## Neutrino Masses, Mixing and Oscillations: Experimental Issues

## Agnieszka Zalewska

Neutrino Day, Warsaw, 14.01.2014

#### Oscillations of three active neutrinos

Present experimental landscape Mass hierachy and  $\delta_{CP}$  measurements – present and future projects Specific experimental requirements

#### Sterile neutrinos

Follow up of the LSND effect

Partially based on the ICFA European Neutrino Town Meeting, Paris, 8-10.1.2014

# Oscillations of three active neutrinos

Present experiments, especially for  $\theta_{13}$  measurements How to measure neutrino mass hierarchy and  $\delta_{CP}$ ?

## Oscillations - parametrization for 3 v flavours



For three neutrino flavours and three mass states there are six oscillation parameters: three mixing angles  $\theta_{12}$ ,  $\theta_{23}$ ,  $\theta_{13}$  two differences of mass squared  $\Delta m^2_{21}$ ,  $\Delta m^2_{32}$  and one phase  $\delta_{CP}$ 



If  $\delta \neq 0, \pi, 2\pi$ ...then CP is violated for leptons (like for quarks),  $\theta_{13}$  is a gateway to a measurement of  $\delta$ 

## Oscillation parameters – present experimental input

- LBL accelerator experiments: K2K + T2K + MINOS Atmospheric neutrino data: SuperK Solar experiments: Davis's, Gallium exps, SuperK, SNO LBL reactor experiment: KamLAND
  - SBL reactor experiments: Dchooz + RENO + Daya Bay



SuperKamiokande





KamLAND

SNO

# Oscillation parameters - result of a global fit using all the available data

TABLE I: Results of the global  $3\nu$  oscillation analysis, in terms of best-fit values and allowed 1, 2 and  $3\sigma$  ranges for the  $3\nu$  mass-mixing parameters. See also Fig. 3 for a graphical representation of the results. We remind that  $\Delta m^2$  is defined herein as  $m_3^2 - (m_1^2 + m_2^2)/2$ , with  $+\Delta m^2$  for NH and  $-\Delta m^2$  for IH. The CP violating phase is taken in the (cyclic) interval  $\delta/\pi \in [0, 2]$ . The overall  $\chi^2$  difference between IH and NH is insignificant ( $\Delta \chi^2_{I-N} = +0.3$ ).

| Parameter                                         | Best fit | $1\sigma$ range             | $2\sigma$ range                  | $3\sigma$ range |
|---------------------------------------------------|----------|-----------------------------|----------------------------------|-----------------|
| $\delta m^2/10^{-5} \text{ eV}^2$ (NH or IH) 7.54 |          | 7.32 - 7.80                 | 7.15 - 8.00                      | 6.99 - 8.18     |
| $\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)         | 3.08     | 2.91 - 3.25                 | 2.75 - 3.42                      | 2.59 - 3.59     |
| $\Delta m^2/10^{-3} \text{ eV}^2 \text{ (NH)}$    | 2.44     | 2.38 - 2.52                 | 2.30 - 2.59                      | 2.22 - 2.66     |
| $\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$  | 2.40     | 2.33 - 2.47                 | 2.25 - 2.54                      | 2.17 - 2.61     |
| $\sin^2 \theta_{13} / 10^{-2}$ (NH)               | 2.34     | 2.16 - 2.56                 | 1.97 - 2.76                      | 1.77 - 2.97     |
| $\sin^2 \theta_{13} / 10^{-2}$ (IH)               | 2.39     | 2.18 - 2.60                 | 1.98 - 2.80                      | 1.78 - 3.00     |
| $\sin^2 \theta_{23} / 10^{-1}$ (NH)               | 4.25     | 3.98 - 4.54                 | 3.76 - 5.06                      | 3.57 - 6.41     |
| $\sin^2 \theta_{23} / 10^{-1}$ (IH)               | 4.37     | $4.08-4.96\oplus 5.31-6.10$ | 3.84 - 6.37                      | 3.63 - 6.59     |
| $\delta/\pi$ (NH)                                 | 1.39     | 1.12 - 1.72                 | $0.00 - 0.11 \oplus 0.88 - 2.00$ |                 |
| $\delta/\pi$ (IH)                                 | 1.35     | 0.96 - 1.59                 | $0.00 - 0.04 \oplus 0.65 - 2.00$ | —               |
|                                                   |          |                             |                                  |                 |

#### Fractional uncertainties (defined as 1/6 of $3\sigma$ ranges):

| δm <sup>2</sup>    | 2.6 % |
|--------------------|-------|
| ∆m²                | 3.0 % |
| $sin^2\theta_{12}$ | 5.4 % |
| $sin^2\theta_{13}$ | 8.5 % |
| $sin^2\theta_{23}$ | ~11 % |

E.Lisi, ICFA 2014

### Experimental aspect

- disappearance vs appearance measurements

Appearance experiment:Disappearance experiment: $P(v_{\alpha} \rightarrow v_{\beta}) \ge 0$  $P(v_{\alpha} \rightarrow v_{\alpha}) \le 1$ 

The equalities hold for the case of no oscillations; the sum equals 1.

