

Bandgap engineering

W jaki sposób możemy zmieniać strukturę pasmową heterostruktury: • wybierając materiał (np. GaAs/AlAs)

- kontrolując skład (binary, ternary, quaternary, quiternary alloys)
- kontrolując naprężenie

Bandgap e	ngineeri	ing		
W jaki sposób możemy z • wybierając materiał • kontrolując skład • kontrolując naprężen	mieniać strukturę p ie	asmową heterostruktu	ry:	
Conduction Band (CB) —				
Valence Band (VB) —	Straddling Gap (type I)	Staggered Gap (type II)	Broken Gap (type III)	
2013-02-27				

Jak się robi heterostruktury?

Liquid-phase (LPE)

wzrost z fazy ciekłej na podłożu w temperaturach niższych od temperatury topnienia hodowanego materiału. Półprzewodnik jest rozpuszczony w cieczy innego materiału, wzrost w warunkach bliskich równowagi roztworu i depozycji; prędkości wzrostu 0.1 to 1 µm/min.

Vapor-phase (VPE, CVD)

wzrost z fazy gazowej dzięki reakcjom chemicznym prekursorów na powierzchni, często dzielony ze względu na źródłowe gazy na wodorkową VPE i metalorganiczną VPE (MOCVD); prędkości wzrostu >10 -20 nm/min.

Molecular-beam (MBE)

2013-02-27

Materiał źródłowy podgrzewany w komórkach produkuje strumień cząsteczek. W wysokiej próżni (10⁻⁸ Pa) cząsteczki docierają do podłoża i osadzają się na nim; predkości wzrostu < 1 monowarstwa/s (1 µm/h).

Heterostruktury półprzewodnikowe

Heterostruktury mogą mieć różne masy efek	ctywne w różnych obszarach:
$-\frac{\hbar^2}{2m_0m^*}\frac{d^2}{dz^2}\psi(z) + V_0(z)\psi(z) = \varepsilon\psi(z)$	2)
Dkazuje się, że zamiana $m^* o m(z)$ nie jest przestaje być hermitowskie). Trzeba to zrobi	t dobrym rozwiązaniem problemu (równanie ć inaczej, np.:
$-\frac{\hbar^2}{2m_0}\frac{d}{dz}\left[\frac{1}{m(z)}\frac{d}{dz}\right]\psi(z) + V_0(z)\psi(z) =$	εψ(z)
Narunki zszycia na granicy heterostruktur m być zmodyfikowane (z rozważań na temat achowania ładunku prądy płynące przez złą	huszą $n=3$ (cze 0.2 V
$v_W = I_B$ with $v_W = v_B$):	
$\left. \frac{1}{m_B} \frac{d\psi}{dz} \right _{z=\frac{a}{2}} = \frac{1}{m_W} \left. \frac{d\psi}{dz} \right _{z=\frac{a}{2}}$	

Studnia trójkątna	

Studnia trójkątna

Metoda WKB

Metoda przybliżona WKB (Wentzel - Krammers - Brillouin) - dla potencjału wolnozmiennego

Nazywana też metodą LG (Liouville–Green) **lub** JWKB / WKB / WKBJ (od Jeffreys-WKB) **lub** phase integral method **lub** przybliżenie półklasyczne (*semi-classical approximation*).

$$\left[-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

Co to jest potencjał wolnozmienny? Na pewno $V(x) = V_0 = const$ jest. Rozwiązaniem dla tego potencjału jest fala płaska $\psi(x) = e^{ikx}$ - faza funkcji falowej k(x) = k = const jest stała w całej przestrzeni $k^2 = \frac{2m}{h} [E - V_0]$

Zdefiniujmy $k^2(x) = \frac{2m}{\hbar} [E - V(x)]$ - chcemy, by faza k(x) powoli zmieniała się w przestrzeni, tzn.

$$\left| \frac{dk}{dx} \right| \ll k^2$$

(taki warunek). Szukamy rozwiązania w postaci $\psi(x)=e^{i\chi(x)}$ gdzie $\chi(x)$ to faza funkcji falowej.

