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ABSTRACT

Understanding and controlling of the evolution of sprouting vascular networks remains one of the basic challenges in tissue engineering.
Previous studies on the vascularization dynamics have typically focused only on the phase of intense growth and often lacked spatial control
over the initial cell arrangement. Here, we perform long-term day-by-day analysis of tens of isolated microvasculatures sprouting from endo-
thelial cell-coated spherical beads embedded in an external fibrin gel. We systematically study the topological evolution of the sprouting net-
works over their whole lifespan, i.e., for at least 14 days. We develop a custom image analysis toolkit and quantify (i) the overall length and
area of the sprouts, (ii) the distributions of segment lengths and branching angles, and (iii) the average number of branch generations—a
measure of network complexity. We show that higher concentrations of vascular endothelial growth factor (VEGF) lead to earlier sprouting
and more branched networks, yet without significantly affecting the speed of growth of individual sprouts. We find that the mean branching
angle is weakly dependent on VEGF and typically in the range of 60�–75�, suggesting that, by comparison with the available diffusion-limited
growth models, the bifurcating tips tend to follow local VEGF gradients. At high VEGF concentrations, we observe exponential distributions
of segment lengths, which signify purely stochastic branching. Our results—due to their high statistical relevance—may serve as a benchmark
for predictive models, while our new image analysis toolkit, offering unique features and high speed of operation, could be exploited in future
angiogenic drug tests.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0180703

INTRODUCTION

Microvascular tissue engineering is an emerging subfield in tissue
engineering that focuses on the development of living capillary net-
works1–3 and vascularized microtissues for applications in drug test-
ing,4–9 regenerative medicine,10–13 and general biofabrication.3 It is
known that most types of engineered tissue constructs, if deprived of
microvasculature while exceeding in size the so-called diffusion limit
(appr. 1mm), eventually suffer from hypoxia.14 Accordingly, the engi-
neering of viable tissues at all scales necessarily requires the incorpora-
tion of an embedded microvasculature. One of the promising
strategies toward efficient vascularization is angiogenesis, which is out-
growing or “sprouting” of new capillaries from preexisting vessels15 or
from an endothelial monolayer,6 resulting in the formation of a

branched hierarchical microvasculature. The sprouting vascular net-
works evolve via gradual elongation and bifurcation of the emerging
sprouts. Despite the available large body of literature regarding the
evolution of sprouting microvascular networks observed both
in vivo,16–18 ex vivo,17 and in vitro,6,17 the dynamics of the branching
phenomena in terms of topology of the evolving network, e.g., time-
dependent changes in the number of branch generations or the distri-
butions of branch lengths and branching angles, have not been studied
experimentally in great detail. In particular, previous studies have
mostly focused on providing morphological or dynamical characteris-
tics, however, typically only at a single chosen time-point19 or at most
at 2–4 distant time-points (e.g., days 1, 7, 14).5,20–27 In best cases, the
growth has been monitored continuously (at every 1–2 h) for 4–6
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consecutive days.6,15,28 Such time ranges were sufficient to estimate the
overall trends in growth but too short to cover all stages of the typical
microvascular evolution in vitro—that is from the emergence of
sprouts to the saturation of their growth—which typically span alto-
gether at least 14 days22,25 or even 21 days in some cases.20,27

Furthermore, sprouting microvasculatures have been frequently
studied not in isolation but rather as a population of multiple micro-
vasculatures dispersed randomly in the external extracellular matrix
(ECM) and inosculating or otherwise biochemically interacting with
each other.15,26–28 In fact, recent experiments with two neighboring
vascular seeds29 demonstrated significant impact of such interactions
on the final vascular morphology. Therefore, systematic studies on the
dynamics of vascular sprouting should optimally rely on more con-
trolled, reproducible initial conditions such as provided by a single iso-
lated seed rather than multiple interacting seeds.

Here, we address all of the above issues by tracking the evolution
of dozens of isolated sprouting microvascular networks day-by-day for
at least 14 days, all cultured under similar, well-controlled conditions.
We use the well-established bead-sprouting assay30 based on human
umbilical cord endothelial cells (HUVECs) in which the microcapillary
network sprouts from a HUVEC-coated microbead suspended in an
external 3D hydrogel matrix (fibrin in our case). We focus on the case
of HUVECs as an easily accessible and widespread source of endothe-
lial cells, which are also frequently employed in angiogenesis assays.31

We develop a custom image analysis toolkit that facilitates the auto-
mated measurement of a variety of morphometric parameters includ-
ing not only global characteristics, such as the overall length and area
of the sprouts, but also statistical distributions of several observables,
such as segment lengths, and branching angles. Our software, written
in Python programming language, provides a solid background in
terms of implementation and offers fast computation time. Overall, it
is optimized for the processing of a large amount of data from multiple
experiments. The time-resolved data, averaged over multiple experi-
mental runs and spanning the whole lifetime of the networks, allow us
to propose basic rules governing the topological development of the
sprouting microvasculatures.

Quite surprisingly, even in the case of a single isolated bead, the
details of the evolutionary dynamics remain poorly documented. In
fact, to the best of our knowledge, the previous angiogenic bead-
sprouting assays have been devoted mostly to the investigation of bio-
logical complexity of the sprouts, e.g., differentiation of the stalk and
tip cells,19,32–34 the analysis of the simple network-morphometric
parameters, such as the total length of the sprouts, total area, etc., at
several time-points,20,25,30 or to the monitoring of tip-dynamics at
short times (several hours up to 24 h).35 The problem of angiogenic
dynamics has been previously addressed via theoretical means at
various levels of complexity,36–39 including the case of a sprouting
EC-spheroid.37,40 However, thus far, a direct comparison with the
experiment has been limited due to the scarcity of the time-resolved
experimental data and typically relied only on a qualitative comparison
of late-time morphologies.40

Here, we focus on providing a solid experimental foundation for
establishing a set of possibly general dynamic rules governing the evo-
lution of the sprouting capillary networks. To this end, we carefully
analyze the emerging microvascular topologies in terms of (i) global
observables, such as the overall length and area of the sprouts, (ii)
microscopic observables, such as branch lengths, branching angles (and

their distributions), number of primary branches and positions of the
tips of the sprouts, as well as (iii) general measures of network complexity
such as the average number of branch generations. We also study the
impact of the presence of fibroblasts in the ECM (either as a monolayer
on top of the ECM or intermixed within the ECM) and the concentra-
tion of vascular endothelial growth factor (VEGF) in the culture media
on the vascular growth dynamics. Shortly, we find sigmoidal growth pat-
terns in which the onset of growth, yet not the speed of growth of indi-
vidual sprouts, depends on the VEGF concentration. We also find that
the distribution of the segment lengths is exponential, which provides
evidence that the branching process is purely stochastic, whereas the
bifurcation angle is typically in the range of 60�–75�, suggesting that, by
comparison with the available diffusion-limited growth models, the
bifurcating tips tend to follow local VEGF gradients.

