



Struktury niskowymiary przestrzenne 
$$(x, y, z, t) = (\vec{k}, t)$$
  
 $\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\vec{k})\right] \psi(\vec{k}) = E\psi(\vec{k})$   
Dt  $V(\vec{k}) = V(z)$  mamy:  
 $\left[-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) + V(z)\right] \psi(x, y, z) = E\psi(x, y, z)$   
Wzdłuż kierunków x i y mamy ruch swobodny:  
 $\psi(x, y, z) = \exp(ik_x x) \exp(ik_y y) u(z)$   
Można pokazać (przy tablicy!), że ostatecznie energie własne potencjału V(z) są w postaci:  
 $\left[-\frac{\hbar^2}{2m} \frac{d^2}{dz^2} + V(z)\right] u(z) = \varepsilon u(z)$   
 $\varepsilon = E - \frac{\hbar^2 k_x^2}{2m} - \frac{\hbar^2 k_y^2}{2m}$ 













| Rachunek zaburzeń z czasem                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Równanie Schrödingera z czasem:                                                                                                                                                     |
| $i\hbar \frac{\partial}{\partial t}\psi = H_0 + V(t)$ $\psi(x,t) = \sum_n A_n(t)\varphi_n(x)e^{-iE_nt/\hbar}$                                                                       |
| Dla $t < 0$ układ był w stanie początkowym $m \qquad \psi(x,t < 0) = arphi_m(x) e^{-i E_m t/\hbar}$                                                                                 |
| Dla $t > \tau$ układ będzie w jakimś innym stanie $\psi(x, t > \tau) = \sum_n A_{nm}(\tau) \varphi_n(x) e^{-iE_n t/\hbar}$                                                          |
| przy czym prawdopodobieństwo tego, że układ będzie w stanie stacjonarnym o energii $E_n$ dane jest przez prawdopodobieństwo przejścia układu w czasie $	au$ ze stanu początkowego m |
| do stanu <i>n</i> .<br>$w_{nm} =  A_{mn}(\tau) ^2$ $H_0\varphi_n(x) = E_n^0\varphi_n(x)$                                                                                            |
| Wiemy, że funkcje $\varphi_n(x)$ są funkcjami własnymi hamiltonianu, czyli: $H_0\varphi_n(x) = E_n^0\varphi_n(x)$<br>$H_0 n\rangle = E_n^0 n\rangle$                                |
| Liczymy: $i\hbar \frac{\partial}{\partial t} \psi(x,t)$                                                                                                                             |
| 2013-02-27 11                                                                                                                                                                       |



| Równanie Sch                             | rödingera z czasem:                                     |                                                                               |                                                       |
|------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|
| $i\hbar \frac{\partial}{\partial t}\psi$ | $=H_0+V(t)$                                             | $\psi(x,t) = \sum_{n} A_{n}(t)\varphi_{n}(x)e^{-t}$                           | iE <sub>n</sub> t/ħ                                   |
| Dla $t < 0$ uk                           | ład był w stanie początkowy                             | $\inf m  \psi(x,t<0) = \varphi_m(x)e^{-iE_n}$                                 | ₁t/ħ                                                  |
| Dla $t > 	au$ uk                         | ład będzie w jakimś innym st                            | anie $\psi(x,t>\tau) = \sum_{n} A_{nm}(\tau) q$                               | $ \rho_n(x)e^{-iE_nt/\hbar} $                         |
| przy czym pra<br>dane jest prze          | wdopodobieństwo tego, że u<br>z prawdopodobieństwo prze | ıkład będzie w stanie stacjonarnym<br>jścia układu w czasie $	au$ ze stanu po | o energii <i>E<sub>n</sub></i><br>czątkowego <i>m</i> |
| do stanu n.                              | $w_{nm} =  A_{mn}(\tau) ^2$                             | $H_0\varphi_n(x)=E_n^0\varphi_n(x)$                                           |                                                       |
| Wiemy, że fur                            | nkcje $arphi_n(x)$ są funkcjami wła                     | snymi hamiltonianu, czyli: $H_0 arphi_n(x)$                                   | $=E_n^0\varphi_n(x)$                                  |
|                                          |                                                         |                                                                               | -01.1                                                 |











