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Transport networks, such as vasculature or river networks, provide key functions in
organisms and the environment. They usually contain loops whose significance for the
stability and robustness of the network is well documented. However, the dynamics
of their formation is usually not considered. Such structures often grow in response to
the gradient of an external field. During evolution, extending branches compete for the
available flux of the field, which leads to effective repulsion between them and screening
of the shorter ones. Yet, in remarkably diverse processes, from unstable fluid flows to the
canal system of jellyfish, loops suddenly form near the breakthrough when the longest
branch reaches the boundary of the system. We provide a physical explanation for
this universal behavior. Using a 1D model, we explain that the appearance of effective
attractive forces results from the field drop inside the leading finger as it approaches
the outlet. Furthermore, we numerically study the interactions between two fingers,
including screening in the system and its disappearance near the breakthrough. Finally,
we perform simulations of the temporal evolution of the fingers to show how revival
and attraction to the longest finger leads to dynamic loop formation. We compare the
simulations to the experiments and find that the dynamics of the shorter finger are well
reproduced. Our results demonstrate that reconnection is a prevalent phenomenon in
systems driven by diffusive fluxes, occurring both when the ratio of the mobility inside
the growing structure to the mobility outside is low and near the breakthrough.

nonlinear physics | unstable growth processes | transport networks

Nature offers us a wide spectrum of spatial, transport networks, which provide key
functions in living organisms and the surrounding environment. Examples span from
leaf venation (1), blood vessels (2), jellyfish gastrovascular canal system (3), to river
networks (4, 5), deltas (6, 7), or cave conduits (8, 9). Topologically, these networks can
take the form of either branched, tree-like structures or looping patterns. The latter are
more robust against damage (10), hence they are often favored by biological evolution.
For example, it is thought that leaf venation is branched in ancestral plants, but highly
reticulated in more evolutionary recent ones (11–13).

While the question of why looping networks might have been chosen by evolution
and what quantity, if any, they optimize, was extensively studied (6, 10, 14–18), the
question of how branches in the network interact to form a looping network remains
unclear. A natural candidate for an underlying mechanism leading to reconnections is a
tensorial stress field (19, 20). However, many networks in nature develop as a result of
unstable growth processes in a scalar field (21, 22).

The growth in such a case is driven by the gradient of an external field, such as electric
potential or concentration. Growing parts of the structure compete for the available flux
of the field, effectively interacting with each other. The branches in the network try to
go away from each other, to maximize the flux coming to their tips and avoid being
shadowed (21–23). This mechanism, however, cannot explain the formation of loops,
for which an effective attraction between the growing branches has to be present.

Surprisingly, loops suddenly appear across numerous systems as the longest branch
reaches the outlet of the system. Here, we report that near the breakthrough, the shorter
branch grows toward the longest one and reconnects to it (Fig. 1A). This results in
a characteristic hierarchical pattern found in a large variety of systems (Fig. 1 B–E):
dissolving fractures (24, 25), viscous fingering (26), discharge patterns (27), and even
the growth of a gastrovascular canal network of the jellyfish Aurelia (3); see Materials
and Methods, section 3.1 for a detailed description of the examples and experiments. The
ubiquity of this process suggests the existence of a shared underlying mechanism, which
we elucidate here.
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Fig. 1. Systems near breakthrough in nature. (A) Each system consists of two phases: an invading phase (F ) with mobility �1, and a displaced phase (O) with
mobility �2, separated by an interface. The growth direction is from left to right. Red arrows mark places where the fingers are near breakthrough or have
already broken through, and blue arrows mark reconnections. (B–E) Examples of reconnection near breakthrough in various systems: (B) a fracture dissolution
experiment in a Hele-Shaw cell, (C) viscous fingers in the Saffman–Taylor experiment, (D) streamer channels in air (photo: Sander Nijdam, Eindhoven University
of Technology, by permission), (E) an octant of the jellyfish Aurelia, showing the gastrovascular canal network in dark gray (3).