Our methodology, based on the newly developed software,
besides providing basic insight into the sprouting dynamics, also expe-
dites the complex angiogenic image-analysis workflow and thus
improves the standardization of the angiogenesis assays,31 which
remains of significant relevance in a variety of drug tests and IC50
measurements.9,41–44 In further perspective, our results could also be
used to guide the design of mesoscale vascular networks based on mul-
tiple interacting seeds, an emerging strategy in tissue engineering.19,22

RESULTS
Long-term time-lapse imaging of endothelial
sprouting of single EC-coated beads

To study the morphogenesis of vascular networks, we examined
the dynamics of EC sprouting from isolated EC-coated beads during the
in vitro angiogenic process. We coated polystyrene microbeads with
green fluorescent protein (GFP)-tagged human umbilical vein endothe-
lial cells (HUVECs) [Fig. 1(A)] and embedded them in 2.5mg/ml of
fibrin hydrogel. The beads were seeded in 24-well plates, with one bead
per well [Fig. 1(B)] to exclude the potential impact of the presence of
nearby beads on the directionality and/or growth dynamics of the angio-
genic sprouts.29 Also, to provide possibly isotropic initial conditions, the
beads were positioned centrally in the wells, at a large well-to-bead size
ratio dwell/dbead � 60. The thickness of the hydrogel layer was approxi-
mately 1.5mm. During the assay, we observed several stages of the
angiogenic process starting with the formation of an endothelial layer at
the surface of the bead, followed by sprouting of ECs from the layer,
sprout elongation, bifurcation, and finally the formation of a characteris-
tic dendritic star-like architecture. To characterize the evolution of the
global properties of the network over time, we visualized the morphol-
ogy of the angiogenic sprouts around each of the EC-coated beads using
confocal microscopy. We acquired the images at 24 h time intervals over
a period of 14days to cover all stages of the angiogenic morphogenesis
[Fig. 1(C)]. We placed the samples under a confocal microscope once
per day for a short time to acquire an image of the EC-coated bead,
whereas in between the imaging sessions, the sample was placed in the
CO2 incubator. Such intermittent imaging sessions limited the time of
exposure of the cells to non-physiological conditions outside the CO2

incubator, supported cell viability, and extended their lifetime. We
observed cells to remain viable for at least 14days and even up to
20days in some cases (supplementary material, Fig. 1).

The proposed approach allowed us to track the evolution of a
high number of sprouting networks in parallel. From a practical point
of view, the setup did not require the supply of any additional medium;
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FIG. 1. Long-term time-lapse imaging of the endothelial sprouting of single EC-coated beads: experimental design and image analysis workflow. (A) Polystyrene beads
coated with GFP-transduced HUVECs. (B) Experimental workflow. Cell-coated beads are resuspended in fibrin solution, seeded one bead per well in a 24-well plate and
imaged using confocal microscopy. (C) Representative confocal microscopy images of a single HUVEC-coated bead acquired at one day interval for 14 consecutive
days. (D) Image processing workflow. From left to right: segmentation, skeletonization, and conversion to a graph. (E)–(H) Schematic representation of metrics used to
characterize the networks including: (E) Area of the microvascular network A and the mask Ac, and sprout thickness k. (F) Length of the microvascular network L, its
maximum span rmax, bifurcation angles, bifurcating (blue) and tip (black) segments, and nodes (red). (G) Primary branches (shown in red). (h) Number of generations G.
The scale bars in [(A), (C)] are 250 lm.
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the medium could be easily changed under a laminar hood between
imaging sessions. Our day-by-day analysis goes beyond the previous
studies, which typically focused either on a single culture time-point,
e.g., day 7 or day 14 (Refs. 20, 25, and 30) or studied the EC sprout
outgrowth during a relatively short window of time, usually limited to
1–2days at high image acquisition frequency.17,32

Image analysis

To efficiently analyze the large amount of generated data, we
have developed an automated image processing tool. The software
overlays confocal microscopy images of a given sample acquired at
multiple time-points to allow the tracking of sprout evolution around
each given bead. The program extracts the morphology of a sprouting
network directly from the experimental image and produces a database
of the measured metrics (bifurcation and termination points, segment
lengths, branching angles, etc.), which are further analyzed statistically
[Figs. 1(D)–1(H)]. We use Python as the programming language,
which offers open-source image and data processing libraries and sig-
nificantly simplifies the code.45–52

Our image processing workflow [Fig. 1(D)] starts with image seg-
mentation. The software detects the EC-coated polystyrene bead,
defines a corresponding circular “mask,” and identifies the sprouts.
Next, it calculates the projected area of the cells inside the mask (Ac),
i.e., the area of the cells covering the bead, and outside the mask (A),
i.e., the total area of the sprouts [Fig. 1(E)]. Then, it performs the skele-
tonization of the previously segmented image and saves it as a custom
graph class [Fig. 1(F)]. At this stage, based on the detected skeleton,
the software calculates the total length of the vascular network (L), and
the mean width of the sprouts (k¼A/L); see Figs. 1(E) and 1(F).
Nodes of the graph [Fig. 1(F)] are identified as one of the following: (i)
a branching point, (ii) a base of a sprout (the point of contact with the
mask), or (iii) a sprout tip. The sprout segments are accordingly identi-
fied as the parts of sprouts contained between two neighboring nodes.
In particular, the software separately classifies tip segments, that is, the
segments terminating with a sprout tip, i.e., non-bifurcating ones, and
bifurcating segments. In the following, we use subscripts tip or bif to
distinguish between the two types of segments.

Next, the program calculates radial coordinates of the tips and
finds their maximum spread (rmax). It also finds the number of tips
(Ntip) and the number of primary branches (Npb), i.e., segments in
direct contact with the central bead [Fig. 1(G)]. The complexity of the
vascular network is assessed by computing the average number of gen-
erations G¼ 1þ log2(Ntip/Npb) originating from primary branches.53

Note that in the case of a simple tree-like network originating from a
single branch (Npb¼ 1), we have G¼ 1þ log2(Ntip); see Fig. 1(H).

Finally, our code measures the bifurcation angles / [Fig. 1(F),
supplementary material, Fig. 5(a)]. To this end, in particular, the soft-
ware applies a filter, which allows one to distinguish (in most cases)
between bifurcations and anastomosis events and focuses only on the
former. We measure the branching angle in order to allow comparison
with the available morphogenesis models.

The interstitial distribution of fibroblasts promotes
endothelial sprouting of EC-coated beads

It is known that fibroblasts act as supporting cells and surround
capillary-like structures, promoting the formation of stable vascular

networks.54 The fibrinolytic activity of fibroblasts leads to a remodeling
and the gradual degradation of the fibrin matrix.54 This enhances the
diffusive transport of fibroblast-derived proangiogenic factors, such as
the vascular endothelial growth factor (VEGF), angiopoietin-1, and
platelet-derived growth factor (PDGF), and, in general, has a support-
ive effect on the diffusion of the cell culture media throughout the
fibrin matrix.20 In the first series of experiments, we aimed at examin-
ing the impact of the distribution of normal human dermal fibroblasts
(NHDFs) within the fibrin matrix on the morphogenesis of the vascu-
lar network around an isolated EC-coated bead. NHDFs were either
distributed in the bulk of the fibrin gel (the “intermixed” case) or
seeded at the gel-media interface forming a cellular monolayer (the
“monolayer” case); see Fig. 2(A) and supplementary material, Fig. 2.
We observed that, in qualitative agreement with previous stud-
ies,20,25,54 distributing fibroblasts interstitially promoted sprouting and
led to a faster network development as compared to the case of a
monolayer. This was reflected in a significant increase in the total
area A and the length L of the vascular networks at all times; see Figs.
2(B-a) and 2(B-b). The difference was already apparent at day 5 of cul-
ture and gradually increased, reaching the maximum at day 14. Also,
starting from day 7, the rate of growth of bothA and L appeared approx-
imately three times higher in the “intermixed” case, with the measured
values doubling those observed in the “monolayer” case at day 14. The
observed dynamics strongly correlated with the dynamics of the number
of primary branchesNpb, the number of tipsNtip, and the distance to the
furthest tip rmax [Figs. 2(B-e)–2(B-g)], despite somewhat smaller differ-
ences between the “intermixed” and the “monolayer” configurations in
these cases. Overall, in the “monolayer” case, the dynamics of A, L, and
Npb, Ntip, rmax significantly slowed down, starting from day 6 or 7
(depending on the observable), whereas in the “intermixed” case, the
pace of growth remained high until much later times, that is, day 14 (for
A and L) or day 11 (for Npb and Ntip). Considering the maximal distan-
ces rmax span by the networks, the “intermixed” networks grew wider by
roughly 200lm as compared to the “monolayer” networks.
Interestingly, the difference emerged in a stepwise manner, with the
jump occurring around days 7 and 8, and remained almost unchanged
at later times. Hence, it seems that distributing fibroblasts inside the
ECM tends to extend the period of intense sprout elongation. The com-
plexity of the network, as measured by the number of branch genera-
tions G, remained slightly elevated in the “intermixed” case, starting
from day 8 [Fig. 2(B-h)]. This suggests that distributing NHDFs through
the fibrin matrix leads to the formation of bigger (in terms of L, A) and
slightly more branched (G) vascular networks. Finally, the number of
cells covering the bead, as measured by Ac, appeared not to be signifi-
cantly affected by the fibroblast distribution [Fig. 2(B-d)]. The values
measured in the “monolayer” case remained around 10% higher than in
the “intermixed” case. The shortage of bead-coating cells in the “inter-
mixed” case could be related to the higher number of cells migrating
from the bead toward the sprouts in this case. The average width of the
sprouts (k) was very similar in both cases, starting from day 6, i.e., once
the sprouting set off in both cases [Fig. 2(B-c)].

