

Gęstość stanów

Gęstość stanów 2D	11/1
Gęstość stanów 2D dla pasma sferycznego i p	parabolicznego:
$\rho^{2D}(E)dE = \rho_k^{2D}d\vec{k} = 2\left(\frac{1}{2\pi}\right)^2 2\pi k \ dk$ $\rho_a^{2D}(E)dE = \frac{m_0 m^*}{\pi \hbar^2} \rho(E - E_a) \ dE$ funkcja "schodkowa" θ Heaviside'a $\rho^{2D}(E)dE = \frac{m_0 m^*}{\pi \hbar^2} \sum_a \theta(E - E_a) \ dE$	
barrier v v v barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier barrier	Energy
	Marc Baldo MIT OpenCourseWare Publication May 2011
2013-02-27	7

Gęstość stanów 0D	STALL.
Gęstość stanów 0D	
Dla IZOLOWANEJ kropki $\Delta E ightarrow 0, \Delta t ightarrow \infty$	$\rho^{0D}(E)dE = g_n \delta(E - E_n)dE$
Załóżmy, że czas życia stanu o energii E jest rów $ \psi(t) ^2 = A ^2 \exp\left(-\frac{t}{\tau}\right), t > 0$	vny τ, założymy też zanik wykładniczy
$\psi(t) = A \exp\left(-i\frac{E_{0}t}{\hbar} - \frac{t}{2\tau}\right), t > 0$ Transformata Fourriera $\psi(\omega) = \frac{A}{\frac{1}{2\tau} + i\left(\frac{E_{0}}{\hbar} - \omega\right)}$	Density of sta
Profil Lorentza $\rho^{oD}(E)dE = \frac{1}{2\pi} \psi(\omega) ^2 \frac{d\omega}{dE} = \frac{2}{\pi} \frac{\frac{\hbar}{2\tau}}{(E - E_0)^2 + E_0}$	$\frac{0}{E_{0}-2\Gamma} + \frac{E_{0}\Gamma}{E_{0}+\Gamma} + \frac{E_{0}}{E_{0}+\Gamma} + \frac{E_{0}+2\Gamma}{E_{0}+2\Gamma} + \frac{1}{2}$
2013-02-27	n and a state of the second

Gęstość stanów 0D	
Gęstosc stanow 0D	
Dla IZOLOWANEJ kropki $\Delta E ightarrow 0, \Delta t ightarrow \infty$	$\rho^{0D}(E)dE = \delta(E - E_n)dE$
Załóżmy, że czas życia stanu o energii E jest równ	ny $ au$, założymy też zanik wykładniczy
$ \psi(t) ^2 = A ^2 \exp\left(-\frac{t}{\tau}\right), \qquad t > 0$	α^{4}
$\psi(t) = A \exp\left(-i\frac{E_0 t}{\hbar} - \frac{t}{2\tau}\right), \qquad t > 0$	
Transformata Fourriera $\psi(\omega) = \frac{A}{\frac{1}{2\tau} + i\left(\frac{E_0}{\hbar} - \omega\right)}$	
Profil Lorentza ħ	$0 = \frac{1}{E_0 - 2\Gamma} = \frac{1}{E_0 - \Gamma} = \frac{1}{E_0} = \frac{1}{E_0 + 2\Gamma} = \frac{1}{E_0 - 2\Gamma} = \frac{1}{E$
$\rho^{0D}(E)dE = \frac{1}{2\pi} \psi(\omega) ^2 \frac{d\omega}{dE} = \frac{2}{\pi} \frac{2\tau}{(E - E_0)^2 + (E_0)^2}$	$\left(\frac{\hbar}{2\tau}\right)^2$ ćwiczenia
2013-02-27	12

Fermi golden r	ule
Transition rate (probability of tran	sition per unit time) :
$W(t) = W$ $0 \le t \le \tau$	$P_{mn} = \frac{w_{mn}}{\tau} = \frac{2\pi}{\hbar} \langle m W n \rangle ^2 \delta(E_m - E_n)$
Transitions possible only when	$E_m = E_n$
$W(t) = w^{\pm} e^{\pm i\omega t}$ $0 \le t \le \tau$	$P_{nm} = \frac{w_{nm}}{\tau} = \frac{2\pi}{\hbar} \left \langle n w^{\pm} m \rangle \right ^2 \delta(E_n - E_m \pm \hbar \omega)$
Transitions possible only when Electromagnetic disturbance in th	$E_m = E_n \pm \hbar \omega$ we form of waves
	$\boxed{A_{nm} = \frac{\omega_{nm}^3 e^2}{3\pi\varepsilon_0 \hbar c^3} \langle m \vec{r} n \rangle ^2 = \frac{4\alpha}{3} \frac{\omega_{nm}^3}{c^2} \langle m \vec{r} n \rangle ^2}$
	$P_{nm} = A_{nm}\delta(E_n - E_m \pm \hbar\omega)$
2013-02-27	15

Koncentracja samoistna

Jaka jest koncentracja nośników dla T>0? W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Kwazi-poziom Fermiego (imref)

A jeśli nie ma stanu równowagi?

Problem dużo bardziej skomplikowany, wymaga analizy statystycznej, jednak można wprowadzić bardzo pożyteczną wielkość "kwazi poziomu Fermiego", bliskiego równowagi.