In a disappearence experiment:

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \frac{\sin^2 2\theta}{\sin^2(1.267\Delta m^2 L/E)}$ 



# Best measurement of $|\Delta m^2_{32}|$ The MINOS(+) Experiment



Two detectors mitigate systematic effects

beam flux mis-modeling

Neutrino x-sec uncertainties

● L/E ~150-250 km/GeV

Magnetized:

muon energy from range/curvature
 distinguish μ<sup>+</sup> from μ<sup>-</sup>

Tracking sampling calorimeters
 Steel absorber 2.54 cm thick (1.4 X<sub>0</sub>)
 Scintillator strips 4.1 cm wide (1.1 Moliere radii)

1 GeV muons penetrate 28 layers
 Functionally equivalent

- same segmentation
- Same materials

same mean B field (1.3 T)





J.Thomas, ICFA 2014

## MINOS event topology



UW, 14.01.2014

## 3 flavor analysis of disappearance



- These contours combine atmospheric and beam  $v_{\mu}$  data
- Everyone should make THESE contour plots

Hint for non-maximal value of  $\theta_{23}$ 



J.Thomas, ICFA 2014

## Started in September 2013 for three years

#### MINOS+

- MINOSI
- The overarching reason to run MINOS in the NuMI-NOVA beam is to look for "non-standard" physics in a previously "unexplored" region :
  - Precision will be significantly increased (factor 60 in statistics in 3 years)
  - Where else would you look for evidence of non-3x3 effects?
    - Not at the oscillation maximum, main oscillation dominates
- 3000 events/year between 4-10 GeV near oscillation maximum



# Measurements of $\theta_{13}$

I. By measuring  $v_e$  disappearance in the new generation SBL reactor experiments DoubleChooz, Reno and Daya Bay with two (DCh, R) or eight (DB) detectors at two (DCh, R) or more (DB) distances between reactors and detectors in order to significantly reduce systematic uncertaintes related to  $\overline{v_e}$ flux, cross section and reactor thermal power - almost pure measurement of  $\theta_{13}$ 

$$1 - P_{\overline{e}\overline{e}} \cong \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(\alpha^2)$$

II. By searching for  $v_{\mu} \leftrightarrow v_{e}$  (and  $\overline{v}_{\mu} \leftrightarrow \overline{v}_{e}$ ) in LBL accelerator experiments: T2K and NOvA - very complicated analysis because  $P(v_{\mu} \rightarrow v_{e})$  depends on all oscillation parameters (correlations + degeneracies), but due to that it offers a possibility to measure also sign of  $\Delta^{2}_{32}$  (mass hierarchy) and  $\delta_{CP}$  (if  $\theta_{13}$  is not too small) - one needs, however, measurements at different baselines and to use both  $v_{\mu}$  and  $\overline{v}_{\mu}$  beams

## Subdominant oscillation in accelerator experiments

$$\begin{aligned} \theta_{13} &= 0 \qquad P(v_e \rightarrow v_\mu) = c_{23}^2 \sin^2 2\theta_{12} \sin^2(\frac{\Delta m_{12}^2 L}{4E}) \qquad \text{solar} \\ \theta_{13} &\neq 0 \qquad P(v_e \rightarrow v_\mu) = c_{23}^2 \sin^2 2\theta_{12} \sin^2(\frac{\Delta m_{12}^2 L}{4E}) \qquad \text{solar} \\ &+ s_{23}^2 \sin^2 2\theta_{13} \sin^2(\frac{\Delta m_{23}^2 L}{4E}) \qquad \text{solar} \\ &+ J \cos(\pm \delta - \frac{\Delta m_{23}^2 L}{4E}) \frac{\Delta m_{12}^2 L}{4E} \sin(\frac{\Delta m_{23}^2 L}{4E}) \qquad \text{interference} \\ &L = 0 \quad \sin 2\theta \quad \sin 2\theta \quad \sin 2\theta \end{aligned}$$

 $J = c_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}$ 

# T2K (Tokai to Kamioka) experiment

T2K (start in 2009) - aiming at a very intensive neutrino beam (first superbeam) due to very intensive proton beam from the new synchrotron at JPARC, off-axis configuration of the detectors (kinematical squeezing of the neutrino energy spectrum),

ND280 near detector - a complex magnetic spectrometer, the SuperKamiokande detector as a far detector



## T2K experiment

### Off-axis beam : intense & narrow-band beam



## **T2K** experiment

## Off-axis Near Detector (ND280)

# v<sub>µ</sub> CC events rate measurement in present analysis

- 0.2 T UA1 magnet
- Fine Grained Detector (FGD)
  - scintillator bars target (water target in FGD2)
  - 1.6ton fiducial mass for analysis
- Time Projection Chambers (TPC)
  - better than 10% dE/dx resolution
  - 10% momentum resolution at 1GeV/c