### Rachunek zaburzeń z czasem

Ostatecznie prawdopodobieństwo przejścia

2013-02-27

$$w_{mn} = \frac{2\pi}{\hbar} |\langle m|W|n\rangle|^2 \tau \delta(E_m - E_n)$$

Prawdopodobieństwo przejścia jest proporcjonalne do czasu działania zaburzenia, więc prawdopodobieństwo przejścia na jednostkę czasu dane jest przez:

$$P_{mn} = \frac{w_{mn}}{\tau} = \frac{2\pi}{\hbar} |\langle m|W|n \rangle|^2 \delta(E_m - E_n)$$

| Rachunek zaburzeń z czasem                                                                                                                                                                    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| W przypadku gdy zaburzeniem jest fala periodyczna wracamy do ogólnego wzoru:                                                                                                                  |    |
| $w_{nm} =  A_{nm}(\tau) ^2 = \frac{1}{\hbar^2} \left  \int_0^\tau \langle n W(t) m\rangle e^{+i\omega_{nm}t} dt \right ^2$                                                                    |    |
| dla przypadku gdy $W(t) = w^{\pm} e^{\pm i\omega t}$ dla $0 \le t \le \tau$ łatwo jest policzyć:                                                                                              |    |
| $\int_{0}^{\tau} \langle n   w^{\pm}   l \rangle e^{i(\omega_{nl} \pm \omega)t} dt = \frac{e^{i(\omega_{nl} \pm \omega)\tau} - 1}{i(\omega_{nl} \pm \omega)} \langle n   w^{\pm}   l \rangle$ |    |
| Prawdopodobieństwo przejścia:                                                                                                                                                                 |    |
| $w_{nm} = \frac{2\pi}{\hbar} \left  \langle n   w^{\pm}   m \rangle \right ^2 \tau \delta(E_n - E_m \pm \hbar \omega)$                                                                        |    |
| Prawdopodobieństwo przejścia na jednostkę czasu dane jest przez:                                                                                                                              |    |
| $P_{nm} = \frac{\imath w_{nm}}{\tau} = \frac{2\pi}{\hbar} \left  \langle n   w^{\pm}   m \rangle \right ^2 \delta(E_n - E_m \pm \hbar \omega)$                                                |    |
| 2013-02-27                                                                                                                                                                                    | 20 |



| Zaburzenie w postaci fali elekt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | romagnetycznej.                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| $H \approx \frac{e}{m} \vec{A} \vec{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $P_{nm} = \frac{w_{nm}}{\tau} = \frac{2\pi}{\hbar} \left  \langle n   w^{\pm}   m \rangle \right ^2 \delta(E_n - E_m \pm \hbar \omega)$ |
| $\vec{A} = \overrightarrow{A_0} \left\{ e^{-i(\omega t - \vec{k}\vec{r})} + e^{i(\omega t -$ | $\left[ -\vec{k}\vec{r} \right]$                                                                                                        |
| rozwijając w szereg $ec{p}  e^{-i(ec{k} ec{r})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p^{(i)} \approx \vec{p} \left[ 1 + \left( -i\vec{k}\vec{r} \right) + \frac{\left( -i\vec{k}\vec{r} \right)^2}{2!} + \cdots \right]$    |
| Korzystamy z reguł komutacji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $[\vec{r}, H_0] = \vec{r} H_0 - H_0 \vec{r} = \frac{i\hbar}{m} \vec{p}$                                                                 |
| dostajemy (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \vec{p} m angle = im\omega_{nm}\langle n \vec{r} m angle$                                                                             |
| Kolejne człony w rozwinięciu d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ają przejścia dipolowe magnetyczne, kwadrupolowe<br>elektryczne itd                                                                     |