2013-02-27

Metoda WKB
Metoda przybliżona WKB (Wentzel – Krammers – Brillouin) – dla potencjału wolnozmiennego
$\left[-\frac{\pi}{2m}\frac{d}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$
Zdefiniujmy $k^2(x) = \frac{2m}{k} [E - V(x)]$ - chcemy, by $k(x)$ powoli zmieniało się w przestrzeni.
Szukamy rozwiązania w postaci $\psi(x)=e^{i\chi(x)}$ gdzie $\chi(x)$ to faza funkcji falowej. Wstawiamy do równania Schrodingera:
$[\chi'(x)]^2 - i\chi''(x) = \frac{2m}{\hbar} [E - V(x)] \equiv k^2(x)$ - to jest jeszcze równanie ścisłe.
Zerowe przybliżenie WKB zakłada, że $[\chi'(x)]^2 \gg \chi''(x) $ czyli $\chi''(x) pprox 0$
$[\chi'(x)]^2 = k^2(x)$ czyli $\chi(x) = \pm \int^x k(x')dx'$
wykle w metodzie WKB rozwija się dalej $[\chi'(x)]^2 = k^2(x) + i\chi''(x) = k^2(x) + i[\chi'(x)]' \approx k^2(x) \pm i[k(x)]'$
tąd:
$\chi'(x) \approx \pm k(x) \sqrt{1 + \frac{ik'(x)}{k^2(x)}} \approx \pm k(x) + \frac{ik'(x)}{2k(x)}$
2013-02-27 32

Metoda WKB

Metoda przybliżona WKB (Wentzel – Krammers – Brillouin) – dla potencjału wolnozmiennego

Zwykle w metodzie WKB rozwija się dalej $[\chi'(x)]^2 = k^2(x) + i\chi''(x) = k^2(x) + i[\chi'(x)]' \approx k^2(x) \pm i[k(x)]'$

Stąd:

$$\chi'(x) \approx \pm k(x) \sqrt{1 + \frac{ik'(x)}{k^2(x)}} \approx \pm k(x) + \frac{ik'(x)}{2k(x)}$$

a stąd:

$$\chi(x) = \pm \int^x k(x')dx' + \frac{i}{2}\ln k(x)$$

Dostajemy:

$$\psi(x) \approx \frac{1}{\sqrt{k(x)}} \exp\left[\pm i \int^x k(x') dx'\right]$$

Człon $1/\sqrt{k(x)}$ - gęstość prawdopodobieństwa szybko poruszającej się cząstki jest mała dla dużych k – dobrze!

2013-02-27

letoda prz	ybliżona WKB	JKątita Wentzel – Kramn	ners –	Brillouin) – dla p	ootencjału <i>woln</i>	ozmiennego
AlGaAs	N _i ^{3D} =2.29x10	²³ m ² 350 Å	1			
AlGaAs	N _{B1} =2.6x10 ²	⁰ m ³ 630 Å	Energy		\square	conduction band fermi level
GaAs	N _{B2} =2.6x10 ²	⁰ m ⁻³	G	AlGaAs	GaAs z-directi	on
			1	http://www.phys.unsw.e	edu.au/QED/research/2	D_scattering.htm
_		3				
$E_n = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$	$\pi\left(n-\frac{1}{4}\right)^{2}$	$\left[\frac{(eF\hbar)^2}{2m}\right]^{1/3}$				

TU 2012-10-27

Peten Hamiltonian w naszym wszechświecie ma 3 wymiary przestrzenne $(x, y, z, t) = (\vec{R}, t)$ $\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{R})\right]\psi(\vec{R}) = E\psi(\vec{R})$ Dla $V(\vec{R}) = V(z)$ mamy: $\left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V(z)\right]\psi(x, y, z) = E\psi(x, y, z)$ Wzdłuż kierunków x i y mamy ruch swobodny: $\psi(x, y, z) = \exp(ik_x x) \exp(ik_y y)u(z)$ Można pokazać (przy tablicy!), że ostatecznie energie własne potencjału V(z) są w postaci: $\left[-\frac{\hbar^2}{2m}\frac{d^2}{dz^2} + V(z)\right]u(z) = \varepsilon u(z)$ $\varepsilon = E - \frac{\hbar^2 k_x^2}{2m} - \frac{\hbar^2 k_y^2}{2m}$

