

Blokada Kulo	ombowska
Kropka zachowuje się jak mały kondensator o energii $E_c \sim rac{1}{2} rac{e^2}{c}$	
	a $\frac{1}{N+l}$ b $\frac{N+l}{K}$ c $\frac{1}{K_{T}}$ $\frac{1}{N-l}$ $\frac{1}{K_{T}}$
	C U U U U U U U U U U U U U U U U U U U
2014-02-14	11

3

 "Kolokwium WAN IN"
 I. Znajdź w literaturze parametry pasmowe InAs (masy efektywne, powinowactwo elektr., *ɛ_r*) [0p]

Tunelowanie

- Na podstawie danych z rys. 1 wyznacz pojemność kropki kwantowej o średnicy 32 A. [5n]
- Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu nieskończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [10p]
- Na podstawie rys. 2 oraz 3 wyznacz rozmiar nanocząstek InAs w przybliżeniu skończonej studni potencjału. Porównaj z wartościami mierzonymi oraz z rys. 3. [30p] (zadanie
- numeryczne). Oszacuj powinowactwo elektronowe (electron affinity, energię jonizacji z poziomu studni) oraz pojemność kropek kwantowych z rys. 2. (zadanie numeryczne). Porównaj wyniki z danymi tablicowymi (pkt 1) oraz ze wzorem na pojemność kuli i wyznacz ε, nanoczastki. [30p]

2014-02-14

letters to nature

Identification of atomic-like electronic states in indium arsenide nanocrystal guantum dots

Jednorodne pole magnetyczne Symetria względem odwrócenia czasu (time-reversal invariance, T-symmetry): jeśli rozwiązaniem równania Schrodingera jest funkcja $\Psi(t)$, to rozwiązaniem musi być także $\Psi^*(-t)$ – tylko w przypadku hamiltonianu rzeczywistego. Dla pola magnetycznego musimy także odwrócić kierunek pola magnetycznego: $\Psi(t, \vec{B}) \rightarrow \Psi^*(-t, -\vec{B})$ (musimy odwrócić znak pędu kinetycznego $[\hat{p} - q \vec{A}(\vec{r}, t)]$. Urojona wartość – brak symetrii względem Potencjał w funkcji z jest niezależny od odwrócenia czasu pozostałych zmiennych (faktoryzacja) \rightarrow rozważamy więc problem 2D + z $-\frac{\hbar^2}{2m}\nabla^2 - \frac{ie\hbar}{m}Bx\frac{\partial}{\partial y} + \frac{(eBx)^2}{2m} + U(z)\bigg]\psi(\vec{r}) = E\psi(\vec{r})$ co daje: Ślad siły Lorentza Potencjał paraboliczny! Potencjał wektorowy nie zależy od y, można założyć postać funkcji: $u(x) \exp(iky)$

Jednorodne pole magnetyczne	
$\left[-\frac{\hbar^2}{2m}\nabla^2 - \frac{ie\hbar}{m}Bx\frac{\partial}{\partial y} + \frac{(eBx)^2}{2m} + U(z)\right]\psi(\vec{r}) = E\psi(\vec{r})$	
Potencjał wektorowy nie zależy od y, można założyć postać funkcji: $\psi(\vec{r}) = w(z)u(x)\exp(ik_yy)$	
$\left[-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega_c^2\left(x + \frac{\hbar k_y}{eB}\right)^2\right]u(x) = \varepsilon u(x) \qquad \omega_c = \left \frac{eB}{m}\right \qquad R_c = \frac{v}{\omega_c} = \frac{\sqrt{2mE}}{ eB }$	
Długość magnetyczna: $l_B = \sqrt{\frac{\hbar}{m\omega_c}} = \sqrt{\frac{\hbar}{ eB }}$ nie zależy od masy cząstki, a TYLKO od pola!	
Typowa wartość dla $B=1.0~{ m T}$ to $l_B=26~{ m nm}.$	
Rozwiązania $\varepsilon_{nk} = \left(n - \frac{1}{2}\right) \hbar \omega_c$ (nie zależą od k_y). $\phi_{nk}(x, y) \propto H_{n-1}\left(\frac{x - x_k}{l_B}\right) \exp\left[-\frac{(x - x_k)^2}{2l_B^2}\right] \exp(ik_y y)$ $n = 1, 2, 3 \dots$ to kolejne poziomy Landaua .	
2014-02-14	