The impact of fibroblast distribution on bifurcation
angles

As branching events are crucial for the evolving topology of the
sprouting tree-like networks, here we analyze in more detail the distri-
butions of the branching angles. The angles between branches have
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been measured previously during neovascularization in vitro.28,55

However, in those cases, the direction of tip growth was not identified,
so that the measurements have not distinguished between the branch-
ing and the anastomosis events. Here, we exploit the radial growth of
the sprouts and apply a corresponding exclusion rule in the algorithm
(see Methods), which allows us to filter out most of the anastomosis
events and to performmore precise branching angle measurements.

Figure 2(C) shows the histograms of bifurcation angles (/) for
the advanced stage of vascular network growth (day 12 of culture) for

both “intermixed” and “monolayer” cases. We observe quasi-Gaussian
distributions (verified for normality using a Shapiro–Wilk test, see S1
Table) centered around the mean values of /�¼ 55.56 1.7� and
/�¼ 58.36 3.2�, respectively, with the error estimated as the standard
error of the mean. Accordingly, we may conclude that the type of spa-
tial fibroblast distribution has little effect on the observed branching
angle, as suggested by the results from a U Mann–Whitney test, used
for comparing non-Gaussian distributions; see S1 Table. However, in
the “monolayer” case, the total number of bifurcation events pooled

FIG. 2. Distributing NHDFs through the matrix promotes the endothelial sprouting of EC-coated beads. (A) Different seeding conditions of NHDFs during the angiogenesis
bead-sprouting assay—schematic drawings and representative images of single GFP-tagged HUVEC-coated beads. NHDFs were either seeded as (a) a monolayer on the top
of a fibrin clot or (b) distributed throughout the fibrin matrix. Day 10 of culture. Scale bar 250 lm. (B) Morphometric analysis of (a) the total area A, (b) the total length L, (c) the
average sprout width k, (d) the area of the cell-coated bead Ac, (e) the distance to the furthest tip rmax, (f) the number of tips Ntip, (g) the number of primary branches Npb, and
(h) the average number of generations G per branch [G¼ 1þlog2(Ntip/Npb)] of the sprouting capillary networks for 14 consecutive days. The numbers of beads in the assay
(biological repetitions) were n¼ 37 in the NHDF-monolayer case and n¼ 36 in the NHDF-intermixed case. The error bars correspond to the standard error of the mean
(SEM). (C) Distribution bifurcation angles for the monolayer and intermixed fibroblast seeding conditions. The presented values are the mean 6 SEM. NHDF-monolayer,
n¼ 53; NHDF-intermixed, n¼ 131; p> 0.05. The overlap between the histograms is rendered in gray. “PDF” refers to the probability density function. Statistical significance
was analyzed using the Shapiro–Wilk test and the U Mann–Whitney test (C) and two-way analysis of variance followed by Bonferroni’s test (B). Numerical values that underlie
the graphs are shown in S1 Data. See S1 Table for detailed statistics for (B).
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from all experiments is not excessive, n¼ 53, and it is difficult to draw
strong conclusions regarding the measured distribution or the mean
value. As we show below, the situation is improved as the size and
complexity of the networks increase, which we achieve through
increasing the concentration of VEGF in the culture media. At high
VEGF concentrations, the number of bifurcation events exceeds
n¼ 190, which significantly raises the statistical relevance of the
results.

The concentration of VEGF-A-165 determines the onset
of angiogenic sprouting, growth dynamics, and final
morphology of microvessels

Vascular endothelial growth factors (VEGFs) are essential for the
induction of angiogenesis and drive both EC proliferation and migra-
tion.56,57 The VEGF family consists of five members: VEGF-A, VEGF-
B, VEGF-C, VEGF-D, and placental growth factor (PLGF). VEGF-A
isoform is the one most abundant in humans58,59 and has emerged as
the single most important regulator of the blood vessel formation in
health and diseases. It is essential for embryonic vasculogenesis and
angiogenesis and is a key mediator of neovascularization in cancer and
other diseases.60 To characterize the impact of VEGF on EC sprouting
dynamics, we added increasing concentrations (CVEGF) of human
recombinant VEGF-A-165 into the fibrin bead-sprouting assay and
quantified the global morphometric parameters of the vascular net-
works formed. We performed a dose–response titration for a series of
VEGF-A-165 concentrations CVEGF¼ [0, 1, 2.5, 5, 10, 25, 50] ng/ml in
the medium added to each well in the presence of NHDFs interstitially
distributed within the fibrin matrix (the “intermixed” configuration).
As in previous experiments (without the added VEGF), here, we also
visualized isolated EC-coated beads at 24 h time intervals over the
period of 2weeks. We observed that, as expected from the previous lit-
erature,30,61–63 the concentration of VEGF had a significant impact on
the EC sprouting dynamics and overall complexity of the ensuing
microvascular networks [Fig. 3(A) and supplementary material, Fig.
3]. The EC-coated beads treated with a higher CVEGF formed larger
and more branched vascular networks and started to sprout earlier
[Fig. 3(B)]. Increasing CVEGF from 0ng/ml to 25 ng/ml led to an
approximately sixfold increase in the final network area A and a three-
to fourfold increase in the final total length L [Figs. 3(B-a) and 3(B-b)].
Accordingly, we also observed a 1.5 to twofold increase in the final
thickness of the branches, k [Fig. 3(B-c)]. Increasing CVEGF further up
to 50 ng/ml did not result in further changes, suggesting a saturation of
the system at around 25ng/ml. The observed changes of the area of
the mask, Ac [Fig. 3(B-d)], indicate that the VEGF concentration
affected not only the formation of sprouts but overall had a significant
impact on the HUVEC proliferation during the assay. In particular,
higher concentrations of VEGF resulted in an increased final area of
the mask Ac, indicating a more frequent cell proliferation at the mono-
layer, whereas the lack of the exogenous VEGF (the case 0ng/ml) led
to a decrease in Ac in the initial stage of culture. The latter observation
could be explained in terms of the arrest of HUVEC growth and/or
their apoptosis caused by an insufficient supply of VEGF, resulting in a
regression of the vascular network.64–66

The maximum distance rmax spanned by the networks, the
numbers of tips Ntip, and the primary branches Npb were also signifi-
cantly elevated for cultures treated with a higher CVEGF [Figs. 3(B-e)–
Fig. 3(B-g)]. Vascular networks exposed to higher VEGF

concentrations sprouted earlier and, in general, developed a more
complex topology, as reflected by the higher final number of branch
generations, G¼ 1 þ log2(Ntip/Npb) [Fig. 3(B-h)]. The increase in G
was particularly pronounced for cultures treated with CVEGF¼ 25 and
50 ng/ml. This increase in complexity could be attributed, in general,
either to the earlier onset of sprouting or to the possible faster linear
growth of the sprouts. To verify the latter possibility, we determined
the ensemble-averaged linear speed of the tips. We used the formula
vtip¼DL/(Dt Ntip), where Dt is the interval between the measure-
ments, that is, one day, and DL is the corresponding increase in the
net length L of the network (i.e., we assumed that the network grows
only at the tips). We found that, independently of the VEGF concen-
tration, the velocity vtip as a function of time always developed a maxi-
mum shortly after the onset of growth [Fig. 3(B-i)]. Importantly, we
also observed that the corresponding maximal velocities were of simi-
lar magnitude, independently of CVEGF. Accordingly, we may con-
clude that the presence of more evolved networks at higher CVEGF is
associated rather with the earlier onset of sprouting and thus with the
overall longer period of growth (in each case extending until satura-
tion at around day 11) rather than with the tip velocity vtip.