Struktury niskowymiarowwe
Czyli cząstka porusza się w studni, której potencjał zależy od k , a właściwie $k = \mathbf{k} $ $\begin{bmatrix} -\frac{\hbar^2}{2m_0 m_W} \frac{d^2}{dz^2} + \frac{\hbar^2 k^2}{2m_0 m_W} + E_W \end{bmatrix} u_n(z) = \varepsilon u_n(z)$ $\begin{bmatrix} -\frac{\hbar^2}{2m_0 m_B} \frac{d^2}{dz^2} + \frac{\hbar^2 k^2}{2m_0 m_B} + E_B \end{bmatrix} u_n(z) = \varepsilon u_n(z)$
$V_0(k) = (E_B - E_W) + \frac{\hbar^2 k^2}{2m_0} \left(\frac{1}{m_B} - \frac{1}{m_W}\right)$ Cząstka "nabiera" częściowo masy efektywnej bariery: $E_n(k) = \varepsilon_n(k) + \frac{\hbar^2 k^2}{2m_0 m_W} \approx \varepsilon_n(k=0) + \frac{\hbar^2 k^2}{2m_0 m_{eff}}$
$m_{eff} \approx m_W P_W + m_B P_B$ prawdopodobieństwo znalezienia cząstki
2013-02-27 47

yli cząstka	porusza s	się w stu	dni, kt	órej po	otencja	ał zależ	ży od k , a	a właściwie $k = \mathbf{k} $
$\left[-\frac{\hbar^2}{2m_0 n}\right]$	$\frac{d^2}{dw^2}$ +	$\frac{\hbar^2 k^2}{2m_0 m}$	$\frac{1}{w} + E$	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(z) =	εu _n (z)	
$\left[-\frac{\hbar^2}{2m_0 n}\right]$	$\frac{d^2}{n_B dz^2} +$	$\frac{\hbar^2 k^2}{2m_0 m_1}$	$\frac{1}{B} + E_B$	$\left[u_n(z) \right]$	$\epsilon) = \epsilon$	$u_n(z)$		
		$V_0(k)$	$= (E_l)$	$_{3} - E_{V}$	$() + \frac{1}{2}$			-1
TABLE the states b 0.067 inside	4.2 Depound in a we	endence on ell 5 nm wid id $m_{\rm B} = 0.1$	transvers e and 1 e 5 outside	e wave v V deep,	∠ ector k⊥ with effe	of the en	$m_B m_W$ nergies of ass $m_W =$	Np. w strukturze GaAs-AlGaAs $m_B > m_W \mbox{ więc studnia robi się "płytsza"}$
the states be 0.067 inside	4.2 Depoind in a we be the well an $\frac{\hbar^2 k^2}{2mmw}$	endence on ell 5 nm wid id $m_{\rm B} = 0.1$ $\frac{\hbar^2 k^2}{2m_0 m_{\rm D}}$	transvers e and 1 e 5 outside V ₀ (k)	e wave v V deep, ε. ει	$\frac{2}{\epsilon_2}$	$m_0 \setminus n$ of the creative matrix ϵ_3	$m_B m_W$ nergies of ass $m_W =$ m_{eff}	y) Np. w strukturze GaAs-AlGaAs $m_B > m_{\rm W}$ więc studnia robi się "płytsza"
the states b 0.067 inside k (nm ⁻¹)	4.2 Depution in a weight the well and $\frac{\hbar^2 k^2}{2m_0 m_W}$ (eV)	endence on ell 5 nm wid d $m_{\rm B} = 0.1$ $\frac{\hbar^2 k^2}{2m_0 m_{\rm B}}$ (cV)	transvers ie and 1 e 5 outside $V_0(k)$ (eV)	e wave v V deep, ε. ε ₁ (cV)	z ector k_{\perp} with effe ε_2 (eV)	$m_0 \ 1$ of the energy of th	$m_B m_W$ nergies of $m_W = m_{eff}$	W Np. w strukturze GaAs-AlGaAs $m_B > m_W$ więc studnia robi się "płytsza"
TABLE the states b 0.067 inside k (nm^{-1}) 0.0	4.2 Depution in a weight the well and $\frac{\hbar^2 k^2}{2m_0 m_W}$ (eV) 0.000	endence on ell 5 nm wid id $m_{\rm B} = 0.1$ $\frac{\hbar^2 k^2}{2m_0 m_{\rm B}}$ (cV) 0.000	transvers te and 1 e 5 outside $V_0(k)$ (eV) 1.000	e wave v V deep, ε_1 (eV) 0.108	$z_{\rm ector \ k_{\perp}}$ with effective ε_2 (eV) 0.446	m_0 (1) of the energy of th	$m_B m_W$ nergies of m_{eff} 0.057	W Np. w strukturze GaAs-AlGaAs $m_B > m_W \text{ więc studnia robi się "płytsza"}$
k (nm ⁻¹) 0.0 0.5	4.2 Depution in a weight of the well and $\frac{\hbar^2 k^2}{2m_0 m_W}$ (eV) 0.000 0.142	endence on ell 5 nm wic id $m_B = 0.1$ $\frac{\hbar^2 k^2}{2m_0 m_B}$ (cV) 0.000 0.064	transvers te and 1 e 5 outside $V_0(k)$ (eV) 1.000 0.921	e wave v V deep, ε. ε ₁ (eV) 0.108 0.106	ϵ_2 (eV) 0.446 0.435	m_0 (1) of the en- ective matrix ϵ_3 (eV) 0.969 0.919	$m_B m_H$ nergies of ass $m_W =$ m_{eff} 0.057 0.069	W Np. w strukturze GaAs-AlGaAs $m_B > m_W \text{ więc studnia robi się "płytsza"}$