Przypadek 2D	$-\begin{pmatrix} n \\ \end{pmatrix} \mathbf{k}_{(1)} + \mathbf{E}_{(2)}$ (nin relatived $\mathbf{k}_{(2)}$)	
Rozwiązania ε_{nk}	$= \left(n - \frac{1}{2}\right) n\omega_c + E_n$ (file zalezy od k_y).	27
	$\phi_{nk}(x,y) \propto H_{n-1}\left(\frac{x-x_k}{l_B}\right) \exp\left[-\frac{(x-x_k)^2}{2l_B^2}\right]$	$\left \exp(ik_y y) \right = 1, 2, 3 \dots$
Funkcje falowe – dziwne, prawo	to funkcje oscylatora (wzdłuż <i>x</i> , rozmiaru rzędu la? Dlaczego?	i $l_B/\sqrt{2}$) i fali biegnącej (wzdłuż y)
Energia nie zależy od wektora k – stany o różnym k maja tą samą energię, są więc zdegenerowane (a więc dowolna ich kombinacja nie zmienia energii).		
Gęstość stanów	redukuje się ze stałej $\frac{m}{\pi \hbar^2}$ do serii dyskretnych v	wartości
δ danych przez	równanie na ε_{nk} - są to tzw. <i>poziomy Landaua</i> .	↑ E
Pełna energia (ł	ącznie z potencjałem wiążącym w kierunku z):	E ₂
$E = E_z + \varepsilon_{nk}$	$=E_{z}+\left(n-\frac{1}{2}\right)\hbar\omega_{c}$	E_1
	n - 1 2 3	

Jednorodne pole	magnetyczne
Przypadek 3D (brak potencjału $U(z)$)	
Rozwiązania : $\varepsilon_{nk} = \left(n - \frac{1}{2}\right)\hbar\omega_c + \frac{\hbar}{2}$ ε_{nk}	$\frac{2k_z^2}{m^*}$ $n = 1, 2, 3$ to kolejne poziomy Landaua . DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy ruch tylko w kierunku z DOS przypomina 1D bo jest możliwy DOS przypomina 1D bo jest możliwy
2014-02-14	23

Jednorodne pole magnetyczne	
Rozwiązanie w cechowaniu symetrycznym: $\begin{pmatrix} 1 \\ r \\$	
$\left\{\frac{\partial}{\partial m}\left[\hat{p} - qA(\vec{r}, t)\right] + q\phi(\vec{r}, t) + U(\vec{r}, t)\right\}\psi(\vec{r}, t) = i\hbar\frac{\partial}{\partial t}\psi(\vec{r}, t)$	
Cechowania symetryczne : pole $B = (0,0,B_z) \Rightarrow A_\theta = \frac{1}{2}Br, A_r = 0, A_z = 0$	
$\left\{-\frac{\hbar^2}{2m}\left[\frac{\partial^2}{\partial r^2}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right]-\frac{i\hbar eB}{m}\frac{\partial}{\partial \theta}+\frac{e^2B^2r^2}{8m}+U(z)\right\}\psi(r,\theta,z)=E\psi(r,\theta,z)$	
Tym razem niezmiennikiem jest obrót o kąt $ heta$, co można powiązać z momentem pędu i funkcją w postaci exp $(il heta)$	
$\varepsilon_{nl} = \left(n + \frac{1}{2}l + \frac{1}{2} l - \frac{1}{2}\right)\hbar\omega_c \qquad n = 1, 2, 3 \dots \qquad l = 0, \pm 1, \pm 2, \pm 3 \dots$	
$\phi_{nk}(r,\theta) \propto \exp(il\theta) \exp\left[-\frac{r^2}{4l_B^2}\right] r^{ l } L_{n-1}^{(l)} \left(\frac{r^2}{2l_B^2}\right)$	
Potencjał symetryczny też ma swoje	
wady – gdzie zaczynają się	
WSZYSTKIE orbity cyklotronowe? Stowarzyszony wielomian Laguerra	