Koncentracja samoistna

2013-02-27

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Koncentracja samoistna typowych półprzewodników

$\mathbf{Eg} \setminus \mathbf{T}$	77K	300K	1200K	materiał	
0,25eV	$10^9 {\rm ~cm}^{-3}$	10 ¹⁶ cm ⁻³	$10^{18} {\rm cm}^{-3}$	InSb PbSe	_
1eV	-	10 ¹⁰ cm ⁻³	10 ¹⁷ cm ⁻³	Ge, Si, GaAs	lewsk
4eV	-	-	10 ¹¹ cm ⁻³	ZnS, SiC, GaN, ZnO, C (diament)	K. Stępi

W powyższej tabelce wartości poniżej 10^{10} cm⁻³ nie mają sensu gdyż koncentracja zanieczyszczeń, a co za tym idzie koncentracja wynikająca z nieintencjonalnego domieszkowania jest wieksza

$$n = p = \sqrt{N_c N_v} e^{-\frac{E_z}{2k_0 T}} \qquad n = N_c e^{\frac{(E_F - E_c)}{k_B T}}$$
$$p = N_v e^{-\frac{(E_F - E_c)}{k_B T}}$$

Domieszki i defekty

Model wodoropodobny

Atom o wartościowości wyższej o jeden niż atom macierzysty staje się źródłem potencjału kulombowskigo zmodyfikowanego stałą dielektryczną kryształu, wywołanego dodatkowym protonem w jądrze. Dodatkowy elektron będący w paśmie przewodnictwa odczuwa ten potencjał. Jego stany są opisane równaniem masy efektywnej:

$$T = -\frac{\hbar^2}{2m^*}\Delta \qquad U = -\frac{1}{4\pi\varepsilon_0}\frac{e^2}{\sigma}$$
$$\left[-\frac{\hbar^2}{2m_e^*}\Delta - \frac{1}{4\pi\varepsilon_0}\frac{e^2}{\sigma r}\right]\phi(r) = E\phi(r)$$

V VI Ш Ш IV Be В С Ν 0 Ρ Mq AI S Si As Se Zn Ga Ge Sb Cd In Te Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

Domieszki i defekty

W jaki sposób kontrolować koncentrację nośników?

W półprzewodnikach spotykamy szereg odstępstw od idealnej struktury kryształu: · defekty struktury kryształu, luki, atomy w położeniu międzywęzłowym, dyslokacje powstałe np. w procesie wzrostu.

 \cdot obce atomy (domieszki) wprowadzane intencjonalnie lub wskutek zanieczyszczeń (poziom czystości)

Wskutek ich występowania pojawiają się między innymi:

stany dozwolone w przerwie wzbronionej na skutek odstępstw od potencjału idealnej sieci
 ładunki przestrzenne w izolatorach

· ekranowanie przez swobodne nośniki

Stany domieszkowe dzielimy na:

2013-02-27

głębokie –potencjał krótkozasięgowy, zlokalizowany głównie w obszarze jednej komórki elementarnej – np. luka, domieszka izoelektronowa (o tej samej wartościowości co macierzysty atom np. N w InP). • płytkie - głownie potencjał długozasięgowy – kulombowski

Domieszki i defekty Model wodoropodobny Ostatecznie zagadnienie sprowadza się do problemu atomu wodoru z nośnikiem swobodnym o masie m*, w ośrodku dielektrycznym ze stałą c i małą "poprawką" do potenciału

$$E_n = -\left(\frac{m^*}{m_0}\right) \frac{13.6eV}{\varepsilon^2 n^2}$$

 $4\pi\varepsilon_0 h$

m_oe

 $r_{B}^{*} = -$

2013-02-27

Dla typowych półprzewodników $m_e^* \approx 0.1 m_e$ $\varepsilon_s \approx 10$, zatem energia wiązania dla stanu podstawowego jest rzędu kilkudziesięciu meV. Promień Bohra dla stanu podstawowego jest rzedu 100Å:

The region wigzania dia stanu
est rzędu kilkudziesięciu meV.
Ia stanu podstawowego jest
$$\frac{p^2}{\epsilon} \mathcal{E}_s \left(\frac{m_0}{m_e^*}\right) \approx 0.5 \text{ Å } \mathcal{E}_s \left(\frac{m_0}{m_e^*}\right)$$
Grupa IV: diam
Grupy III-V: Ga

12

			he
		the states la	
2013-02-27	Sec. 10		55

	$\int \rho(\vec{r},t) d^3\vec{r} = \int q \Psi(\vec{r},t) ^2 d^3\vec{r} = q$
Gęstość prądu:	$J(\vec{r},t) = J(\vec{r}) = \frac{\hbar q}{2 i m} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$
	Dla stanów stacjonarnych nie ma zależności czasowej – dlaczego?

Gestość prądu: $J(\vec{r}, t) = J(\vec{r}) = \frac{\hbar q}{2 i m} (\Psi^* \nabla \Psi - \Psi \nabla \Psi^*)$ W przypadku fali de Broigla: $\Psi(x, t) = [A_+ e^{ikx} + A_- e^{-ikx}] e^{-i\omega t}$ $J(\vec{r}) = \frac{\hbar q k}{m} (|A_+|^2 - |A_-|^2) \quad czyli każda fala niesie z sobą prąd$ W przypadku fali zanikającej: $\Psi(x, t) = [B_+ e^{\kappa x} + B_- e^{\kappa x}] e^{-i\omega t}$ $J(\vec{r}) = \frac{\hbar q \kappa}{i m} (B_+ B_-^* - B_+^* B_-) = \frac{2 \hbar q \kappa}{m} Im (B_+ B_-^*)$ Tylko złożenie amplitud + i – daje rzeczywisty prąd!