Laplacian Growth. In many unstable growth processes, the
boundary—the interface between two phases—moves due to
the external forcing, such as pressure gradient between the
inlet and outlet of the system (Fig. 1A). Important parameters
in such models are the mobilities of the two phases, e.g.,
hydraulic permeabilities for pressure-driven growth. Whenever
the mobility of the invading phase (�1) is larger than the
mobility of the displaced phase (�2) the flux concentrates on
small protrusions of the interface and the front can break into
fingers (22, 28, 29). Because of the flux concentration, the
fingers tend to grow more in length than in diameter. The
width of the fingers is then set by surface tension, or other short-
scale regularization mechanisms. Additional effects, such as tip
splitting, can give rise to a highly ramified, hierarchical tree-like
structure.

A paradigm for such growth processes is Laplacian growth,
where the fingers extend with velocity proportional to the flux
of a diffusive field (�i) given by: EJi = −�i∇�i, for i = 1, 2
depending on the phase. The conservation of the flux results in
the Laplace equation for the field in both the invading (F ) and
the displaced phase (O):

Δ�1(Ex) = 0, Ex ∈ F and Δ�2(Ex) = 0, Ex ∈ O . [1]

These equations are supplemented with the continuity condi-
tion for the field and its flux at the interface (T ):

�1(Ex) = �2(Ex) Ex ∈ T ,
�1(∇�1(Ex))n = �2(∇�2(Ex))n Ex ∈ T , [2]

where n denotes the normal to the interface. Additionally, the
Dirichlet boundary condition is imposed on the inlet (x = 0)
and outlet (x = 1) of the system:

�1(x = 0) = 1 and �2(x = 1) = 0 . [3]

Note that the coordinates here are rescaled by the system length,
and the field is rescaled by the value at the inlet.

Effect of Mobility Ratio. However, reticulated networks are
usually not obtained in such models (21–23). This is due to the
simplifying assumption that neglects the mobility of the invading
phase, which is equivalent to taking the limit of mobility ratio
going to infinity, M = �1/�2 →∞. This leads to the omission
of the field drop within the fingers. The Laplace equation is then
solved only in the displaced domain with a constant value of the
field directly on the moving boundary. The Dirichlet boundary
condition on the fingers results in i) long fingers screening the
shorter ones and hindering their growth and ii) two parallel
fingers growing away from each other as they get more flux from
the sides.

If one takes into account a finite mobility ratio the effective
repulsion and screening diminishes. The field inside the invading
phase is then no longer constant and the resulting field gradients
can make the fingers attract each other and create loops (30, 31).
As shown by Budek et al. (31), this can occur only for a specific
range of mobility and finger length ratios.

However, as presented in Fig. 1, the breakthrough recon-
nections are not limited to these specific scenarios. Notably,
they can occur even in the general case of high mobility ratio,
which was previously thought to be impossible due to screening
effects. Nonetheless, near the breakthrough, screening dimin-
ishes, enabling the revival and growth of shorter branches toward
the longest one, ultimately leading to a reconnection event. We
demonstrate that contrary to previous studies reconnection is a
prevalent phenomenon in Laplacian growth, occurring both in
low mobility ratio cases and near the breakthrough.

1. Results and Discussion

1.1. Drop of Potential Along a Single Finger. To understand the
generality of the breakthrough reconnections, we begin with a 1D
case. Here, F = {x ∈ [0, xt]}, O = {x ∈ [xt, 1]} and T = {xt}
is just the fingertip. The solution of the Eqs. 1–3 are then two
piecewise linear functions stitched at the fingertip (Fig. 2A):
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A B

Fig. 2. Solutions of Eqs. 1–3 for a 1D system. (A) Potential in the system with
mobility ratio M = 100 for a short finger of length ls and a longer finger of
length ll > ls. The dark line marks the field inside the finger (�i), the lighter
line marks the field outside (�o), and the black dot marks the position of the
fingertip. (B) A profile of the potential at the fingertip (�t) as a function of the
tip position (xt) for different mobility ratios. Such a profile for M = 100 is also
plotted in (A) with a thin gray line.