In the following, we turn to a more detailed analysis of the evolu-
tion of sprouting networks over time depending on CVEGF. First, we
observe that the two main parameters describing the morphogenesis of
a vascular network, i.e., L(t) and A(t), exhibit a sigmoidal growth pat-
tern with an initial inactive phase (no sprouts) followed by an expo-
nential growth phase and a final plateau phase. The growth curves L(t)
and A(t) can be approximated each by a logistic curve of the form

Y tð Þ ¼ Ymax= 1þ exp – k t � t1ð Þð Þð Þ; (1)

where Ymax is the saturation level, k is the characteristic growth rate in
the exponential phase, and t1 is the inflection point of the sigmoid cor-
responding to the moment of the fastest growth. From the fitted
curves, we extract the maximal rate of growth (dY/dt)max¼Ymaxk/4
and the onset of growth t0¼ t1 � 2/k (which corresponds to the x-
intercept of the tangent line to the graph Y(t) at the inflection point).
The proposed fits seem to accurately describe the dynamics of EC
sprouting [see Fig. 3(C) for the length L and supplementary material,
Fig. 4 for the area A]. Some discrepancies (e.g., no obvious plateau
phase in some cases) are observed during the final days of the experi-
ment (approximately after day 10 of the assay), and they seem to be
more pronounced for higher VEGF concentrations. This is possibly
caused by the longer period of the extensive growth of the network in
these cases, with the growth only starting to saturate at around day 10.
Nevertheless, we have decided not to replace Eq. (1) with a more
sophisticated formula that involves a larger number of parameters, as
this could lead to overfitting and issues with interpretability. It is
important to note that the estimation of the onset time and the maxi-
mal growth rate is not impacted by the long-term behavior of the
curves. Therefore, fitting with Eq. (1) should yield accurate values for
these parameters. We find that the onset of the sprout elongation t0
systematically decreases with CVEGF, reaching a plateau of t0¼ 4 [days]
at concentrations CVEGF¼ 25 and 50ng/ml. This means that increas-
ing CVEGF in the range [0, 25] ng/ml expedites sprouting [Fig. 3(C-b)].
At low VEGF concentrations (CVEGF¼ 2.5 ng/ml), the maximum
growth rates of the sprout length (dL/dt)max [Fig. 3(C-c)] and of the
sprout area (dA/dt)max [supplementary material, Fig. 4(A-c)] are
nearly independent of CVEGF, whereas they are roughly proportional
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FIG. 3. VEGF-A concentration determines the onset of angiogenic sprouting, the rate of growth, and the final morphology of the capillary networks. (A) Representative images
of GFP-tagged HUVEC-coated beads cultured at the indicated VEGF-A concentrations, day 10. Scale bar 250lm. (B) Morphometric analysis of sprouting capillary networks at
the indicated VEGF concentrations in terms of (a) the total area A, (b) the total length L, (c) the average sprout width k (d) the area of the cells coating the bead Ac, (e) the dis-
tance to the furthest tip rmax, (f) the number of tips Ntip, (g) the number of primary branches Npb, (h) the average number of generations G per branch [G¼ 1þ log2(Ntip/Npb)],
and (i) the average tip velocity vtip (the plot shows the moving average with the averaging time of 2 days). The numbers of beads (biological repetitions) taken for the statistics
were as follows: CVEGF¼ 0 ng/ml, n¼ 13; CVEGF¼ 1 ng/ml, n¼ 13; CVEGF¼ 2.5 ng/ml, n¼ 14; CVEGF¼ 5 ng/ml, n¼ 14; CVEGF¼ 10 ng/ml, n¼ 12; CVEGF¼ 25 ng/ml,
n¼ 14; CVEGF¼ 50 ng/ml, n¼ 12. Symbols in the graphs indicate the mean values, and error bars are the standard error of the mean (SEM). (C) The parameters describing
the growth process. (a) Comparison between the experimental data L(t) and fitted curves (a logistic function), see Eq. (1), for various CVEGF. (b) The VEGF-dependence of the
onset of growth t0, (c) the rate of growth (dL/dt)max, and (d) the saturation level Lmax. In (a), the error bars correspond to the SEM, whereas in the remaining panels to the stan-
dard errors of the parameters obtained using the least squares method. Statistical significance was analyzed using a two-way analysis of variance followed by Bonferroni’s
test (B). Numerical values that underlie the graphs are shown in S1 Data. See S1 Table for detailed statistics for (B). For (C), the accuracy of the fit was evaluated using two
metrics: mean absolute percentage error (MAPE) and weighted mean absolute percentage error (WMAPE); see S1 Table for numerical values and Material and Methods sec-
tion for an explanation of the metrics.
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to CVEGF in the regime 2.5 ng/ml < CVEGF <25 ng/ml and saturate
above CVEGF¼ 25ng/ml. Similar scenarios with a somewhat steadier
increase already at the lower CVEGF are also observed for the saturation
levels Lmax and Amax [Fig. 3(C-d) and supplementary material, Fig. 4
(A-d)].

Finally, we analyze the impact of the VEGF concentration on the
distribution of the bifurcation angle / (Fig. 4) and the segment length
l (Fig. 5). In the case of angle measurements, we first validate our
methodology by comparing the results with a manual measurement of
the bifurcation angles. Next, we tune the internal parameter of the
angle-measurement algorithm (the “arm length;” for details, see
Materials and Methods section, supplementary material, Fig. 5) to
match the manual measurements best. With the optimized algorithm,
we find that the average bifurcation angle /� varies in the range from
61� to 72� as CVEGF increases from 0 to 50ng/ml. We observe a shal-
low minimum at CVEGF around 1–2 ng/ml. For higher CVEGF, /

� sta-
bilizes at around 65�–68�. In the case CVEGF¼ 2.5 ng/ml, we observe
two peaks in the bifurcation angle distribution, which might indicate a
transition between the effects of small CVEGF and the release of bound
VEGF from the surrounding fibrin matrix, which becomes important
at higher VEGF concentrations.67

Considering the distributions P(l) of the segment lengths l, we
also verify the validity of the automated image analysis via comparing
with manual image segmentation. In general, we find a reasonable
agreement between the automated and the manual measurements

without any tunable parameters (supplementary material, Fig. 6). The
distributions differ only at very small l, where apparently the numerical
approach overestimates the number of the shortest segments. The
overpopulation of the short segments can be attributed to the skeleto-
nization procedure, which tends to produce many “artificial” short seg-
ments in the regions of high sprout density.

Based on the results for all studied CVEGF, we find that at low
CVEGF, the total number of segments is too low to draw statistically
meaningful conclusions about the distribution (supplementary mate-
rial, Fig.7). Therefore, we limit the more detailed analysis to only the
highest VEGF concentrations, that is, the cases CVEGF¼ 25 and 50
ng/ml. In these two cases, we observe strong evidence for the exponen-
tial decay of P(l) (Fig. 5 and supplementary material, Fig. 6; the latter
one shows the results of manual measurements). The exponentially
decaying distributions are observed for both tip segments P(ltip) as well
as for the bifurcated segments P(lbif), which is verified via fitting P(l)
�exp(�l/l�), where l� is the average length of a segment. Such a divi-
sion is meaningful since the population of the actively growing seg-
ments (tip) may have different statistics than the population of
segments that have completed growth (bif).