K.Sakashita, KEK, 2011

#### T2K Datasets

Data-taking started in January 2010. Data have been collected in 4 running periods.



| Period  | Exposure (proton on target)      |  |  |  |  |  |
|---------|----------------------------------|--|--|--|--|--|
|         | for oscillation physics analyses |  |  |  |  |  |
| Run 1   | $0.323 \times 10^{20}$           |  |  |  |  |  |
| Run 1-2 | $1.431 \times 10^{20}$           |  |  |  |  |  |
| Run 1-3 | $3.010 \times 10^{20}$           |  |  |  |  |  |
| Run 1-4 | $6.570 \times 10^{20}$           |  |  |  |  |  |

Steady improvement of beam power

< □ >

- Run 4: Routine operation at ~230 kW.
- Total exposure of 6.570 × 10<sup>20</sup> protons on target for physics analysis

.

글 > (王)

C.Andreopoulos (Liverpool and STFC RAL)

T2K Status and Prospects

Ē

999

#### Neutrino oscillation signatures in T2K

Muon-neutrino disappearance  $(\nu_{\mu} \rightarrow \nu_{\mu})$  $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \cos^{4}\theta_{13} \cdot \sin^{2}2\theta_{23} \cdot \sin^{2}(\frac{\Delta m_{31}^{2}L}{4E}) + \text{sub-leading terms}$ 

Electron-neutrino appearance ( $\nu_{\mu} \rightarrow \nu_{e}$ )

 $P(\nu_{\mu} \rightarrow \nu_{e}) = 4 \cdot \cos^{2}\theta_{13} \cdot \sin^{2}\theta_{13} \cdot \sin^{2}\theta_{23} \cdot \sin^{2}(\frac{\Delta m_{31}^{2}L}{4E}) + \text{sub-leading terms}$ 



#### T2K $\nu_{\mu}$ disappearance with Run 1-3 data (\*)

 $205 \pm 17$  (syst.) single-ring  $\mu$ -like events expected in absence of oscillations, but only 58 events were observed. The observed deficit is strongly energy-dependent.



- Dramatic deficit allows us to place stringent constraints on 
   \nu\_{\mu} disappearance parameters.
- Assuming NH:  $|\Delta m_{32}^2| = 2.44^{+0.17}_{-0.15} \times 10^{-3} eV^2/c^4$  and  $\sin^2 \theta_{23} = 0.514 \pm 0.082$

(\*) Analysis of Run 1-4 data (with  $\times 2$  statistics) in final stages of internal T2K review. Result would be made public within the next few weeks.

C.Andreopoulos (Liverpool and STFC RAL)

T2K Status and Prospects

Effect of systematics on the number of events (assuming  $|\Delta m_{32}^2|=2.4\times 10^{-3} eV^2/c^4$ ,  $\sin^2 \theta_{23}=0.5$ ) All 48 systematics were allowed to float in the fit.

| Source of uncertainty (no. of parameters)  | $\delta n_{\rm SK}^{\rm exp} / n_{\rm SK}^{\rm exp}$ |
|--------------------------------------------|------------------------------------------------------|
| ND280-independent cross section (11)       | 6.3%                                                 |
| Flux & ND280-common cross section (23)     | 4.2%                                                 |
| Super-Kamiokande detector systematics (8)  | 10.1%                                                |
| Final-state and secondary interactions (6) | 3.5%                                                 |
| Total (48)                                 | 13.1%                                                |



#### T2K $\nu_e$ appearance with Run 1-4 data

28 single-ring e-like events were observed, with an expected bkg of 4.92  $\pm$  0.55 (syst) events. The significance of the excess is 7.3 $\sigma$  (first ever observation of an explicit appearance signal).



|                                   | The predicted number of events |                             |  |  |  |  |
|-----------------------------------|--------------------------------|-----------------------------|--|--|--|--|
| Event category                    | $\sin^2 2\theta_{13} = 0.0$    | $\sin^2 2\theta_{13} = 0.1$ |  |  |  |  |
| Total                             | 4.92                           | 21.56                       |  |  |  |  |
| $\nu_e$ signal                    | 0.40                           | 17.30                       |  |  |  |  |
| $\nu_e$ background                | 3.37                           | 3.12                        |  |  |  |  |
| $\nu_{\mu}$ background            | 0.94                           | 0.94                        |  |  |  |  |
| $\overline{\nu}_{\mu}$ background | 0.05                           | 0.05                        |  |  |  |  |
| $\overline{\nu}_e$ background     | 0.16                           | 0.15                        |  |  |  |  |

|                               | $sin^2 2\theta$ | $1_{13} = 0$ | $sin^2 2\theta_{13} = 0.1$ |              |  |
|-------------------------------|-----------------|--------------|----------------------------|--------------|--|
| Error source                  | w/o ND280 fit   | w/ ND280 fit | w/o ND280 fit              | w/ ND280 fit |  |
| BANFF                         | 21.7            | 4.8          | 25.9                       | 2.9          |  |
| $\nu$ int. (other than BANFF) | 6.8             | 6.8          | 7.5                        | 7.5          |  |
| SK+FSI                        | 7.3             | 7.3          | 3.5                        | 3.5          |  |
| Total                         | 24.0            | 11.1         | 27.2                       | 8.8          |  |
| 2012 analysis                 | 21.0            | 13.0         | 24.2                       | 9.9          |  |