�(x) =

{
1− x

M−xt(M−1) , if x ∈ [0, xt]
1−x

1−xt(1−1/M)
, if x ∈ [xt, 1].

[4]

A few remarks can be made based on this simple example.
First, for a finite mobility ratio (M = 100, Fig. 2A) when the

fingertip is far from the outlet (xt = ls � 1), approximation of a
constant field on the moving boundary works well, and the field
inside the short finger can be treated as constant. However, if we
take a longer finger (xt = ll ≈ 1), there is a significant potential
drop inside it. By comparing the field values at x = ls we see that
there is a difference of potential between the two fingers:

�� ≈ 1− �(x = ls, xt = ll) =
ls

1 + d(M − 1)
, [5]

where d = 1 − ll. If such fingers were placed at a distance �y
next to each other, there would be a gradient of potential ��/�y,
between the shorter finger tip and the longer finger, provided that
the fingers do not influence each other. As a result, the shorter
finger would be attracted toward the longer one.

Second, let us focus on the potential at the fingertip as a
function of the tip position �t(xt) = �(x = xt) (Fig. 2A, light
gray line and Fig. 2B), and analyze how it changes with the
mobility ratio. The higher the M , the steeper the profile of the
potential at the fingertip, and the longest finger must be closer
to the outlet to feel its impact. As can be seen in Eq. 5, �� is
inversely proportional to the product Md . This suggests that the
critical distance, dc, at which the pressure inside the longer finger
begins to drop and the attraction between two fingers would
appear, scales as dc ∼ M−1.

In the limiting caseM →∞ the functional dependence�t(xt)
becomes a step function (Fig. 2B). The fingers have a constant
potential along their length, no matter how close they are to
the outlet, and there is no difference in potential between them.
However, when one of the fingers breaks through, the potential
inside it takes the form�(x) = 1−x. This instantaneous pressure
drop inside the longer finger induces a pressure difference with
respect to the shorter finger, �� = ls. Consequently, at the
moment of breakthrough, we observe a sudden transition from
no interaction between the fingers to attraction of the shorter
finger to the longer one.

1.2. Finger Interactions in Two Dimensions: Screening and
Revival. Although insightful, the 1D model treats two fingers
independently of each other and does not take into account

effects of finger interactions such as screening. To investigate
these effects we conduct numerical simulations in a 2D geometry.
Two fingers are placed in a cell of length L = 1 and width
W = L/3 with periodic boundary conditions on the bottom
(y = 0) and top (y = W ) wall. The long finger of length ll
is positioned at y = 0, and the short finger of length ls is at
y = W /3, as shown in Fig. 3 A and B. The fingers have a shape
of thin rectangles of width W /15 with semicircular caps. We
solve the equations for the field with the finite element method
implemented in the FreeFEM++ software (32) (Materials and
Methods, section 3.2).

Fig. 3 A and B represent isolines of the field (the same set of
values) in two cases: M = 106 and M = 102. We observe that
for high mobility ratio there is a negligible potential drop inside
the fingers, and the longer finger attracts almost all of the flux. As
a result, it screens the shorter one and would suppress its growth.
For lower mobility ratio, due to the potential drop inside the
longer finger, some flux can reach the shorter one, so it can still
grow.

We consider the field values along the center line of the long
and short fingers for the two mobility ratios (Fig. 3 C and D).
The profiles along the longer finger are piecewise linear, similar
to the 1D solutions presented in Fig. 2A. However, the field