Jednorodne pole magnetyczne

Wracamy do cechowania Landaua

Rozwiązania
$$\varepsilon_{nk} = \left(n - \frac{1}{2}\right) \hbar \omega_c + E_n$$
 (nie zależy od k_y).
 $\phi_{nk}(x, y) \propto H_{n-1}\left(\frac{x - x_k}{l_B}\right) \exp\left[-\frac{(x - x_k)^2}{2l_B^2}\right] \exp(ik_y y) \qquad n = 1, 2, 3..$

Pytanie: dla danego *n* (czyli poziomu Landaua) ile jest różnych stanów $\phi_{nk}(x, y)$ o tej samej energii – czyli jaka jest degeneracja poziomów Landaua?

Policzmy ile jest różnych funkcji o liczbach kwantowych k_y (tylko liczy się k_y , bo w cechowaniu Landaua x_k zależy od k_y) – podobne rozważania można zrobić w dowolnym cechowaniu.

Jaka jest ilość stanów <u>przypadająca na jeden poziom</u>? Próbka S = $L_x \times L_y$, w cechowaniu Landaua dla współrzędnej *y* mamy warunek fali płaskiej $k = (2\pi/L_y)n_y$ (n_y to <u>liczba całkowita</u>).

lle jest wszystkich stanów o różnych n_y ?

Dla współrzędnej x funkcja falowa jest centrowana w $x_k = -\frac{\hbar k}{eB} = -(2\pi\hbar n_y/eBL_y)$. Jeśli n_y będzie zbyt duże, x_k może wyjść poza próbkę .

2014-02-14

Poziomy Landaua

Rozwiązanie równania Schrödingera w polu magnetycznym daje widmo dyskretne.	
Jaka jest ilość stanów <u>przypadająca na jeden poziom</u> ? Próbka S = $L_x \times L_y$, w cechowaniu	
Landaua dia wsporrzędnej y mamy warunek fali płaskiej $k = (2\pi/L_y)n_y$ (n_y to <u>liczba całkowita</u>).	
Dla współrzędnej x funkcja falowa jest centrowana w $x_k = -\frac{\hbar k}{eB} = -(2\pi\hbar n_y/eBL_y).$	
Warunek na to, by x_k było w próbce (a nie poza nią):	
$-L_x < \frac{2\pi\hbar n_y}{eBL_y} < 0 \qquad \text{czyli} \qquad 0 < n_y < \frac{eB}{h} L_x L_y = n_B S = \frac{e}{h} BS = \frac{\Phi}{\Phi_0}$	
flux $\Phi_0 = \frac{h}{e} = 4.135667516 \times 10^{-15} \text{ Wb} [\text{Wb}] = [\text{T m}^2]$	
"kwant" strumienia magnetycznego (w nadprzewodniku $h/2e$, więc to nie kwant)	
$\Phi = BS$ całkowity strumień pola magnetycznego w próbce S = $L_x \times L_y$	
$0 < n_y \Phi_0 < \Phi$	
llość dozwolonych stanów łączy się wiec z ilością "fluksów" przechodzących przez próbkę!	
2014-02-14	

Poziomy Landaua	
$N^{2D}(E) = \frac{m}{\pi \hbar^2}$ Poszerzenie poziomów na skutek rozproszeń $\Gamma = \hbar / \tau_i$	
$\frac{1}{10}$	
$\frac{\hbar}{l_B} = 2\pi l_B^2$ Każdy ze stanów na poziome Landaua zajmuje powierzchnię $\frac{\hbar}{eB} = 2\pi l_B^2$ $l_B = \sqrt{\frac{\hbar}{m\omega_c}} = \sqrt{\frac{\hbar}{ eB }}$	
2014-02-14 31	

