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• We consider again a pure input state. However, if         is a superposition over total photon 

numbers, then, as we have no extra reference beam, we have to average over the external 

phase [2].

• State evolution in the system

• Covariant measurement$ optimally to parameterise the POVM by the estimated 

parameter’s group G, [3]. 

Here: G = U(1) and

POVM
• is possibly mixed 

due to losses.

• The set of POVMs 

serves to form an 

estimator of     .

Estimator:
completeness 

constraint

3) Interferometric setup considered
PLOT :

The variance against the

average number of photons

KEY RESULT: ALREADY INFINITESIMAL AMOUNT OF LOSS DESTROYS THE

ASYMPTOTIC HEISENBERG SCALING !!!
PROOF: We derive a lower bound on the variance, 

which scales as SQL for any 

7) Results

We consider the problem of phase estimation when no ‘a priori’ knowledge about its initial

value is present. We use the covariant positive operator valued measurement (POVM) scheme,

in order to find the optimal states that yield the highest estimation fidelities. We investigate the

effect of losses in the system, by introducing a fictitious beamsplitter and derive the optimal

usage of coherent and N-photon input states. We prove analytically that in the asymptotic

limit of infinite photons the quantum precision enhancement amounts at most to a constant

factor improvement over classical strategies.

Abstract

• The output state – mixture over the number of photons lost, l :

where                                            are the binomial factors parameterised by beamsplitter’s 

transmission coefficient, ´.

• Average fidelity:

• Maximal when                                                                                      ,

• Optimal input ) eigenvector corr. to maximal eigenvalue of:

• Gain function:

)M – tridiagonal matrix

• For ´ = 1, analytically solvable, [4], ! Heisenberg Limit for large N

and for NÀ1,

covariant

POVM

photon 

number 

measurement

5) N-photon input state

n2

n1

• Measurement

• Estimator

• Variance

Standard Quantum Limit ”classical” states of light

1) Typical approach – Mach-Zehnder Interferometer

• By the method of maximising the Quantum Fisher Information, [1], it has been proved 

that non-classical, entangled states can greatly improve the precision, ideally leading to the 

(for N photon input states)

• The most celebrated example that saturates the bound is the NOON state

• In order to achieve        , we need to be estimating within small variations from the 

”a priori” known initial phase, 0. 

e.g. for NOON we can effectively estimate only within 0 , ) local

as 

• Looking for schemes that beat SQL.

• A mixed state at the input, will 

always be worse than a pure state.

non -”classical” states of lightHeisenberg Limit

highly entangled ) extremely fragile:

loss of one photon makes it useless

) only optimal for lossless systems !

) NOT optimal when no ‘a priori’ 

knowledge is present !
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2) General Quantum Interferometer

The functional that quantifies the precision of estimation:  Average Fidelity

‘a priori’  distribution probability of  estimationgain (figure of merit) function

4) Average fidelity of estimation

• Average fidelity: 

• Maximal when                                                                               , Gain:

• Optimal ¿in for

where                                 are Bell polynomials of fractional order ! compute numerically. 

• In weak and strong beam (Standard Quantum Limit) regimes:

covariant

POVM

6) Coherent input state

(quantum mechanically disallowed region)

worse than SQL

better than HL

Optimal input state’s coefficients

input no loss: 

coherent

pure N photon