|                       | e w postaci fali elektromagnetycznej.                                                                                                                                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H \approx$           | $\frac{e}{m}\vec{A}\vec{p} \qquad \qquad P_{nm} = \frac{w_{nm}}{\tau} = \frac{2\pi}{\hbar} \left  \langle n   w^{\pm}   m \rangle \right ^2 \delta(E_n - E_m \pm \hbar\omega)$                                                                                                  |
| $\vec{A} = \vec{A}$   | $\vec{\mathbf{h}}_{0} \left\{ e^{-i(\omega t - \vec{k}\vec{r})} + e^{i(\omega t - \vec{k}\vec{r})} \right\}$                                                                                                                                                                    |
| rozwijając            | w szereg $\vec{p} e^{-i(\vec{k}\vec{r})} \approx \vec{p} \left[1 + \left(-i\vec{k}\vec{r}\right) + \frac{\left(-i\vec{k}\vec{r}\right)^2}{2!} + \cdots\right]$                                                                                                                  |
| po żmudn<br>elektroma | ych obliczeniach dostajemy prawdopodobieństwo emisji promieniowania gnetycznego <b>dipolowego</b> (opisanego operatorem $e\vec{r}$ )                                                                                                                                            |
| Α                     | $nm = \frac{\omega_{nm}}{\tau} = \frac{\omega_{nm}^3 e^2}{3\pi\varepsilon_0 \hbar c^3}  \langle n \vec{r} m\rangle ^2 = \frac{4\alpha}{3} \frac{\omega_{nm}^3}{c^2}  \langle n \vec{r} m\rangle ^2 \qquad \alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} \approx \frac{1}{137}$ |
|                       |                                                                                                                                                                                                                                                                                 |



| Fala elektromagnetyczna                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kilka uwag                                                                                                                                             |
| $A_{nm} = \frac{4\alpha}{3} \frac{\omega_{nm}^3}{c^2} \frac{S_{mn}}{g_m} \qquad \qquad S_{nm} = \sum_l \sum_j  \langle n_l   \vec{r}   m_j \rangle ^2$ |
| Wprowadza się pojęcie czasu życia ze względu na zanik radiacyjny:                                                                                      |
| $\tau_{nm} = \frac{1}{A_{nm}}$                                                                                                                         |
| W przypadku przejść optycznych dipolowych czas życia jest rzędu nanosekund.                                                                            |
| Moc przejścia optycznego $P_{nm} = A_{nm} \hbar \; \omega_{nm}$                                                                                        |
|                                                                                                                                                        |
| 2013-02-27 27                                                                                                                                          |



| PODSUMOWAN                                            | IE – złota reguła Fermiego                                                                                                                                                                 |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prawdopodobieństwo przejścia na                       | jednostkę czasu:                                                                                                                                                                           |
| $W(t) = W$ $0 \le t \le \tau$                         | $P_{mn} = \frac{w_{mn}}{\tau} = \frac{2\pi}{\hbar}  \langle m W n \rangle ^2 \delta(E_m - E_n)$                                                                                            |
| Przejścia są możliwe tylko do stanć                   | w $E_m = E_n$                                                                                                                                                                              |
| $W(t) = w^{\pm} e^{\pm i\omega t}$ $0 \le t \le \tau$ | $P_{nm} = \frac{w_{nm}}{\tau} = \frac{2\pi}{\hbar} \left  \langle n   w^{\pm}   m \rangle \right ^2 \delta(E_n - E_m \pm \hbar \omega)$                                                    |
| Przejścia są możliwe tylko do stanó                   | w $E_m = E_n \pm \hbar \omega$ V                                                                                                                                                           |
| Zaburzenie w postaci fali elektrom                    | agnetycznej.                                                                                                                                                                               |
|                                                       | $A_{nm} = \frac{\omega_{nm}{}^3 e^2}{3\pi\varepsilon_0 \hbar c^3}  \langle m   \vec{r}   n \rangle ^2 = \frac{4\alpha}{3} \frac{\omega_{nm}{}^3}{c^2}  \langle m   \vec{r}   n \rangle ^2$ |
|                                                       | $P_{nm} = A_{nm}\delta(E_n - E_m \pm \hbar\omega)$                                                                                                                                         |
| 2013-02-27                                            | 28                                                                                                                                                                                         |



