Lokalna gęstość stanów
Gęstość stanów (ogólnie) można zdefiniować jako:
$N(E) = \sum_{n} \delta(E - \varepsilon_n)$
Jak widac po scatkowaniu: $\int_{E_1}^{E_2} N(E) dE = \int_{E_1}^{E_2} \sum_n \delta(E - \varepsilon_n) dE = \sum_n \int_{E_1}^{E_2} \delta(E - \varepsilon_n) dE$
Przykładowo:
$N^{1D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 2 dk = \frac{1}{\pi} \sqrt{\frac{2m}{E}}$
$N^{2D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 2\pi k dk = \frac{m}{\pi \hbar^2}$
$N^{3D}(E) = \sum_{k} \delta(E - \varepsilon(k)) = \int \frac{1}{E'(k)} \delta(k - k') 4\pi k^2 dk = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$
2014-02-14 Na ćwiczeni

$n_B = \frac{eB}{h}$	degeneracja poziomów Landaua – ilość DOZWOLONYCH stanów na każdym z poziomów Landaua na jednostkę powierzchni – rośnie z polem B
Koncentrac	ja nośników 2D: n_{2D} – na ilu poziomach Landaua zmieszczą się te nośniki?
Współczyn	nik wypełnienia filling factor $ u$ (zwykle nie jest to liczba całkowita)
$\nu = \frac{n_{2D}}{n_B}$	$=\frac{hn_{2D}}{eB}=\frac{\Phi_0 n_{2D}}{B}=2\pi l_B^2 n_{2D} \qquad (z \text{ uwzględnieniem degeneracji spinów})$
Zwiększają <i>n</i> -ty pozior będą na ty	c pole magnetyczne kolejno zapełniamy poziomy Landaua. Można całkowicie zapełn n ($\nu = n$) i wtedy $B_n = hn_{2D}/en$, aż osiągniemy $n = 1$, czyli wszystkie elektrony m samym poziomie Landaua (tzw. <i>limit kwantowy</i>).
Dla $\nu < 1$:	zaczynają się dziać ciekawe rzeczy (do których zaraz wrócimy!)

Efekt Shubnikova-de Haasa

Shubnikov-de Haas effect

9.4.1 Types of quantum oscillation

As the electronic density of states at E_F determines most of a metal's properties, virtually all properties will exhibit quantum oscillations in a magnetic field. Examples include⁷

- oscillations of the magnetisation (the de Haas-van Alphen effect);
- oscillations of the magnetoresistance (the Shubnikov-de Haas effect);
- oscillations of the sample length;
- ocillations of the sample temperature;
- oscillations in the ultrasonic attenuation;
- oscillations in the Peltier effect and thermoelectric voltage;
- oscillations in the thermal conductivity.

⁶However, open orbits do lead to a very interesting quantum phenomenon which has recently been observed in high-frequency experiments; see A. Ardawan *et al.*, *Phys. Rev. B* **60**, 15500 (1999); *Phys. Rev. Lett.* **81**, 713 (1998).
⁷Some pictures of typical data are shown in *Solid State Physics*, by N.W Ashcroft and N.D. Mermin (Holt, Rinehart and Winston, New York 1976) pages 265-268.

http://www2.physics.ox.ac.uk/sites/default/files/BandMT_09.pdf

2014-02-14

Tensor przewodnictwa	10
Przewodnictwo $\sigma = n \ e \ \mu$	ų
Gęstość prądu: $\vec{j} = \sigma \vec{E}$ - w ogólności σ może być tensorem:	MT_11.pc
$\vec{j}_x = q \; n \; ec{v}_x$ oraz $ec{v}_x = rac{q au}{m} \; ec{E}_x = \mu \; ec{E}_x$	files/Band
W ogólności np. $j_x=\sigma_{xx}\;E_x$ oraz $j_y=\sigma_{yx}E_x$ itp.	s/default/1
Model Drudego z polem magnetycznym: $m^* \left\{ \frac{d\vec{v}}{dt} + \frac{\vec{v}}{\tau} \right\} = q\vec{E} + q\vec{v} \times \vec{B}$	sics.ox.ac.uk/site
au~- czas relaksacji pędowej (scattering time)	wv2.phy
$m^* \left\{ \frac{dv_x}{dt} + \frac{v_x}{\tau} \right\} = qE_x + qv_y B$	http://wv
$m^*\left\{\frac{dv_y}{dt} + \frac{v_y}{\tau}\right\} = qE_y - qv_xB$	
2014-02-14	48