Best fit value of  $\sin^2 2\theta_{13}$ (for  $\delta_{CP} = 0$ ,  $|\Delta m_{32}^2| = 2.4 \times 10^{-3} eV^2/c^4$  and  $\sin^2 \theta_{23} = 0.5$ ):

《曰》《卽》《臣》《臣》

•  $\sin^2 2\theta_{13} = 0.14$  (Normal)

• 
$$\sin^2 2\theta_{13} = 0.17$$
 (Inverted)

T2K Status and Prospects

Ξ

200



Monday, 14 June 2010 UW, 14.01.2014





#### Inverse β-decay (IBD):

 $\overline{\nu}_e + p \to e^+ + n$   $\downarrow n + Gd \to Gd + \gamma s$ 

Prompt positron: Carries antineutrino energy  $E_{e+} \approx E_v - 0.8$  MeV



## Delayed neutron capture:

Efficiently tags antineutrino signal

#### Prompt + Delayed coincidence provides distinctive signature

August 16, 2013





- in Shenzhen, southern China; ~55km to HK.
- very powerful nuclear power complex:
  - Daya Bay NPP (nuclear power plant)
  - Ling Ao NPP
  - Ling Ao II NPP (start to run in October 2010)
- adjacent to mountain
  - is easy to build underground labs with tunnel access
  - provide sufficient overburden to suppress cosmic rays.

















August 16, 2013

ETW: DPF2013, UC Santa Cruz







August 16, 2013

ETW: DPF2013, UC Santa Cruz

# Neutrino oscillations - open questions

How close to  $45^{\circ}$  is  $\theta_{23}$ ?

Measure all parameters more precisely!

Is there a new symmetry of Nature hidden behind the scheme of neutrino mixing?





## Mass hierarchy and CP determination in LBL experiments

### Experimental strategies:

#### Mass hierarchy:

- Use both the neutrino and antineutrino beams
- Longer baselines are better
- Off-axis configuration may be helpful

#### CP:

- Use both the neutrino and antineutrino beams
- Study the L/E dependence for wide band beams
- Use the second oscillation maximum



$$A_{CP} = \frac{P(\nu_{\mu} \leftrightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \leftrightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \leftrightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \leftrightarrow \overline{\nu}_{e})}$$

## NOvA exp.- started in Sept.2013 for 6-10 years



## NOvA+T2K mass hierarchy reach

- NOVA is experiment in the best available place RIGHT NOW!
- Reach is improved slightly with T2K



|           |               |                  |                 | 1.0 |
|-----------|---------------|------------------|-----------------|-----|
| Period    | Integ. No. of | Proton on Target | Beam Power (kW) | [   |
| -Jun.2012 |               | 3.1E+20          | 170             |     |
| -Jun.2013 |               | 7.8E+20          | 200             |     |
| -Jun.2014 |               | 1.2E+21          | 250             | *2  |
| -Jun.2015 |               | 1.8E+21          | 250             |     |
| -Jun.2016 |               | 2.5E+21          | 300             |     |
| -Jun.2017 |               | 3.2E+21          | 300             |     |
| -Jun.2018 |               | 3.9E+21          | 300             |     |
| -Jun.2019 |               | 5.5E+21          | 700             | *1  |
| -Jun.2020 |               | 7.1E+21          | 700             |     |
| -Jun.2021 |               | 8.8E+21          | 700             |     |
|           |               |                  |                 |     |

\*1 Completion time of MR upgrade (assumed to be 2018) is suject to change, depending on economical situation, readiness and so on.