A

B

C D

Fig. 3. Numerical solutions of Eqs. 1–3 for a 2D system. (A andB) A schematic
of the 2D setup with two fingers (of lengths ls = 0.3 and ll = 0.9) in a periodic
cell of length L = 1 and width W = L/3 with the isolines of the field for:
(A) M = 102 and (B) M = 106. In the Inset, we mark the attractive (Qa) and
repulsive (Qr) fluxes intercepted by the right and the left side of the fingertip,
respectively. (C and D) Field values along the longer and shorter finger [cross-
sections marked with dashed lines in (A) and (B)] for the two mobility ratios.
Insets in (C) and (D): the difference between the field inside the longer finger
and outside the shorter one: �l

i − �s
o. The black dashed line is a fit to the

linear part of the plot in Inset (C), highlighting the exponential decay of�l
i − �s

o
(from the longer finger tip perspective).
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values outside the shorter fingers (�s
o) are strongly influenced by

the longer ones. In fact, the difference between the field inside
the longer finger and the field outside the shorter one, �l

i − �s
o,

decays exponentially from the perspective of the longer finger tip,
as shown by the black dashed lines in Insets in Fig. 3 C and D.
As a result, the shorter finger is strongly screened and almost no
flux reaches its tip.

The situation changes drastically as the longer finger ap-
proaches the outlet. In Fig. 4A, we analyze the total flux Q
through the tip of the shorter finger as a function of gap d—the
distance from the longer finger tip to the outlet of the system. The
length ratio is kept constant ls/ll = 1/3 and Q is calculated by
integrating the flux at the shorter finger tip for � ∈ [−�/2,�/2];
see the Inset in Fig. 3A.

For relatively low mobility ratio, the shorter finger is weakly
screened and receives some flux, even when the longer finger is
far from the outlet (large d ). The higher the M , the stronger the
screening effect, hence for large d the total flux in the shorter
finger is close to zero, and it only starts to increase as the gap gets
smaller. Note that the critical distance from the outlet, at which
the screening starts to diminish, decreases as M gets larger. This
is a further manifestation of the fact that the critical gap at which
screening vanishes scales as M−1, as already described with the
1D model. The above confirms that for sufficiently small d , or
after the breakthrough, short fingers that were strongly screened
would revive and start growing again, as also noted in refs. 25
and 26.

Interestingly, for large M the Q(d) dependence approaches a
universal function that simply shifts in d as M increases. This
suggests that the flow profiles should collapse onto a master
curve when plotted as a function of Md , which is indeed the case
(Fig. 4B). Moreover, if we define rescaled d : d ′ = Md , plug it
into Eq. 5, and take the limit of M →∞ we see that the master
curve will be of the form 1/(1 + d ′). This can be adapted for a
2D system and written as

Q(d ′) = q0 + (q1 − q0)/(1 + d ′/d ′c). [6]

The three parameters q0, q1, d ′c can be easily extracted from the
simulation results and have a clear physical interpretation: q0 and
q1 are the flux reaching the shorter finger tip during screening
phase and after revival, respectively; d ′c, the inflection point of
the sigmoid, is the rescaled critical gap at which the shorter
finger in the two-dimensional system revives. As can be seen
in Fig. 4B, dashed line, Eq. 6 perfectly captures revival in our
system.

1.3. Finger Interactions in Two Dimensions: Repulsion and
Attraction. Having described the revival of the shorter finger,
let us discuss the change in their growth direction near the
breakthrough. To quantify this, we calculate the attractive, Qa,
and repulsive flux, Qr, by integrating the flux on the shorter
finger tip for � ∈ [0,�/2] and � ∈ [−�/2, 0], respectively
(see Inset in Fig. 3A). We then take the difference of the two
fluxes, Qa − Qr. The positive value of this quantity will be
interpreted as an effective attraction and should result in the
shorter finger growing toward the longer one. Conversely, if the
value is negative the fingers repel. Fig. 4C represents repulsion-
attraction maps as a function of two parameters: mobility ratio
(M ) and finger length ratio (ls/ll). The maps are shown for four
gaps: d = 1/2, 10−2, 10−4, 0; the latter corresponds to the
breakthrough.