Studnie 2D i 3D

Studnie 2D i 3D
Studnia cylindryczna (o nieskończonych ścianach)
$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)\psi(r,\theta) = E\psi(r,\theta)$
$\psi(r, heta) = u(r) \exp(il heta)$ głębokość potencjału zależy od l ²
$\left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}\right) + \frac{\hbar^2 l^2}{2mr^2}\right]u(r) = Eu(r)$
Co daje rozwiązania w postaci f. Bessla
$r^{2}\frac{d^{2}u}{dr^{2}} + r\frac{du}{dr} + [(kr)^{2} - l^{2}]u = 0 \qquad J_{l}(kr) \sim \sqrt{\frac{2}{\pi kr}}\cos\left(kr - \frac{1}{2}l\pi - \frac{1}{4}\pi\right)$ $k = \sqrt{2mE}/\hbar$
$\phi_{nl}(r) \propto f_l\left(\frac{j_{l,n}r}{a}\right) \exp(il\theta) \qquad \qquad \varepsilon_{nl} = \frac{\hbar^2 j_{l,n}^2}{2ma}$ Miejsca zerowe f. Bessela są w $j_{l,n}$
2013-02-27 51

Studnia trójkątna 20102

14

Struktura	pasmowa ciał stałyc	ch	
Przykłady:			
		As- Swerighter 42 0.01 0.02 0.03 0.04	b) E K a der
FIGURE 10.4. directions. The v Alg 25Gag 75As.	Valence-band structure in a multiq ells comprise 68 atomic layers of From Chang and Schulman (1985).	uantum well as a function GaAs with barriers of 7	on of k along two 1 atomic layers of

16

Bandgap engineering

W jaki sposób możemy zmieniać strukturę pasmową heterostruktury:

- wybierając materiał (np. GaAs/AlAs)
- kontrolując skład (ternary, quaternary, quiternary alloys)
- kontrolując naprężenie