- \*2 LINAC upgrade completed
- \* Beam Energy 30GeV

#### LATEST T2K projection is 8.8e21 by 2021

## JUNO (Daya Bay II) for MH determination

## The site: Kaiping county, Jiangmen City

|        | Daya Bay    | Huizhou | Lufeng  | Yangjiang          | Taishan            |
|--------|-------------|---------|---------|--------------------|--------------------|
| Status | Operational | Planned | Planned | Under construction | Under construction |
| Power  | 17.4 GW     | 17.4 GW | 17.4 GW | 17.4 GW            | 18.4 GW            |



## Daya Bay II

- 20 kton LS detector
- 2-3 % energy resolution

$$\begin{split} P_{ee}(L/E) &= 1 - P_{21} - P_{31} - P_{32} \\ P_{21} &= \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}) \\ P_{31} &= \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31}) \\ P_{32} &= \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32}) \\ \Delta m_{31}^2 &= \Delta m_{32}^2 + \Delta m_{21}^2 \\ \mathrm{NH}: \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \mathrm{IH}: \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{split}$$





#### S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., hep-ex/0612022 L.

Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008 PRD79:073007, 2009



# Future projects based on Superbeams

Superbeams (v\_i's from  $\pi,$  K decays) but based on proton beams of up to 4-5 MW power

### A few remarks:

- Much larger detectors than the SuperKamiokande detector are needed to improve searches for proton decays and studying low energy neutrinos from astrophysical sources.

-Nowadays these studies cannot be separated from LBL accelerator neutrino experiments to study neutrino oscillations.

- No one of the existing infrastuctures in the world is able to host future detectors  $\rightarrow$  studies in Japan, USA and Europe.

## HyperKamiokande in Japan 25 times SuperKamiokande



#### Expected Sensitivity to CP Violation CPV discovery sensitivity w/ mass Fractional region of δ(%) for which the

hierarchy known. CPV (sin  $\delta \neq 0$ ) significance is >  $3\sigma$ 100 7.5MWyear 2% all syst  $\sin^2 2\theta_{13} = 0.1 / 0.03$ MH known **b**<sup>10</sup> -5% all syst sin<sup>2</sup>2013=0.1 ······ MH unknown normal MH 80 74% Fraction of 5 (%) 74% region of δ covered at 3σ / 5% sys. error 60 6 40 5% systematics on signal, v BG, v BG, v/v 10% all syst 20 7.5 MW · yrs -0.5 0.5 true δ (π) 0 з 8 2 5 6 7 9 10 5% systematics on signal, vµ BG, ve BG, v/v Integrated beam power (MW-107s) 60 sin<sup>2</sup>20<sub>13</sub>=0.1  $\delta$  coverage: δ**=90**° Normal hierarchy 1σ error of δ (degree) δ=0° CPV >  $3\sigma$  ( $5\sigma$ ) for 74%(55%) of  $\delta$ 7.5 MW · 107s 3.75 MW · 107s (750kW×10yrs/ (750kW×5yrs) 1.5MW×5yrs)  $1\sigma$  uncertainty of  $\delta$  as a function 20 of the beam power: 10 < 20°(10°) for  $\delta$  = 90°(0°) Modest dependence on  $\theta_{13}$ з 8 9 10 10 Integrated beam power (MW-107s)

F.di LodovicoM. ICFA 2014

#### Three Possible Scenario Studied at NP08 Workshop

Артем



500 kton Water Cherenkov or 100 kton Liquid Argon detector at the 2nd maximum in Korea

# **Proton Decay Sensitivities**



10 times better sensitivity than Super-K
Hyper-K surpasses SK limits in ~1y

- >  $p \rightarrow e\pi^0$  : 1.3× 10<sup>35</sup> y at 90%CL
- > p → vK<sup>+</sup>:  $2.5 \times 10^{34}$  y at 90%CL
- Many other modes:
  - P(n  $\rightarrow$  e,µ) + ( $\pi$ , $\rho$ , $\omega$ , $\eta$ ); 10<sup>14</sup>-10<sup>35</sup>
  - K<sup>0</sup> modes
  - νπ<sup>0</sup>, νπ<sup>+</sup>



F.di LodovicoM. ICFA 2014

## LBNE - Long Baseline Neutrino Experiment in US



LBNE configuration is:

- A horn-produced broad-band beam with 60-120 GeV protons at 700 kw (upgradable to 2.3 MW) from FNAL.
- Planning change: 700 kw → 1.2 MW at LBNE start.
- A baseline of 1300 km towards the Sanford Underground Research Facility in Lead, South Dakota.
- A 35 kt fiducial volume liquid argon time projection chamber located at the 4850 ft level.
- A high resolution near detector at FNAL.
- This configuration will be achieved in a phased manner according to financial constraints.



## The LAGUNA project in Europe (2008-2011)



## SITE STUDY

#### **Candidate Sites**

- Boulby, UK
- Canfránc, Spain
- Fréjus, France
- Pyhäsalmi, Finland
- Sieroszowice, Poland
- Slanic, Romania

#### LAGUNA Conduction

100 scientists more than 20 institutes 11 European countries

| Location                | Туре        | Envisaged depth     | Distance from | Energy 1 <sup>st</sup> Osc. Max. |
|-------------------------|-------------|---------------------|---------------|----------------------------------|
|                         |             | m.w.e.              | CERN [km]     | [GeV]                            |
| Fréjus (F)              | Road tunnel | $\simeq 4800$       | 130           | 0.26                             |
| Canfranc (ES)           | Road tunnel | $\simeq 2100$       | 630           | 1.27                             |
| Umbria(IT) <sup>a</sup> | Green field | $\simeq 1500$       | 665           | 1.34                             |
| Sierozsowice(PL)        | Mine        | $\simeq 2400$       | 950           | 1.92                             |
| Boulby (UK)             | Mine        | $\simeq 2800$       | 1050          | 2.12                             |
| Slanic(RO)              | Salt Mine   | $\simeq 600$        | 1570          | 3.18                             |
| Pyhäsalmi (FI)          | Mine        | up to $\simeq 4000$ | 2300          | 4.65                             |

Table 1: Potential sites being studied with the LAGUNA design study.