For large gap (Fig. 4C, d = 1/2), we observe an island of
attraction in the region of lower mobility ratio, M ∈ (100

−

102), and the length ratio, ls/ll ∈ (0, 0.6). This quantitatively
agrees with the results of the resistor model presented by Budek
et al. (31), where the interactions between the fingers distant
from the outlet were analyzed. As described there and as can be
seen in Fig. 4C, d = 1/2, for the systems of low mobility ratio
the screening is weak and the fingers can attract each other to
form loops. Note that in the other maps in Fig. 4C, regardless
of the gap size d , the value of Qa − Qr remains almost the same
in the region of low mobility and length ratio. This suggests that
in such systems the breakthrough will not drastically affect the
dynamics and interactions between the fingers.

The impact of the gap size on the interactions is more apparent
in the region of higher mobility ratio, M ∈ (103

− 106), and
length ratio, ls/ll ∈ (0.6, 0.9). Here, the interactions change from
slight to strong repulsion when the leading finger is distant from
the outlet, d = 1/2, 10−2, and finally, after the breakthrough,
d = 0, we observe a transition from strong repulsion to strong
attraction. Hence, for systems of higher mobility ratio, the impact
of the breakthrough should be more striking in the dynamics
of the fingers. In particular, even for very high mobility ratio,
the longer finger will always attract the shorter ones after the
breakthrough.

1.4. Temporal Evolution of the Fingers. Finally, we perform
dynamic simulations of finger growth. During growth, we do
not change the finger shape (constant width and semicircular
tips) and extend it only in the direction from which the highest
flux is coming (Materials and Methods, section 3.2). Here, we

A B C

Fig. 4. Revival and interactions between the fingers when the gap changes. (A) Total flux intercepted by the shorter finger tip, Q = Qa + Qr (as defined in
Inset in Fig. 3A), as a function of d. The length ratio is kept constant, ls/ll = 1/3. (B) Total flux plotted as a function of Md. The master curve, red dashed line,
corresponds to Eq. 6 plotted with q0 = 0.05, q1 = 9.76, d′c = 0.23. (C) Maps of interactions between the fingers, Qa − Qr, as a function of two parameters:
mobility ratio (M) and finger length ratio (ls/ll). Maps are plotted for four gaps: d = 1/2, 10−2 , 10−4 , 0. Red colors indicate attraction, gray repulsion, and the
black dashed line separates the two.
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Fig. 5. Velocity of the shorter finger in the dynamical simulation of growth
with mobility ratio M = 1,000. The black dashed line marks the total velocity
of the finger, gray its x-component (pointing toward the outlet), red the y-
component (repulsion from the longer finger), and green the absolute value
of vy (attraction to the longer finger). Gray vertical lines mark: initial time
(t0); start of screening (t1), when the acceleration of the finger becomes
negative; start of revival (t2), when the acceleration changes its sign again;
breakthrough (BT, t3) and reconnection (t4). Snapshots from the simulation
were taken at the corresponding moments of the evolution (lighter color on
the fingers marks the parts that grew between successive moments).

analyze the evolution of two fingers with slightly different
initial lengths, ls = 0.04 vs. ll = 0.05, and mobility ratio in
the system M = 1,000. With such initial conditions, we can
observe all previously described interactions between the fingers:
competition and repulsion, screening, revival, and attraction. The
dynamics of the fingers are presented in Movie S1.

In Fig. 5, we show how the velocity of the shorter finger
changes over time, along with the snapshots from the simulation.
First, as the fingers start with similar lengths, we observe
competition and repulsion between them—the fingers accelerate
and grow with similar rate, until the longer finger wins and
starts to screen the shorter one. At this moment (t = t1), the
shorter finger starts to slow down. As the longer finger approaches
the outlet, the field inside it begins to decrease (as visible in
Movie S1). Consequently, screening disappears and the overall
flux within the shorter finger increases. The shorter finger revives
and accelerates again (t = t2).

Shortly after t2 the attraction toward the longer finger appears:
the positive vy, away from the longer finger (depicted by the red
line in Fig. 5) transitions to negative, toward the longer finger
(|vy|, marked with the green line in Fig. 5). This stage corresponds
to the expansion of the attraction region on the interaction
maps prior to the breakthrough (Fig. 4A). Then, just before
the breakthrough (t = t3), there is a sudden jump in velocity.
This last boost significantly expedites the loop formation process.
As the distance between the two fingers diminishes, the attraction
intensifies. This cumulative, snowball-like effect, triggered by the
breakthrough, culminates in the eventual reconnection at t = t4.

