All you need is squeezing!

optimal schemes for realistic quantum metrology

<u>R. Demkowicz-Dobrzański¹</u>, K. Banaszek¹, J. Kołodyński¹, M. Jarzyna¹, M. Guta², R. Schnabel³

¹Faculty of Physics, Warsaw University, Poland ² School of Mathematical Sciences, University of Nottingham, United Kingdom ³ Max-Planck-Institut fur Gravitationsphysik, Hannover, Germany

"Classical" interferometry $\langle n_1 \rangle = |\alpha|^2 (1 + \cos \varphi)/2$ n_1 φ $\langle n_2 \rangle = |\alpha|^2 (1 - \cos \varphi)/2$ α n_2 the best estimator $|\alpha|^2 \times 1.0$ $\langle n_1 \rangle$ $\varphi(n_1, n_2) = \arccos\left(\frac{n_1 - n_2}{|\alpha|^2}\right)$ 0.8 $\langle n_2 \rangle$ 0.6 0.4 0.2 0.0 2 3 4 5 6 0 φ

"Classical" interferometry

Quantum enhancement thanks to the squeezed states

PHYSICAL REVIEW D

VOLUME 23, NUMBER 8

15 APRIL 1981

Quantum-mechanical noise in an interferometer

Optimal strategy?

Minimize $\Delta \varphi = \sqrt{\langle (\tilde{\varphi} - \varphi)^2 \rangle}$ over $|\psi\rangle$, Π_k i $\tilde{\varphi}$

Quantum Cramer-Rao bound and the optimal N photon state φ $|\psi_{arphi} angle|$ Π_k – $|\psi\rangle$ $\rightarrow \tilde{\varphi}(k)$ estimator $|\psi_{\varphi}\rangle = e^{-\mathrm{i}\varphi\hat{n}_{1}}|\psi\rangle$ $\Delta \varphi \ge \frac{1}{\sqrt{F}} \qquad F = 4(\langle \dot{\psi}_{\varphi} | \dot{\psi}_{\varphi} \rangle - |\langle \dot{\psi}_{\varphi} | \psi_{\varphi} \rangle|)$ $F = 4\Delta^2 n_1 \qquad \Delta^2 n_1 = \langle \hat{n}_1^2 \rangle - \langle \hat{n}_1 \rangle^2$ Good estimation possible only for states with high Δn_1

$$\frac{1}{\sqrt{2}} \left(|0\rangle|N\rangle + |N\rangle|0\rangle \right) \qquad F = N^2$$
 NOON states

 $\Delta \varphi \geq rac{1}{N}$

Heisenberg limit

Other "Heisenberg limits"

D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000).

Other "Heisenberg limits"

For states with indefinite photon number

$$|\psi\rangle = \sum_{N} \sqrt{p_N} |\psi^{(N)}\rangle \qquad F(|\psi\rangle) \ge \sum_{N} p_N F(|\psi^{(N)}\rangle)$$

So in principle we can have $F = \sum_N p_N N^2 = \langle N^2 \rangle > (\sum p_N N)^2 = \langle N \rangle^2$

And beat the ``naive" Heisenberg limit: $\Delta \varphi \not\ge \frac{1}{\langle N \rangle}$

H. Hoffman, Phys. Rev. A 79, 033822 (2009)
P.M. Anisimov, et al., Phys. Rev. Lett. 104, 103602 (2010)
Sub Heisenberg strategies are ineffective
V. Giovannetti, L. Maccone, Phys. Rev. Lett 108, 210404 (2012)

Complicated....

a priori knowledge?

How to saturate the bounds?

then God added decoherence...

and everything became... simpler

B. M. Escher, R. L. de Matos Filho, L. Davidovich, Nat. Phys. 7, 406 (2011)

Quantum metrology with decoherence

R. Demkowicz-Dobrzański, J. Kolodyński, M. Guta, Nat. Commun. 3, 1063 (2012)

Saturating the fundamental bound is simple!

Weak squezing + simple measurement + simple estimator = optimal strategy! (thanks to decoherence)

Optimality of the squeezed vacuum+coherent state strategy

Quantum precision enhancement in the GEO600 interferometer

Quantum precision enhancement in the GEO600 interferometer

Can the precision be improved by using better quantum states and better measurements?

$$\Delta \varphi^{\text{quantum}} \geq \sqrt{\frac{1-\eta}{\eta}} \frac{1}{\sqrt{N}} \qquad \Delta \varphi^{\text{standard}} = \frac{1}{\sqrt{\eta N}} \qquad \frac{\Delta \varphi^{\text{quantum}}}{\Delta \varphi^{\text{standard}}} \geq \sqrt{1-\eta} = 0.61$$

Quantum optical model

up to irrelevant phase factors and assuming no transition to higher order sidebands If recycling cavity is tuned to the central frequency: $g_+ = g_-$ Effectively two modes: $a_0, b_s = (b_- + b_+)/\sqrt{2}$

Equivalent quantum model

$$\begin{pmatrix} a_0' \\ b_s' \end{pmatrix} = \begin{pmatrix} 1 & \sqrt{2}g\epsilon \\ -\sqrt{2}g\epsilon & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ b_s \end{pmatrix}$$

the problem reduced Mach-Zehnder interferometry!

GEO600 interferometer at the fundamental quantum bound

R. Demkowicz-Dobrzanski, K. Banaszek, R. Schnabel, arxiv:1302????

Ramsey interferometry

Matrix product states and metrology?

M.Jarzyna, R. Demkowicz-Dobrzanski, arxiv:1301.4246

Summary

- Heisenberg scaling asymptotically destroyed 😕
- Simple schemes saturate the fundamental bounds
- GEO600 optimal 🙂
- The same applies to atoms with loss/dephasing spin squeezed states + Ramsey interferometry optimal 😳
- Matrix product states and metrology.... ?
- Translate results to quantum oracle algortihms with noise?

R. Demkowicz-Dobrzański, J. Kolodyński, M. Guta, Nat. Commun. 3, 1063 (2012)
 R. Demkowicz-Dobrzanski, K. Banaszek, R. Schnabel, arxiv:1302????
 M.Jarzyna, R. Demkowicz-Dobrzanski, arxiv:1301.4246