mu_{r}\varepsilon_{r}} = \frac{c^{2}}{\mu_{r}\varepsilon_{r}} = \frac{c^{2}}{n^{2}}$ $\Rightarrow \nabla \times \vec{E} + \frac{\partial}{\partial t} (\nabla \times \vec{A}) = 0 \Rightarrow \nabla \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$ $zamy -\nabla \varphi = \vec{E} + \frac{\partial \vec{A}}{\partial t} czyli \vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t}$

Pola skalarne i w	rektorowe
$\left[-\frac{\hbar^2}{2m}\frac{d^2}{dz^2} + q\varphi(\vec{r},t)\right]\psi(z) = \varepsilon\psi(z)$	Wybieramy cechowanie $q\varphi(\vec{r}, t) = eFz$ Rozwiązania STACJONARNE w postaci funkcji Airy: A gdzie jest ruch elektronu w polu???
0.5 (a) 0.4 (b) 0.3 (c) 0.3 (c) 0.3 (c) 0.4 (c) 0.3 (c) 0.4 (c) 0.3 (c) 0.4 (c) 0.4 (c) 0.4 (c) 0.4 (c) 0.5 (c) 0.4 (c) 0.4 (c) 0.4 (c) 0.4 (c) 0.4 (c) 0.5 (c) 0.4 (c) 0.5 (c) 0.	(b) (b) (c) (c) (c) (c) (c) (c) (c) (c
2014-02-14	75

Lokalna gęstość stanów
Gęstość stanów (ogólnie) można zdefiniować jako:
$N(E) = \sum_{n} \delta(E - \varepsilon_n)$ Jak widać po scatkowaniu:
$\int_{E_1}^{E_2} N(E) dE = \int_{E_1}^{E_2} \sum_n \delta(E - \varepsilon_n) dE = \sum_n \int_{E_1}^{E_2} \delta(E - \varepsilon_n) dE$
Przykładowo:
$N^{1D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 2 dk = \frac{1}{\pi} \sqrt{\frac{2m}{E}}$
$N^{2D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 2\pi k dk = \frac{m}{\pi \hbar^2}$
$N^{3D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 4\pi k^2 dk = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$
2014-02-14 Na ćwiczemioce

Lokalna gęstość stanów
Gęstość stanów (ogólnie) można zdefiniować jako:
$N^{3D}(E,z) \sim \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \int_{-\infty}^{E} Ai^2 \left(\frac{eFz-\varepsilon}{\varepsilon_0}\right) d\varepsilon = \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \left[[Ai'(s)]^2 - s[Ai(s)]^2 \right]$ $s = \frac{eFz-E}{\varepsilon_0}$
Przykładowo: $N^{1D}(E, z) \sim \int_{-\infty}^{\infty} Ai^2 \left(\frac{eFz - \varepsilon}{\varepsilon_0}\right) \delta(E - \varepsilon) d\varepsilon \sim \frac{2}{h} \sqrt{\frac{2m}{\varepsilon_0}} Ai^2 \left(\frac{eFz - \varepsilon}{\varepsilon_0}\right)$ $\int_{-\infty}^{0} \frac{1}{2} \int_{0}^{0} \frac{1}{2} \int_{0}^{$
FUURE 6.2. Local density of states $h^{ret}(E, z)$ for electrons in GaAs in an electric field of 2014-02-14 SMV m ⁻¹ as a function of local kinetic energy, $c = E - eFz$. The thin curves are the results for free electrons. The units of $n(E, z)$ are $eV^{-1}nn^{-d}$ in d dumensions. 79

Lokalna gęstość stanów
Gęstość stanów (ogólnie) można zdefiniować jako:
$N^{3D}(E,z) \sim \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \int_{-\infty}^{E} Ai^2 \left(\frac{eFz - \varepsilon}{\varepsilon_0}\right) d\varepsilon = \frac{m}{\pi\hbar^3} \sqrt{2m\varepsilon_0} \left[[Ai'(s)]^2 - s[Ai(s)]^2 \right]$
Efekt Frantza-Kieldysha – w polu elektrycznym przejścia optyczne zachodzą w niższych energiach – bo przerwa energetyczna się "rozmywa" przez tunelowanie do niej stanów:
$ \begin{array}{c} $
FIGURE 6.3. The Franz-Keldysh effect on interband absorption. The states shown in the valence and conduction bands are separated by $\Delta E < E_2$ but overlap because of the tail that tunnels into the band gap.
2014-02-14 80

Tensor przewodn	ictwa
Tensor przewodnictwa: $\vec{j}_{sw} = \hat{\sigma}\vec{E}$	Tensor oporności: $ec{E}=\hat{ ho}ec{J}_{sw}$
$ \begin{pmatrix} J_x \\ J_y \end{pmatrix} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix} $	
Tensor przewodnictwa: $\vec{J}_{SW} = \hat{\sigma}\vec{E}$	
W ośrodku izotropowym $J_x = \sigma_{xx} E_x$	
2014-02-14	8

Pola skalar	ne i wektorowe
$\psi_{\vec{k}}(\vec{r},t) = \exp(i\vec{k}\vec{r})\mathrm{T}($	$\left(\vec{k},t\right) = \exp\left(i\vec{k}\vec{r}\right)\exp\left(-\frac{i}{\hbar}\int^{t}\frac{\hbar^{2}}{2m}\left[\vec{k}-\frac{e}{\hbar}\vec{E}t' ight]^{2}dt' ight) =$
	$= \exp\left(i\left[\vec{k}\vec{r} - \frac{1}{\hbar}\int^{t}\frac{\hbar^{2}}{2m}\left[\vec{k} - \frac{e}{\hbar}\vec{E}t'\right]^{2}dt'\right]\right)$
Cząstka przyspiesza w czas rośnie. Z drugiej strony ocz przestrzennej $\exp(i \vec{k} \vec{r})$ (z	ie z pędem $\hbar \vec{k} - e \vec{E} t'$, co odpowiada stałej sile $-e \vec{E}$. Pęd cząstki zekiwalibyśmy, żeby ta zmiana pędu była widoczna w zmianie miana długości fali, czyli zmiana wektora falowego \vec{k}) - a tego nie ma.
	Trudno też zdefiniować gęstość stanów.
Gęstość prądu jest OK – sta	ała w przestrzeni i zwiększa się w czasie (stałe przyspieszenie)
$J(\vec{r},t) = \frac{q}{2} \left[\Psi^* \left(\frac{\hat{p} - q \vec{A}}{m} \right) \right]$	$\left(\frac{\hat{l}(\vec{r},t)}{m}\Psi\right) + \left(\frac{\hat{p}-q\vec{A}(\vec{r},t)}{m}\Psi\right)^*\Psi = -\frac{e}{m}\left(\hbar\vec{k}-e\vec{E}t\right)$
$rac{\hbar^2}{2m} [ec{k}$	$\vec{k} - \frac{e}{\hbar}\vec{E}t\Big]^2 \exp(i\vec{k}\vec{r})\mathrm{T}(\vec{k},t) = i\hbar\frac{d}{dt}\exp(i\vec{k}\vec{r})\mathrm{T}(\vec{k},t)$
2014-02-14	8