1.5. Comparison of the Simulations to Experiments. We ad-
ditionally present two simulations that qualitatively reproduce
the behavior of the fingers in the fracture dissolution and
Saffman–Taylor experiments seen in Fig. 1 B and C, with ap-
proximate mobility ratios of M = 14 and M = 100, respectively
(see Materials and Methods, sections 3.1.1 and 3.1.2 for details
on how the mobility ratio in the experiments is calculated).
In these simulations, the fingers were initiated with lengths of
ls = 0.002 and ll = 0.18. In SI Appendix, we include videos
from the simulations (Movies S2 and S3) and videos from the
experiments (Movies S4 and S5). In Fig. 6, we show the plots
of the velocity of the shorter finger, both in the simulations and
in the experiments, in the case of fracture dissolution (M = 14)
and viscous fingering (M = 100).

As predicted in the previous section, in the case of the lower
mobility ratio, the shorter finger is attracted toward the longer
one almost from the very beginning of the evolution, both in
the simulation (Fig. 6A and Movie S2) and the experiment
(Fig. 6B and Movie S4). There is also no effect of screening,
and flux is nonnegligible even when the longer finger is far away
from the outlet. As a result, the finger grows with an almost
constant total velocity, which remains unchanged even during
the breakthrough.

In contrast, for higher mobility ratio, the shorter finger in
the simulation (Fig. 6C and Movie S3) and in the experiment
(Fig. 6D and Movie S5) is initially screened by the longer one
and grows relatively slowly. Only after the breakthrough does it
revive and eventually reconnect forming a loop.

2. Conclusions

As previously described in the literature, attractive interactions
between the fingers can appear in the systems of low mobil-
ity ratio, leading to reconnections. For high mobility ratio,
only screening and repulsion have been observed, resulting in
branched loopless structures. However, when studying systems
such as viscous fingering or fracture dissolution, experiments are
often terminated when the invading phase reaches the border of
the system. An unexpected behavior arises in a broad class of
unstable growth processes when the proximity of the outlet is
considered and the evolving structure breaks through.

We have shown that a striking transition in the system
dynamics occurs when the breakthrough is reached, especially
in the case of infinite mobility ratio, where a singular limit
emerges. Prior to the breakthrough, the field along the longest
finger remains constant regardless of its proximity to the outlet,
and the finger screens the rest of the system. At the moment
of breakthrough, however, the field in the longer finger drops
dramatically, allowing the flux to reach the shorter neighboring
fingers. This affects the dynamics of the shorter fingers, causing
their revival and a strong attraction to the longer finger. The
interplay of these two factors leads to reconnection and loop
formation.

To explain breakthrough reconnections, we used a simplified
model of growing Laplacian fingers: i) we neglected the jump
in the field across the interface associated with the regularization
mechanism; ii) we assumed that the change of mobility across
the interface is discontinuous, rather than smooth as in, for
instance, fracture dissolution; iii) we kept the shape of the fingers
unchanged during their evolution, whereas in some systems, such
as viscous fingering, when the fingers receive more flux, their tips
begin to grow in width, which impacts their velocity (33, 34).
Regardless, for high mobility ratio, boundary condition on the
fingers transitions from a constant field in the initial state
to a linear gradient near the breakthrough. This field change
near the breakthrough is much larger than any jump in the
field resulting from regularization mechanisms (Materials and
Methods, section 3.1.2). The transition between the two boundary
conditions might be more gradual due to ii) and iii), but it
still significantly impacts the finger dynamics. This is evidenced
by sudden loop formation observed in physical systems such
as viscous fingering or discharge patterns, and also in living
organisms such as the jellyfish Aurelia (Fig. 1 B–E).