In general, the exponential probability distributions are character-
istic of a Poisson process in which the events (bifurcations in this case)
occur randomly in space, yet at a constant average spatial density,
given by 1/l�. Another conclusion that can be drawn from Fig. 5 and
supplementary material, Fig. 6, is that the average length of a

FIG. 4. VEGF-A concentration does not affect the distribution of bifurcation angles. (A) Analysis of the bifurcation angle distributions for indicated VEGF concentrations at day
12 of culture. The total numbers n of the measured angles were (a) CVEGF¼ 0 ng/ml, n¼ 28; (b) CVEGF¼ 1 ng/ml, n¼ 37; (c) CVEGF¼ 2.5 ng/ml, n¼ 42; (d) CVEGF¼ 5 ng/ml,
n¼ 82; (e) CVEGF¼ 10 ng/ml, n¼ 97; (f) CVEGF¼ 25 ng/ml, n¼ 252; and (g) CVEGF¼ 50 ng/ml, n¼ 198. The dashed lines show mean values. “PDF”—probability density
function. (B) The mean bifurcation angle plotted as a function of CVEGF. The error bars are the standard error of the mean. Statistical significance was analyzed using a one-
way analysis of variance followed by Tukey’s test (B). Numerical values that underlie the graphs are shown in S1 Data. See S1 Table for detailed statistics for A.
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bifurcated segment (l�bif) is, in general, close to the average length of a
tip segment (l�tip). We observe a statistically significant difference only
in the case of beads treated with CVEGF¼ 25 ng/ml (S1 Table). In fact,
this case provides particularly rich statistics with the highest total num-
ber of segments (e.g., n¼ 692 for CVEGF¼ 25ng/ml vs n¼ 546 for
CVEGF¼ 25ng/ml) and the most branched networks [highest G at day
14, see Fig. 3(B-h)]. In this case, we find that l�bif < l�tip with the differ-
ence being statistically significant according to the 3-sigma test (see
“Statistical analysis” in the Methods section). This observation could
be explained by noting that, given sufficient time, an actively growing
tip segment will eventually split and become a bifurcated segment;
thus, the long “tail” in the distribution builds first in ltip distribution
and only later becomes visible in lbif. Finally, no statistically significant
difference in either l�bif or l

�
tip between the cases with CVEGF¼ 25 ng/ml

and CVEGF¼ 50ng/ml is observed. We verify these conclusions by
employing both algorithmic and manual measurements of the segment
lengths and employing the 2-sigma and 3-sigma tests (see S1 Table).
Noteworthily, we also find that the numerical artifact associated with
the overpopulation of the shortest segments, which we systematically
observe in the algorithmic measurements, has little effect on the fitted
values l�bif and l

�
tip (supplementary material, Fig. 6).

DISCUSSION
Growth rules

In summary, according to our study, the angiogenic sprouts in
the HUVEC bead-sprouting fibrin assays seem to obey the following
rules of growth:

(1) The evolution of the sprouting networks proceeds via three
stages: (i) inactive stage during which the cells proliferate only
within the monolayer/multilayer covering the bead, (ii) expo-
nential growth stage, consisting of rapid sprout elongation and
branching, and (iii) maturation stage during which the growth
slows down and eventually saturates.

(2) Distributing fibroblasts interstitially in the fibrin gel promotes
HUVEC sprouting and leads to more branched capillary net-
works as compared to the case with fibroblasts growing on top
of the fibrin clot. This confirms previous findings.20

(3) Increasing the concentration of the vascular endothelial growth
factor (VEGF) in the media leads to earlier sprouting (via

shortening of the initial inactive stage) and leads to an increased
number of primary branches, yet without significantly affecting
the linear speed of sprout growth.

(4) At larger VEGF concentrations (25–50 ng/ml), the distributions
of segment lengths (i.e. distances between the bifurcation
points) become exponential, a feature characteristic of a net-
work subject to random uncorrelated branching, in mathemati-
cal statistics referred to as the Poisson process. Accordingly, our
results support a picture of a stochastically branching network,
in line with some of the available branching morphogenesis
models, such as, e.g., the branching and annihilating random
walk (BARW).68–70 Interestingly, the characteristic segment
length (the inverse of the decay rate of the distribution) does
not seem to depend on the VEGF concentration.

(5) The average values of the branching angle vary in the range of
60�–75�, i.e., close to (2p/5) � 180¼ 72� characteristic of
Laplacian growth models, i.e., diffusion-limited growth mod-
els,71–74 which overall suggests that the tips follow the local gra-
dients of the VEGF concentration.

Collectively, our results, due to their high statistical relevance,
may serve, e.g., as a benchmark for predictive models. Below, we dis-
cuss our findings in more detail.

Fibroblast distribution

The role of fibroblast distribution in the matrix and the VEGF
concentration in the assay have been a subject of intense studies in pre-
vious years. Currently, there is a consensus20,25,54 that fibroblasts dis-
tributed throughout the hydrogel matrix tend to soften the matrix and
promote the diffusion of growth factors, which in turn promotes EC
sprouting. Our study also confirms this scenario.

Impact of VEGF concentration

The impact of VEGF, in particular, the VEGF concentration in
the medium, on the morphology of a vascular network, including the
topological network characteristics—due to the available contradicting
experimental evidence—has remained an open issue.30,44,62,75,76 In the
present study, we report that increasing the VEGF-A-165 concentra-
tion, CVEGF, promotes a more rapid development of the networks and

FIG. 5. Capillary networks formed at high VEGF concentrations display the exponential segment length distributions. Analysis of the distribution of the length of (a) tip segments
and (b) bifurcating segments for CVEGF¼ 25 and 50 ng/ml. Numbers of identified segments were (a) CVEGF¼ 25 ng/ml, n¼ 266; CVEGF¼ 50 ng/ml, n¼ 198, (b)
CVEGF¼ 25 ng/ml, n¼ 426; CVEGF¼ 50 ng/ml, n¼ 348. The characteristic segment lengths are indicated on the graphs with the standard errors. “PDF” refers to the probability
density function. Numerical values that underlie the graphs are shown in S1 Data.
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leads to increasingly complex vasculatures, an effect that persists up to
a saturation level of CVEGF � 25 ng/ml VEGF. This is consistent with
previous reports,44,61,62,75–78 which focused on various biological sys-
tems, including ex-vivo aortic ring models,77,78 EC spheroids,44 and
EC-coated microcarrier beads61 as well as vasculature on chip mod-
els,62 in which VEGF concentrations ranging from app. 30 to 50 ng/ml
were observed to induce the fastest growth of vascular networks and
promote bifurcations. Interestingly, similar to our study, Knezevic
et al.75 observed a saturation of vascular network formation at CVEGF

� 25ng/ml VEGF without a significant increase when cultures were
treated with CVEGF¼ 50ng/ml. Heiss et al.44 reported an increase in
the length of HUVEC sprouts for VEGF concentrations only up to
CVEGF¼ 32ng/ml, followed by the lack of further increase at
CVEGF¼ 64ng/ml. Moreover, it seems that the range of VEGF concen-
trations corresponding to the saturation of growth depends on the
type of hydrogel. Indeed, the microvasculatures cultured in fibrin
matrices tend to saturate at slightly lower VEGF concentrations44,75 as
compared to the collagen matrices.34,44,76 However, the results of sev-
eral other studies30,79 provide contradicting experimental evidence,
namely, a non-monotonic response of the EC growth dynamics to
CVEGF. For example, Nakatsu and colleagues30 reported a sharp peak
in the number of endothelial sprouts (most likely primary branches,
but this has not been specified by the authors) as a function of CVEGF

in cultures where HUVEC-coated beads were treated with 2.5 ng/ml of
VEGF, while in assays with CVEGF < 1 ng/ml or >10 ng/ml, the
authors observed the formation of approximately one sprout per bead
after 7 days of culture. Exposing EC-coated beads to concentrations of
VEGF higher than 2.5 ng/ml did not lead to the formation of addi-
tional sprouts but resulted in a gradual increase in the sprout width.
Part of the confusion may lie in the use of different sources of the
HUVEC cells, e.g., different donors and isolation times.44 Another fac-
tor is the concentration of serum in the culture media, which could
partially account for the observed morphometric differences.80 In our
study, we used commercial HUVEC cells collected from 50 donors
and cultured them in low serum medium, while Nakatsu et al. used
freshly isolated HUVEC cells from a single donor and cultured the
cells in high serum medium. The increased serum concentration was
previously argued to inhibit the endothelial tube formation.80

Regarding the dependence of the complexity of the networks on
VEGF, we observe that increasing the concentration of VEGF leads to
a larger number of primary branches as well as an increase in the aver-
age number of branch generations G. In particular, in the cultures
treated with the highest VEGF concentrations (CVEGF¼ 25 and 50
ng/ml), the period of formation of primary branches is followed by the
phase of intense branching, resulting in network densification, a pro-
cess that we do not observe to occur in cultures deprived of exogenous
VEGF or in those treated with low VEGF concentrations (<2.5
ng/ml). Based on our results, we propose that the emergence of more
complex morphologies is most likely related to the earlier onset of
growth of the network and to the simultaneous emergence of multiple
primary sprouts rather than with the faster linear rate of growth of the
sprouts. In fact, we find that the maximal speed of the sprout tips is
only weakly dependent on the VEGF concentration [Fig. 3(b-i)].