 $^a \simeq 1.0 \circ \text{CNGS}$  off axis.

#### from A.Rubbia

## Experimental aspects - choice of detectors



## But how the detection efficiency for liquid argon changes with energy?

just for illustration simulated  $\pi^{0}$ 's of 0.5, 1, 2, 3, 5, 10 GeV in the ICARUS detector



A.Zalewska, Epiphany Conf., 7.1.2010

## The LAGUNA-LBNO project in Europe (2011-2015)

#### LAGUNA-LBNO sites

New conventional beams to be considered based on CNGS experience

 CERN-Fréjus is a short baseline. It offers good synergy for enhanced physics reach with β-beam at γ=100

 CERN-Pyhäsalmi is the longest baseline. It offers good synergy for enhanced physics reach with a NF

[CERN-Umbria has an existing beam but is considered at lower priority (missing near detector, limited power upgrade scenarios)]



## Mass Hierarchy is a fundamental measurement:



- MH is a **prerequisite** to study leptonic CPV
- Scenarios for lepto-genesis
- Hints for theory development (GUT models)
- Feasibility and interpretation of 0vββ experiments
- Interpretation of HDM from cosmology in terms of v masses

#### LBNO strategy on MH:

- To guarantee the measure MH on the > 5  $\sigma$  level one need to go to very long baselines > 2000 km.
- MH should be settled early in the exp. to optimize the  $v / \overline{v}$  ratio to maximize CP sensitivity.
- The median 5 σ sensitivity (p = 0.5) for LBNO is reached within 2 years of running.
- The guaranteed 5  $\sigma$  sensitivity (p ~ 1) for LBNO is reached within 5 years of running.

Design value: 75 % v - 25 % anti-v

#### LBNO Strategy on $\delta_{CP}$

Use all spectral information: Rate & Shape for energy range 1<sup>st</sup> - 2<sup>nd</sup> max



Once MH determined run for 5 more years with optimized sharing of neutrinos / anti-neutrinos to cover the most possible phase space in δ<sub>CP</sub>



# An world-unique ESS Based Super Beam for Lepton CP violation discovery

Snowmass White Paper arXiv:1309.7022

#### Tord Ekelof, Uppsala University of behalf of the ESSvSB Collaboration

2014-01-09

ICFA Neutrino Meeting in Paris Tord Ekelöf Uppsala University

1

# The ESS 2 GeV proton linac as proton driver for a neutrino Super Beam



The European Spallation Source (ESS), which is being built in Lund, Sweden, will have a 2 GeV 5 MW (alternatively 2.5 GeV 5MW) superconduction linac to produce

1.6x10<sup>16</sup> protons on target/second\*

#### which is two orders of magnitude more than any other planned proton driver for a neutrino beam

- T2HK JPARK to HyperKamiokande 30 GeV, 0.75 MW ->
- 1.6x10<sup>14</sup> protons on target/second
- LBNE FNAL to Sanford Lab 60-120 GeV, 0.7 MW ->
- 1.1×10<sup>14</sup> protons on target/second

#### First beams 2019 Full linac power installed 2022

\* = Power [W]/(Energy [eV]×1.6×10<sup>-19</sup>) 2014-01-09 Tord Ekelöf Uppsala University







ICFA Neutrino Meeting in Paris Tord Ekelöf Uppsala University

# Further future of the CP studies

New sources of neutrinos based on new types of accelerators

Neutrino factories - nuSTORM project as a first step



| $\mu^- \rightarrow e^- \nu_\mu \overline{\nu}_e$                |                                                                                     |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| Disappearance                                                   | Appearance                                                                          |  |  |  |  |  |
| $\overline{\nu}_e \rightarrow \overline{\nu}_e \rightarrow e^+$ | $\overline{\nu}_{\varepsilon} \rightarrow \overline{\nu}_{\mu} \rightarrow \mu^{+}$ |  |  |  |  |  |
|                                                                 | $\overline{\nu}_e \rightarrow \overline{\nu}_T \rightarrow t^+$                     |  |  |  |  |  |
| $\nu_{\mu} \rightarrow \nu_{\mu} \rightarrow \mu^{-}$           | $v_{\mu} \rightarrow v_e \rightarrow e^-$                                           |  |  |  |  |  |
|                                                                 | $v_{\mu} \rightarrow v_{\tau} \rightarrow t^{-}$                                    |  |  |  |  |  |