The breakthrough reconnections are expected to occur in
virtually any system driven by diffusive fluxes. Observing it
in a system of a yet unknown growth mechanism, such as the
gastrovascular canal network of the jellyfish (Fig. 1E), is a strong
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A C

B D

Fig. 6. Comparison of simulations to experiments. (A and B) Velocities of the shorter finger in the fracture dissolution simulation and experiment, respectively.
The mobilities here are related to the aperture values in the dissolved and undissolved regions (Materials and Methods, section 3.1.1). The mobility ratio is
M = 14. (C and D) Velocity of the shorter finger in the viscous fingering simulation and experiment. Here, the mobility ratio is the inverse of the viscosity ratio
and is M = 100. The line colors and time points in the plots indicate the same as in Fig. 5. Snapshots were taken at the corresponding moments of the evolution.
The lighter color on the fingers from the simulations marks the parts that grew between successive moments. The black arrow in (D) marks the shorter finger.

indication that the system dynamics are controlled by the effective
diffusion of a morphogenic parameter. This sheds light on the
possibility of dynamical loop formation in many systems.

3. Materials and Methods

3.1. Experiments.
3.1.1. Fracture dissolution. The fracture dissolution experiment presented in
Fig. 1B was performed in a microfluidic setup described in detail in ref. 35.
It consists of two polycarbonate disks. The bottom one contains a rectangular
indentation (3.3 cm× 3.8 cm× 100 μm), which is initially filled with a soluble
material, in our case plaster (Plaster of Paris, Blik Modelarski Alabastrowy). The
top plate contains a hierarchical system of inlet and outlet channels connected
to large inlet/outlet reservoirs (4.5 cm× 5 mm× 2 mm). Such a design helps
to maintain uniform pressure across the width of the plaster. The aperture above
the plaster is created by gluing the plates together with an ultrathin PET-based
double-coated tape 70 μm thick with a rectangular hole the size of the plaster
block. The cast was prepared with a 60% (w/w) ratio of water to plaster. This yields
an average porosity of the block of � = 50% (measured porosity to water) and
a permeability of 45 mD (measured by injection of isopropanol). Pure water is
injected into the system with a syringe pump (Harvard Apparatus PHD2000) at
a rate of q = 0.5 mL/h. We recorded the experiment with a UI 1550LE-C-HQ
CCD camera (IOS, Germany), acquiring photographic images of the system every
100 s. In order to ensure homogeneous light intensity over the system, we used
a circular fluorescent illuminator.

For experiments conducted in a Hele-Shaw cell, the mobility can be expressed
as � = h3/12�, where h is the aperture of the Hele-Shaw cell available to the
fluid and � is the fluid viscosity. Thus, increasing the aperture in the dissolved
part of the system (black area in Fig. 1B) effectively introduces two phases with
different mobilities. The mobility ratio in this experiment was approximately
M = (h1/h2)

3 = (170/70)3
≈ 14.

3.1.2. Saffman–Taylor experiment. The Saffman–Taylor experiment presented
in Fig. 1C was performed in a circular Hele-Shaw cell with a 1 mm separation
between the bottom and top plates. The Hele-Shaw cell was initially filled with
oil (dyed with paprika to increase contrast in the images). Water was injected
into the system through an inlet located in the center of the top plate. The
experiment was recorded with a Nikon D3000 camera. A LED panel was used

below the Hele-Shaw cell to ensure uniform light intensity throughout the
system. the mobility ratio is the inverse of the viscosity ratio and was of the order
of M = �2/�1 ≈ 100.

The pressure jump in a Hele-Shaw is estimated using the Young–Laplace
equation:Δpcap = (2/b + 1/r), where  = 49 mN/m is the surface tension
between oil and water, b = 1 mm is the spacing between the plates, r ∼ 1
cm is a typical radius of curvature for the fingers. This yields Δpcap