Jednorodne pole magnetyczne
$\begin{bmatrix} -\frac{\hbar^2}{2m}\nabla^2 & -\frac{ie\hbar}{m}Bx\frac{\partial}{\partial y} + \frac{(eBx)^2}{2m} + U(z) \end{bmatrix} \psi(\vec{r}) = E\psi(\vec{r})$ Potencjał wektorowy nie zależy od y, można założyć postać funkcji: $\psi(\vec{r}) = w(z)u(x)\exp(ik_yy)$ $\begin{bmatrix} -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega_c^2\left(x + \frac{\hbar k_y}{eB}\right)^2 \end{bmatrix} u(x) = \varepsilon u(x) \qquad \omega_c = \left \frac{eB}{m}\right \qquad R_c = \frac{v}{\omega_c} = \frac{\sqrt{2mE}}{ eB }$ Częstość cyklotronowa Promień cyklotronowy Wektor falowy k_y . Co ciekawe w ε NIE MA k_y .
Potencjał paraboliczny przesunięty o $x_k = -\hbar k_y/eB$ Przypomnienie
2014-02-14 67

Pole elektrycznie i i	magnetyczne
$\begin{bmatrix} -\frac{\hbar^2}{2m}\nabla^2 & -\frac{ie\hbar}{m}Bx\frac{\partial}{\partial y} + \frac{(eBx)^2}{2m} + eEx \end{bmatrix} \psi(x)$ Potencjał wektorowy nie zależy od y, można zz $\begin{bmatrix} -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega_c^2 \left(x + \frac{\hbar k_y}{eB} + \frac{Ee}{m\omega_c^2}\right)^2 \\ \hline Człony , doło \end{bmatrix}$ Potencjał paraboliczny przesunięty o $x_k = -\left(\frac{\hbar k_y}{eB} + \frac{Ee}{m\omega_c^2}\right) = \frac{mv_d - \hbar k}{eB}$	$\vec{r}) = E\psi(\vec{r})$ ałożyć postać funkcji: $\psi(\vec{r}) = w(z)u(x) \exp(ik_y y)$ $-\frac{\hbar kE}{B} - \frac{mE^2}{2B^2} u(x) = \varepsilon u(x)$ $\frac{\hbar}{2} \int dx$ żone" żeby suma w kwadracie dawała <i>eE</i> $\varepsilon_{nk} = \left(n - \frac{1}{2}\right) \hbar \omega_c - \frac{\hbar kE}{B} - \frac{mE^2}{2B^2} =$ $= \left(n - \frac{1}{2}\right) \hbar \omega_c - eEx_k - \frac{1}{2} mv_0^2$
$v_d = \frac{E_x}{B_z}$ $J_y = -en_{2D}v_D = en_{2D}\frac{E_x}{B_z} \Rightarrow \sigma_{xx} = \sigma_L = 0$	$ ho_T = 1/\sigma_T = B_z/en_{2D}$ (klasyczny efekt Halla)

Potencjał paraboliczny zależy od pola i od k_y	
FIGU negat whict	E 6.18. A Hall bar in a strong magnetic field, showing the propagation of edge states. A te bias on contact 1 injects extra electrons into the N edge states that leave it (only two of are drawn); the electrons depart through the other current probe (2).
n(E) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P	

(will call it a). It is an example of a fractal energy spectrum. When the flux parameter a is rational and equal to p/q with p and q relatively prime, the spectrum consists of q non-overlapping energy bands, and therefore q+1 energy gaps (gaps number 0 and q are the regions below and above the spectrum accordingly). When a is irrational, the spectrum is a cantor set.