| Potencjał h                                               | armoniczny 3D                                   |    |
|-----------------------------------------------------------|-------------------------------------------------|----|
| $E_n^x = \hbar\omega_0 \left(n_x + \frac{1}{2}\right)$ we | ierunku <i>x, y</i> i <i>z</i>                  |    |
| $E_n = E_n^x + E_n^y + E_n^z = \hbar c$                   | $ u_0\left(N+\frac{3}{2}\right) $               |    |
| Degeneracja?<br>$a = \frac{(N+1)(N+2)}{N+2}$              | $N = n_x + n_y + n_z$                           |    |
| <i>g</i> <sub>N</sub> - 2                                 |                                                 |    |
| N                                                         | $(n_x, n_y, n_z)$                               |    |
| 0                                                         | (0,0,0)                                         |    |
| 1                                                         | (1,0,0) (0,1,0) (0,0,1)                         |    |
| 2                                                         | (2,0,0) (0,2,0) (0,0,2) (1,1,0) (1,0,1) (0,1,1) |    |
| 3                                                         | 3x(3,0,0) 1x(1,1,1) 6x(2,0,1)                   |    |
|                                                           |                                                 |    |
| 013-02-27                                                 |                                                 | 38 |

# Sferyczne kropki kwantowe

Przerwa energetyczna w sferycznych kropkach kwantowych [Brus, L. E. J. Phys. Chem. 1986, **90**, 2555, Brus. L. E. J. Chem. Phys. 1984, **80**, 4403]





## Sferyczne kropki kwantowe

Przerwa energetyczna w sferycznych kropkach kwantowych [Brus, L. E. J. Phys. Chem. 1986, 90, 2555, Brus. L. E. J. Chem. Phys. 1984, 80, 4403]









2013-02-27





#### Sferyczne kropki kwantowe ematic illustration of bioconjugation (a) Bifunctional linkage (d) Electrostatic attraction nethods. (a) Use of a bifunctional ligand methods. (a) Use of a bifunctional ligand such as mercaptoacetic acid for linking QDs to biomolecules [8<sup>++</sup>]. (b) TOPO-capped QDs bound to a modified acrylic acid polymer by hydrophobic forces. (c) QD solubilization and S-CH2-CO-NH-biomol bioconjugation using a mercaptosilane compound [7\*\*]. (d) Positively charged compound (1<sup>-1</sup>), (0) Positively charged biomolecules are linked to negatively charged QDs by electrostatic attraction [9]. (e) Incorporation of QDs in microbeads and nanobeads [20\*\*]. (b) Hydrophobic attraction (-cooh O=P\_\_\_\_\_HNOC COOH (e) Nanobeads (c) Silanization -CH2-CO-NH- biomolecu Current Opinion in Biotechnology Luminescent quantum dots for multiplexed biological detection and imaging W. Chan et al. Current Opinion in Biotechnology 2002, 13:40-46





### 12



| rent Opinion in Chemi | cal Biology 2006, 10:423–429 Nanoscale controlled self-assembled monolayers and quantum de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [                     | Photon energy (eV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | 4.0 3.0 2.0 1.0 0.8 0.7 0.6 0.5 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | - 450 (h-0.0)<br>- |
|                       | CdS Linp PbSe egg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | 1 UV   V  B  G H1 R   Near-IR Mid-IR]<br>300 400 500 600 700 800 1000 2000 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |









## Sferyczne kropki kwantowe w biol-med

[1] Kawasaki et al. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. *Nanomedicine: Nanotechnology, Biology, and Medicine.* 2005; 1:101, 109

[2] Alivisatos, et al. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005; 7:55-76.

[3] Chan et al. Luminescent quantum dots for multiplexed biological detection and imaging. *Current opinion* in biotechnology. 2002; 13:40-46

[4] Michalet et al. Quantum dots for live cells, in vivo imaging, and diagnostics. *Science*. 2005; 307(5709): 538-544.

[5] Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. *Science*. 1996; 271: 933-937.
[6] Gao et al. In vivo molecular and cellular imaging with quantum dots. *Current opinion in biotechnology*. 2005; 16:63-72.

[7] Shin et al. Nanoscale controlled self-assembled monolayers and quantum dots. *Current opinion in chemical biology*. 2006; 10(5): 423-429.

[8] Rogach et al. Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. *Small*. 2007; 3(4): 536-557.

[9] Weng, et al. Luminescent quantum dots: a very attractive and promising tool in biomedicine. *Current medicinal chemistry*. 2006; 13: 897-909.

[10] Fu, et al. Semiconductor nanoparticles for biological imaging. *Current opinion in neural biology*. 2005; 15:568-575.

[11] Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. *Environmental Health Perspectives*. 2006; 114(2): 165-172.

2013-02-2