Exponential distributions of segment length

The origin of the branched morphology of vascular networks
in vivo can be related to the proliferative activity of equipotent sprout

tips that stochastically bifurcate and randomly explore their environ-
ment, competing for space.68 In the present study, we find that—for
relatively high VEGF concentrations—the distribution of lengths of
the vascular segments between the bifurcation points, formed by ECs
sprouting from EC-coated beads in vitro, decays exponentially. This in
turn suggests a purely stochastic branching process with a constant
bifurcation probability per unit sprout length.

Stochastically branching structures are ubiquitous in nature and
can be observed both at the level of multicellular organs, such as
lungs,81 kidneys,82 the pancreas,83 mammary glands,84 or vascular sys-
tems,85 as well as at the level of single cells such as neurons69,86 or tra-
cheal cells.87 The phenomenon is universal across species88 ranging
from prokaryotic organisms89,90 through invertebrates87 to verte-
brates.69,81 Based on the observations, the growth process could be
likely modeled by a branching random walk.68 However, some of the
features of the growing vascular networks are not well reproduced by
such models. In particular, in the branching random walks, the grow-
ing sprout constantly changes its orientation and, as a result, relatively
quickly “forgets” its original growth direction. The growth of our vas-
cular networks, although also random to some extent, is nevertheless
on the average directed outwards, away from the initial bead, which
can be likely related to the direction of local VEGF- and/or nutrient
concentration gradient. The directional growth translates into the lin-
ear (or even faster than linear, i.e., superlinear) dependence of the net-
work size on time [see Figs. 3(B-b) and 3(B-f)] shortly after the onset
of growth (days 4–8), which is different from the clusters grown in
random walk models, such as BARW,68–70 the size of which scales sub-
linearly with time. Random walk models can be adjusted to exhibit
radial spreading69 by the introduction of an effective radial force, act-
ing on the growing tips. However, it seems more logical to assume that
the growth of tips is guided by the VEGF concentration gradients,
which produce a deterministic outward motion on top of stochastic,
noise-driven effects. In contrast to the radial force model of Ucar
et al.,69 such gradients themselves evolve as the sprouts advance into
the matrix and consume VEGF while also locally competing for the
VEGF flux. This makes the vascular growth problem similar to the so-
called Laplacian growth models91 in which the structure grows in the
direction of the gradient of the diffusive field.

Bifurcation angles

In fact, in our experiments, we observe that the average bifurca-
tion angle is typically within the range of 65�–70�, which is close to the
theoretical value of the universal branching angle in the Laplacian
growth problems, which is equal to 2p/5, i.e., 72�, at least if the growth
takes place in a geometry confined to a plane.71–74 Noteworthily, simi-
lar values of the branching angles were also reported, e.g., in the quasi-
planar retina vasculature.92 This suggests that diffusive growth might
play an important role in the formation of transport networks. This is
further confirmed by comparing the characteristic timescales of VEGF
diffusion in the system, sD ¼ d2well=D, with the characteristic time of
an uptake of VEGF by the endothelial cells, sR ¼ 1=k. In the above,
D � 3� 10�7 cm2/s is the diffusion constant of VEGF, dwell ¼ 1.6 cm
is the size of the well, and k � 10�5/s is the VEGF uptake rate by the
endothelial cells.93 The ratio of these timescales, known as the
Damk€ohler number, Da ¼ kd2well=D � 85� 1, i.e., the system is
strongly diffusion-limited and the growth is expected to follow the
local VEGF gradients. Accordingly, one is tempted to use analogies
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between growing vascular systems and evolving non-biological net-
works, such as river networks or crack patterns,72,94 to better under-
stand the dynamics of vascular networks as well as other types of living
cellular networks, a consideration that we leave for future studies.

Ambiguities in morphological analysis

Nevertheless, one should also be aware that biological networks
are often formed via morphological processes other than branching,
yet also resulting in the apparently “branched” structure.69,89 In our
case, for example, we observe that the nodes of the network are formed
not only via bifurcation of the sprout tips [Fig. 6(a)] but may also form
via (i) sprout fusion (anastomosis), (ii) partial fusion followed by split-
ting, resulting in the formation of an X-like structure [Fig. 6(b)], or

(iii) formation of a vascular loop via tip-to-tip anastomosis [Figs. 6(c)
and 6(d)]. The relevance of the above-mentioned different morphoge-
netic scenarios remains an open issue, and we leave it for future inves-
tigations. Noteworthily, the classification of the nodes of the network
with respect to the corresponding scenario of formation would require
the development of new sprout-tracking algorithms. The fast develop-
ment of machine-learning (ML) based tools95,96 promises possible
applications of ML also in this direction.

Image analysis software

At the end, we discuss the new functionalities of our custom
image analysis toolset developed for the purpose of this work.
Biological image analysis has spurred the development of numerous

FIG. 6. Various scenarios of segment/node formation during development of an EC bead-sprouting network. Confocal images from three consecutive days of culture and sche-
matic representations of the extracted skeletons of the network with indicated nodes (red dots), tip segments (black lines), and bifurcating segments (blue lines) as would be
detected by the algorithm. One can distinguish three different scenarios of segment/node formation: (a) bifurcation of a mother branch into two daughter branches, (b) anasto-
mosis (fusion) of two independent branches; here, anastomosis is followed by another bifurcation, i.e., the formation of an X-shaped structure, and [(c) and (d)] the formation of
vascular loops caused by sequences of bifurcation and anastomosis events, also including tip-to-tip anastomosis. The scale bar is 250 lm.
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tools to aid the interpretation and quantification of experiments,
including open-source platforms, such as ImageJ,97 extended by FIJI,98

CellProfiler,99 Vaa3D,100 Icy,101 and others, as well as commercial tools
(such as Imaris, Amira, or Volocity). Particularly popular platforms
for angiogenetic analysis are Sprout Analysis plugin to ImageJ,102

Matlab-based AngioQuant for in vitro assays,103 or AngioIQ,104 which
uses a graphic interface, as well as SproutAngio tool written in
Python.105 Carpentier et al. developed Angiogenesis Analyzer108 and
recently applied it to fibrin-based assays.41 There is also a commer-
cially available IKOSA AI tool,106 which exploits machine-learning
algorithms. These tools offer efficient ways to segment and skeletonize
images of angiogenic networks and provide insights into the length
and area statistics by resolving junctions and branches.

We have performed a basic comparison between our software and
the three chosen software: Sprout Analyzer,102 Sprout Angio,105 and
IKOSA AI.106 The details of the comparison are given in the supple-
mentary material, and here, we provide a short summary. First, we note
that our software is tailored to the specific requirement of our work,
which includes parallel processing of multiple images of different beads
acquired at different time-points and their topological analysis.
However, we do not assert that it is overall superior to the other free
and commercial solutions available on the market, which often focus on
different types of tasks (analysis of multi-channel data, 3D analysis, con-
stant improvement of performance via machine learning).

Notably, our software exhibits exceptional speed, likely ranking
as one of the fastest among the compared solutions (see supplementary
material, Chapters 2.1, 3.1, and 4.1). It is written in a contemporary
programming language, characterized by ease of acquisition and sup-
ported by a vibrant community, facilitating its adoption by a wider
audience. Our software introduces novel metrics, offering comprehen-
sive control over graph manipulation and providing extensive debug-
ging information. It is suited to the format and character of the
measured data and tailored to the detection of primary branches and
outer branches, necessary for the analysis of bifurcations and branch-
ing angles, which the other tested tools are lacking.