From the report of the SPC neutrino panel for the CERN Council, March 2010

# Steryle neutrinos

Various observed anomalies Ways to solve them

# Is the 3-flavour oscillations scheme fully consistent



□ 3<sup>rd</sup> region of oscillation parameters was observed in the LSND experiment

 $\Box$  3 different values of  $\Delta m^2 \rightarrow$  more than 3 neutrino species must exist

 $\Box$  BUT 3 active neutrinos according to the measurements at LEP  $\rightarrow$  other neutrinos of different type "sterile"

□ MiniBooNE experiment was designed to check the LSND effect (different beam, different baseline, different systematics)

# MiniBooNE results for neutrinos

2007 - no need for extra v species (sterile neutrino(s)): The result of the MiniBooNE experiment, searching for the  $v_{\mu} \leftrightarrow v_{e}$ oscillations for L/E  $\approx$ 1: L = 500 m, E  $\approx$  500 MeV (published in 2007), exclusion of the LSND effect.



Another neutrino beam at FNAL

#### BUT new facts at Neutrino 2010 III UW, 14.01.2014



## MiniBooNE results for antyneutrinos

#### arXiv:1007.1150v3 [hep-ex] PRL 105 (2010) 181801

2010 - excess of events corresponting to anty- $v_e$  interactions



UW, 14.01.2014



- → Better experiment with two detectors is needed,
- → MicroBooNE LAr exp. approved in the US, 1ktonne detector added in the future

#### The ICARUS single-phase T600 LAr-TPC at LNGS laboratory



#### Two identical modules

- 3.6x3.9x19.6 ≈ 275 m<sup>3</sup> each
- Liquid Ar active mass: ≈476 t
- Drift length = 1.5 m (1 ms)
- HV = -75 kV; E = 0.5 kV/cm
- *v-drift* = 1.55 mm/µs
- Sampling time 0.4µs (sub-mm resolution in drift direction)

# 4 wire chambers:



#### 2 chambers per module

- 3 "non-distructive" readout wire planes per chamber wires at  $0, \pm 60^{\circ}$  (up to 9 m long)
- Charge measurement on collection plane
- ≈ 54000 wires, 3 mm pitch and plane spacing
- 20+54 8" PMTs for scintillation light detection VUV sensitive (128nm) with TPB wave shifter

#### **ICFA 2014**

#### The ICARUS T600 detector at LNGS Laboratory

- Exposed to CNGS beam up to Dec. 3<sup>rd</sup> 2012: a 8.6 10<sup>19</sup> pot event statistics has been collected with a remarkable detector live-time > 93 %.
- In parallel data taking with Cosmics has been conducted to study detector capability for atmospheric v, p-decay search (0.73 kty exposure).



- T600 decommissioning @ LNGS is successfully proceeding from June 27<sup>th</sup>
  - cryostats empty on July 25<sup>th</sup> (740 out of 760 tons LAr recovered); detector @ room temperature on September 1<sup>st</sup>.
- TPC chambers, cryogenic plant, read-out electronics, chimneys,... and ancillary systems will be recovered.

#### T600 run at LNGS: first publications

- "Underground operation of the ICARUS T600 LAr-TPC: first results", JINST 6 (2011) P07011.
- 2. "A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS", PLB 711 (2012) 270.
- 3. "Measurement of neutrino velocity with the ICARUS detector at the CNGS beam", PLB 713 (2012) 17.
- 4. "Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam", JHEP 11 (2012) 049.
- "Precise 3D Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector", AHEP 2013 (2013) 260820.
- "Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam", EPJ C73 (2013) 2345.
- 7. "Search for anomalies in  $\nu_e$  appearance from  $\nu_\mu$  beam", EPJ C73 (2013) 2599.

#### Analysis of the large amount of physics data becoming progressively the main activity of the CNGS2 collaboration

ICFA 2014

#### The new ICARUS results

- Experimental pictures of one of the four events with a clear electron signature found in the sample of 1995 v interactions (6.0 10<sup>19</sup> pot over the full recorded statistics of 8.6 10<sup>19</sup> pot).
- In all events the single electron shower is opposite to hadronic component in the transverse plane.
- The evolution of the actual dE/dx from a single track to an e.m. shower for the electron shower is shown along the individual wires.



oscillations is then  $6.4\pm0.9$  (syst. only).

ICFA 2014

#### LSND-like exclusion from the ICARUS experiment



 $\tan^2(\theta)$ ICARUS result strongly limits the window of parameters for *a possible* LSND anomaly to a very narrow region ( $\Delta m^2 \approx 0.5 \ eV^2$  and  $\sin^2 2\theta \approx 0.005$ ) where there is an overall agreement (90% CL) of

- the present ICARUS limit
- the limits of KARMEN
- the positive signals of LSND and MiniBooNE

However the original LSND anomaly requires the direct verification with anti-vs  $_{\rm ICFA\ 2014}$ 

## Instead of conclusions

Neutrino physics fascinating but difficult

Very interesting topics of searches for neutrinoless double beta decays require a separate talk

Neutrino studies offer the best way to find physics beyond the Standard Model?