∼ 10−3

Pa. When the breakthrough occurs, the pressure inside the longest finger drops
from the inlet value to a linear gradient between the inlet and outlet. The typical
pressure difference between inlet and outlet in our Saffman–Taylor experiment
was of the order of 102 Pa. Thus, the change in � induced by the breakthrough
is 5 orders of magnitude larger than the pressure jump due to surface tension,
and it can be neglected.
3.1.3. Jellyfish. The breakthrough reconnections can also be encountered in
biological systems. The gastrovascular system of the jellyfish Aurelia is composed
of canals in which seawater flows, carrying nutrients and oxygen to the
surrounding tissues. New canals (sprouts) appear on the circulatory canal at
the rim of the jellyfish subumbrella and grow toward four stomachs in the center
of the jellyfish. We observed that the smaller sprouts reconnect to the long canal
that just connected to the gastrocircular groove around the stomach (3) (Fig. 1E).

Jellyfish were reared at room temperature (22 ◦C) in artificial seawater
prepared by diluting 28 g of synthetic sea salt (Instant Ocean; Spectrum
Brands, Madison, WI) per liter of osmosis water (osmolarity 1100 mOsm).
In the laboratory, polyps of the Roscoff strain (36) are used (obtained by courtesy
of Konstantin Khalturin from the Marine Genomics Unit, Okinawa Institute of
Science and Technology Graduate University, Onna, Okinawa, Japan). A more
detailed description of jellyfish rearing can be found in ref. 3.

To observe the jellyfish gastrovascular system, the jellyfish are caught from
the aquarium approximately 3 h after feeding them with artemia. In this way,
the gastrovascular canals are colored orange by the digested artemia. They are
anesthetized with magnesium chloride dissolved in seawater. Then, they are
placed in a Petri dish in shallow seawater with the subumbrella facing up. The
images are taken by transillumination using a Leica macro zoom (MACROFLUO
LEICA Z16 APO S/No: 5763648) and a Photron Fastcam SA3 camera. The images
were stitched using Adobe Photoshop. The canals in the images were highlighted
with gray color.
3.1.4. Streamer discharge. Streamer discharges are fundamental building
blocks of sparks and ligthnings. An experimental photo presented in Fig. 1D
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was obtained by courtesy of Sander Nijdam (37). Here, the mobilities are
the conductivities inside the discharge channel and the air. Breakthrough
reconnections in this context have been observed in many experiments (38–40).
In ref. 27 stereo photography was used to fully reconstruct the three-dimensional
structure of the reconnection events.
3.1.5. Velocity of the fingers. To estimate the velocity of the fingers in the
experiments, we binarized the images and prepared a mask that covered the
area of the image in which the finger was growing. Next, we calculated the area
of the shorter finger (within the mask) in successive frames. The approximate
velocity of the finger was defined as the rate of change of this area. Finally,
the velocity was smoothed using the Savitzky–Golay filter (function savgol_filter
from the Scipy package).

3.2. Numerical Simulations. The numerical calculations and simulations were
performed using the codes available on the GitHub repository (https://github.
com/stzukowski/reticuler) (41, 42). In the temporal simulations, the fingers
have a constant width and end with semicircular tips, as in the static numerical
calculations. In each time step of the evolution we solve the equations for the
field (Eqs.1–3) with the finite element method implemented in the FreeFEM++
software (32). To calculate the field in the system, we decompose it into two
domains: the fingers and the outside. The mobility field is declared, M(x, y),
which is equal to �1 inside the fingers and �2 outside. Our script solves the
equation for the field in the form:∇ · (M(x, y)∇�(x, y)) = 0.

To determine the velocity of the finger, we integrate the flux entering its
tip. Following the principle of local symmetry (41, 43), we extend the finger
in the direction from which the highest flux comes (while keeping its width

constant). The dynamical simulation in Fig. 5 was initiated with branches of
length ls = 0.04 and ll = 0.05, while the simulations in Fig. 6 started with
branches of lengths: ls = 0.002 and ll = 0.18. The velocity in y direction in
Figs. 5 and 6 was treated with the Savitzky–Golay filter (savgol_filter function
from the Scipy package) to smooth the numerical noise caused by the small
order of magnitude of this velocity.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information. The codes are available on the GitHub
repository (https://github.com/stzukowski/reticuler) (42).
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