Moreover, we have incorporated tools for clean data storage and
statistical analysis, which have not been developed to the similar extent
in the compared software. A substantial portion of the codebase is sub-
jected to rigorous unit testing, ensuring its robustness. Furthermore,
our software separates the implementation layer from the Application
Programming Interface (API), a feature not readily apparent in other
solutions, e.g., IKOSA AI, where API access is restricted, while in solu-
tions such as SproutAngio and Sprout Analyzer, the software is pro-
vided in the form of scripts. In the compared software, the users are
constrained to perform the analysis through the graphical user inter-
face (GUI), which is time-consuming for larger datasets.

In summary, we consider our software to be a valuable tool,
underpinned by a strong foundation, well-suited for the specific chal-
lenges posed by the time-resolved analysis of the bead-sprouting
angiogenesis. While certain limitations persist, such as those related to
the working with 2D projections instead of the full 3D data and with
rare ambiguities during processing, we continue to work toward their
refinement and resolution. Last but not least, we note that, with novel
tools exploiting the advantages of deep learning coming into play,12

including the already available IKOSA AI software, we expect that AI
will play an increasingly important role in the angiogenesis image
analysis.

SUMMARY AND CONCLUSIONS

In this work, we have reported high-throughput fibrin-gel angio-
genesis bead-assays aimed at long-term tracking of the evolution of
sprouting vascular networks, in particular, focusing on a variety of sta-
tistical morphological/topological characteristics of the networks. To
this end, we have developed Python-based software for the morpho-
metric analysis of vascular networks. We used this tool to demonstrate
how the dynamics of the growth of HUVEC sprouts depends on the
distribution of fibroblasts in the surrounding hydrogel matrix and on
the concentration of VEGF in the medium.

Overall, we have demonstrated the possibility of extracting
detailed statistical–topological features of bead-sprouting microvascu-
lar networks at high throughput. Our findings can be of practical rele-
vance in the development of angiogenesis drug testing assays as well as
in tissue engineering. In the former case, our methodology and soft-
ware could greatly enhance the outcomes of high throughput screening
studies, such as, e.g., the one performed by Heiss et al.,44 who evaluated
the pro- and antiangiogenic capacity of over 800 chemical compounds
using sprouting EC-spheroids. The sprouting intensity was assessed
manually by categorizing the compounds into four groups based on
the microscopic observations. Our software could greatly enhance
such kind of assays via providing a more robust and significantly expe-
dited workflow. In addition, our software would also deliver a wider
range of morphometric measures and provide quantitative insights
into the details of drug effects on the emerging vascular phenotype.
Noteworthily, the screening of large libraries is one of the first and
most critical steps toward identification of potential drug candidates.
Thus, having a robust, hands-off system capable of fast quantitative
analysis remains of a great importance in a variety of preclinical R&D
pipelines.

Finally, in terms of tissue engineering, our results could be
used to define the optimal conditions for efficient vascularization
in the biofabrication strategies based on the use of endothelial
seeds19,20,22,24,25,27,29,107 . In such strategies, multiple seeds are initially
dispersed in the external ECM to eventually interconnect and form a
fully percolated mesoscale network. Whereas the approach has been
initially exploited with random-sized microvessel fragments as the
seeds,107 the fabrication of seeds of more controlled size and shape,
such as EC-encapsulating hydrogel beads made of fibrin, aga-
rose,22,24,108 or polyethylene glycol (PEG) derivatives,19 has also been
demonstrated. Here, we have focused on a single cell-coated sprouting
seed, but our systematic approach could be further extended to the
case of modular microvasculatures. Such future studies could poten-
tially provide for better understanding of how the external cues affect
vascularization in biomaterials with embedded endothelial seeds and
help to optimize tissue repair strategies, e.g., via proper design of the
prevascularized wound dressings.10,109

METHODS
Cell culture

GFP-HUVECs (Angio-Proteomie, Boston, MA; catalog no. cAP-
0001GFP) were cultured in endothelial cell growth medium 2 (EGM-
2) medium supplemented with EGM-2 bulletkit (Lonza, Basel,
Switzerland; catalog no. CC-3156 and CC-4176) and were used at pas-
sages 3 through 5. NHDF (Promocell, Heidelberg, Germany; catalog
no. C-12302) were cultured in Dulbecco’s modified Eagle medium
(DMEM) (Thermo Fisher Scientific, Waltham, MA, USA; catalog no.
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10566016) supplemented with 10% fetal bovine serum (FBS), 4.5 g/l of
glucose, Glutamax, and 1% penicillin–streptomycin. NHDFs were
used between passages 2 and 7. All cells were cultured in 5% CO2 at a
37 �C humidified atmosphere, and media were replaced every 2 days.

Fibrin bead-sprouting assay

Coating of the beads with EC was performed as described previ-
ously110 with small modifications. Briefly, HUVECs-GFP were mixed
with 265lm diameter monodispersed polystyrene superparamagnetic
microcarrier beads (microParticles GmbH, Berlin, Germany; catalog
no. PS-MAG-AR111) at a concentration of approximately �500 cells
per bead in a small volume of warm EGM-2 medium and placed in
the incubator for 4 h at 37 �C and 5% CO2, gently shaking the tube
every 20min. After 4 h, beads were transferred to a culture flask with
fresh EGM-2 medium and placed overnight in the incubator at 37� C
and 5% CO2. The following day, beads were gently washed with EGM-
2 medium, resuspended in freshly prepared 2.5mg/ml fibrinogen solu-
tion (Sigma-Aldrich, St. Louis, MO, USA; catalog no. 341573), mixed
with 0.625 units of thrombin (Sigma-Aldrich, St. Louis, MO, USA; cat-
alog no. T4648), and seeded one bead per well in a 24-well plate. After
pouring the fibrin hydrogel with one EC-coated bead into each well,
we inserted a sheet of paper with marked spots underneath the well-
plate for better visualization of the beads and also for use as a template
for precise bead positioning. We used titanium fine tip tweezers to
position the beads above the marked spots, centrally in the wells.
Fibrin/bead solution was allowed to clot for 5min at room temperature
and then at 37� C and 5% CO2 for 30min. 1ml of EGM-2 medium
was added to each well. NHDFs at a concentration of 25 000 cell/well
were either layered at the top of the clot or added to the fibrin/bead
solution before seeding the beads. The medium was changed every
day. Human recombinant VEGF-165 (Stemcell technologies; Saint
Egr�eve, France; catalog no.78073) was used at the indicated concentra-
tions. In experiments where EC-coated beads were treated with exoge-
nous VEGF-165, we used EGM-2 medium deprived of VEGF solution
provided by the manufacturer. This was done to reduce the impact of
other VEGF isoforms that could be present in the commercial solution
and to avoid any additional VEGF supplementation in the medium
that could affect the final concentration of VEGF in the experimental
setup.

Immunofluorescence staining

Fibrin blocks with NHDF cells were fixed with 4% paraformalde-
hyde (PFA) and blocked with a blocking buffer (2% bovine serum
albumin [BSA], 2% normal goat serum, and 0.5% Triton X-100 in
PBS). Actin-488 conjugated antibody (Sigma-Aldrich, St. Louis, MO,
USA; catalog no. ABT1485-AF488) was applied in a blocking buffer.

Image acquisition and processing

EC-coated beads were imaged every 24 h for 14 consecutive days
using a Nikon A1 confocal microscope (Nikon Instruments, Inc,
Melville, NY, USA) equipped with a PLAN APO 10�/0.45 objective.
Images were collected using NIS-Elements Advanced Research soft-
ware (Nikon Instruments, Inc, Melville, NY, USA) in the nd2 format,
which are 16-bit single-channel images with respective metadata. Each
experiment was recorded as a set of successive frames, where a single
frame had several slices in the z-direction. The resolution of images is

1.25lm/pixel. The images were first max-pooled on the z-directional
slices (taking the maximum intensity value across the stack) and
treated with a Gaussian blur with a kernel of size 11 pixels. To distin-
guish cells from the background, segmentation was performed with
the threshold based on the average intensity multiplied by 1.17. A fill-
ing algorithm was used to eliminate holes with perimeter smaller than
200 pixels (250lm), and the largest connected component was taken.
The centrally located polystyrene bead “mask” was then detected by a
top-hat transform algorithm. To focus the analysis on the geometrical
characteristics of the growing sprouts, the central bead was removed
using the previously detected mask. The processed images were subse-
quently skeletonized using an algorithm from the scikit-image package.
Connectivity of the resulting skeletonized network was then deter-
mined by identifying branching points (junctions) and segment tips.
Finally, tip segments shorter than 50 pixels (62.5lm) were pruned,
except for those connected to the mask (base of a sprout). The exact
values of the applied parameters (blur kernel size, minimal hole size,
pruning length, arm length in angle measurement, etc.) used in the
image processing have been chosen to maximize the agreement with
the results of the direct manual image segmentation performed by two
independent researchers. After calibration on a representative data
subset, high-throughput measurements were performed on wider data
sets. In our software, the parameters can be tuned to fit the conditions
of the experiment, which provides a high level of flexibility for various
applications.

Geometrical and topological characteristics
of the sprouting network

Based on the segmented pictures, skeleton, and mask, we com-
puted the geometrical characteristics of the sprouting network (Ac, A,
L, rmax, Npb, Ntip, k, G). Moreover, for each experiment, we detected
the bifurcations points, that is, the nodes in the graph with three out-
going segments, and measured three angles associated with each bifur-
cation point. The angles were measured between straight lines
connecting the bifurcation point and a selected point on each of the
outgoing branches. Because of the finite thickness of the sprouts, the
process of skeletonization resulted in branches being slightly curved
toward the branching point. Accordingly, if one selected the points for
the angle measurement very close to the bifurcation point, then the
computed bifurcation angle would appear larger than in the case with
the points selected at a larger distance from the bifurcation. The
importance of choosing the right length scale for the measurements of
bifurcation angles was highlighted before, e.g., in the context of geo-
metric characteristics of river networks.111 We decided to select the
points at 60 pixels (approximately 75lm) from the bifurcation point
(calculated along the sprout) on each branch as in this case we
obtained the results that best matched the manual measurements (see
supplementary material, Fig. 5).

It is important to note that out of the three angles adjacent to a
bifurcation point, one needs to select the actual bifurcation angle, that
is, the angle between the two daughter branches. In general, based on
the manual segmentation of several images, we found that the bifurca-
tion angles are typically between 30� and 120�. Therefore, in the algo-
rithm, we took the smallest of the three angles as the supposed
bifurcation angle. We note that this method has a limitation in the
sense that it cannot yield bifurcation angles larger than 120�. Also, the
smallest angle at a selected node may as well be associated with
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anastomosis of the vessels rather than bifurcation. In order to exclude
the angles corresponding to anastomosis events, we checked whether
the bisector of the selected smallest angle pointed inwards or outwards
with respect to the polystyrene bead (the center of the mask). Only the
cases with the bisector pointing outwards (i.e., with the maximum
angle of 90� between the bisector and the vector connecting the center
of the bead and the node) were classified as bifurcations.

Finally, the fitting of the exponentially decaying function to
the PDF of branch lengths P(l) was done using the semi-
logarithmic scale. That is, we fitted a linear function with a negative
slope to the dataset ln(P(l)) vs l. To this end, we used a linear least
squares regression implemented in library SciPy (function linre-
gress). The fitting of a sigmoid function from Eq. (1) to the experi-
mental data L(t) [Fig. 3(c-a)] and A(t) [supplementary material,
Fig. 4(a)] was conducted using the non-linear least squares method
(function curve_fit from SciPy).

Statistical analysis

Directly measured quantitative data are expressed as the mean
6 SEM. The statistical methods (two-tailed and unpaired t tests, one-
way analysis of variance followed by Tukey’s post hoc test, and two-
way analysis of variance followed by Bonferroni’s post hoc test,
Shapiro–Wilk test, U Mann–Whitney test) and p-values are defined in
the figure legends or in supplementary material Table 1 (S1 Table).
The quantification of the manually measured parameters (bifurcation
angles, tip, and bifurcation segments) was performed in a blinded
manner and confirmed by two independent researchers. The statistical
analyses were performed using GraphPad Prism 5 and Microsoft Excel
software, and the scipy stats Python module.

Evaluation of the logistic fit performance was measured by
MAPE (mean absolute percentage error) and WMAPE (weighted
mean absolute percentage error). The MAPEmetric is defined as

MAPE ¼ 1
n

Xn

i¼1

xi � xp
xi

����
����;

where n is the number of points used for fitting, xi is the actual fitting
value, and xp is the corresponding predicted value by the model. It has
drawbacks in the case of very small values, which can cause infinite
error. Hence, we also use the second metric WMAPE, which is
weighted by the sum of all contributions (fitting points)

WMAPE ¼
Xn

i¼1
xi � xpj jXn

i¼1
xij j

:

Comparison of fits for segment distribution is done using the n-sigma
test defined as

x1 � x2 	 nr ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

q
;

where n is an integer, x1 is value for the first fit, x2 for the second fit,
and u1, u2 are the corresponding uncertainties. If the condition is not
met (“false”), one cannot assume that observations came from the
same random process, i.e., there is a statistical difference between the
measured values x1, x2. Otherwise (“true”), there is no statistical
difference.

The results of the statistical analysis are available in the following
sheets of S1 Table:

Figure 2(b): two-way ANOVA with the Bonferroni post hoc test
to detect statistical differences between the NHDF monolayer and
NHDF intermixed.

Figure 2(c): Shapiro–Wilk and Mann–Whitney U tests validate
differences in bifurcation angle distributions between the NHDF
monolayer and NHDF intermixed.

Figure 3(b): two-way ANOVA with the Bonferroni post hoc test
detects statistical differences among various VEGF concentrations.

Figure 3(c) and supplementary material, Fig. 4: Sigmoid parame-
ters derived from fitting, including the onset and the maximum growth
speed for the area and the total length, with uncertainties, MAPE, and
WMAPEmetrics.

Figure 4: one-way ANOVA with Tukey’s post hoc test to assess
similarities in the bifurcation angle distributions among various VEGF
concentrations.

Figure 5, supplementary material, Figs. 6 and 7: 3-sigma tests com-
paring characteristic lengths at 25 and 50ng/ml for various observers
(algorithm and researchers). The “Comparison” has the value “True” if
the 3-sigma test is satisfied and “False” otherwise. The second table com-
pares the characteristic length values between observers. Additionally, a
comprehensive table is included that compares the tip and the bifurca-
tion characteristic lengths for low VEGF concentrations using both 2-
sigma and 3-sigma tests. The test result is indicated by True or False,
depending on whether the inequality is satisfied or not.

Supplementary material 5: Mann–Whitney U tests comparing
the bifurcation angle distributions for various arm lengths with the
researchers’ results.

SUPPLEMENTARY MATERIAL

See the supplementary material for supplementary Figs. 1–7,
which show (i) additional confocal images of GFP-tagged
HUVEC-coated beads cultured at different conditions, (ii) graphs
characterizing the dynamics of EC sprouting at various VEGF
concentrations, (iii) details of the branching angle calculation
methodology and its validation, (iv) validation of the measure-
ments of the segment length distribution at different VEGF con-
centrations, and (v) distribution of segment lengths for lower
VEGF concentration.

The supplementary material also includes the supplementary infor-
mation file presenting a comparative study of bead-sprouting morphology
analysis tools including our software and three common competitors, and
two tables (i) S1 Table showing the detailed statistical analysis for Figs. 2–
5 and supplementary material, Figs. 4, 6, and 7 and (ii) S1 Data including
all numerical values underlying the graphs in the manuscript.
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