## Neutrino masses and nature

How to weight neutrino? Dirac or Majorana particle?

## How to measure neutrino masses?

 $\Box$  Direct measurements of the  $v_e$  mass based on the end-point of electron energy spectra in beta decays

The best measurement from the end-point of the tritium  $\beta$  decay (2.2 eV limit at present, 0.2 eV in a few years from the KATRIN experiment)

#### Measurements based on the lifetime measurements for the neutrinoless double beta decays Potentially the most sensitive method for the mass determination but neutrino must be a Majorana particle

#### Cosmological limits

Resent cosmic microwave background measurements by the Wilkinson Microwave Anisotropy Probe (WMAP) together with different survey experiments give upper limits for a sum of masses of different neutrino species typically below 1 eV but these limits are model dependent

## Measurement of $v_e$ mass from Tritium $\beta$ decays





T. Thümmler - Introduction to direct neutrino mass measurements and KATRIN

#### UW, 14.01.2014

10

## **KATRIN** experiment



m(v) < 0.2 eV

## Double beta decay



### **Double** $\beta$ decays – $2\nu\beta\beta$ and $O\nu\beta\beta$

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_\nu \rangle^2$$

- $G^{0\nu}$ Phase-space factor  $|M^{0\nu}|^2$  Nuclear matrix element
- $\langle m_{\nu} \rangle^2$  Effective neutrino mass

Table I A selection of the past and present experiments giving the best result per isotope to date. All given  $au_{1/2}^{0\nu}$   $(\langle m_{\nu} \rangle)$ are lower (upper) limits with the exception of the Heidelberg-Moscow experiment where the 99.9973% CL value is given. The spread in  $\langle m_{\nu} \rangle$  is due to the uncertainties on the nuclear factor  $F_N$ .

| ſ | isotope             | experiment        | latest   | $Q_{etaeta}$     |      | i. a.        | exposure        | technique    | material                      | $	au_{1/2}^{0 u}$     | $\langle m_{\nu} \rangle$ |
|---|---------------------|-------------------|----------|------------------|------|--------------|-----------------|--------------|-------------------------------|-----------------------|---------------------------|
|   |                     |                   | result   | $[\mathrm{keV}]$ | nat. | enrich.      | $[kg \times y]$ |              |                               | $[10^{23}\mathrm{y}]$ | [eV]                      |
| ſ | <sup>48</sup> Ca    | Elegant VI        | 2004[11] | 4271             | 0.19 | _            | 4.2             | scintillator | $CaF_2$                       | 0.14                  | $7.2 \div 44.7$           |
|   | <sup>78</sup> Ge    | Heidelberg/Moscow | 2004[17] | 2039             | 7.8  | 87           | 71.7            | ionization   | Ge                            | 120.0                 | 0.44                      |
|   | $^{82}$ Se          | NEMO-3            | 2007[22] | 2995             | 9.2  | 97           | 1.8             | tracking     | Se                            | 2.1                   | $1.2 \div 3.2$            |
|   | $^{100}$ Mo         | NEMO-3            | 2007[22] | 3034             | 9.6  | $95 \div 99$ | 13.1            | tracking     | Mo                            | 5.8                   | $0.6 \div 2.40$           |
|   | $^{116}Cd$          | Solotvina         | 2003[12] | 2805             | 7.5  | 83           | 0.5             | scintillator | $CdWO_4$                      | 1.7                   | 1.7                       |
|   | $^{130}\mathrm{Te}$ | Cuoricino         | 2007[20] | 2529             | 33.8 | -            | 11.8            | bolometer    | $TeO_2$                       | 30.0                  | $0.16 \div 0.84$          |
|   | <sup>136</sup> Xe   | DAMA              | 2002[23] | 2476             | 8.9  | 69           | 4.5             | scintillator | Xe                            | 12.0                  | $1.10 \div 2.9$           |
|   | $^{180}\mathrm{Nd}$ | Irvine TPC        | 1997[14] | 3367             | 5.6  | 91           | 0.01            | tracking     | $Nd_2O_3$                     | 0.012                 | 3.0                       |
|   | <sup>160</sup> Gd   | Solotvina         | 2001[13] | 1791             | 21.8 | _            | 1.0             | scintillator | $\mathrm{Gd}_2\mathrm{SiO}_8$ | 0.013                 | 26.0                      |

#### nucl-ex/0707.2216

 $\langle m_{\nu} \rangle = \sum_{k} \phi_{k} m_{k} U_{e,k}^{2}$ 



Maura Pavan – Università di Milano Bicocca and sez. INFN - Neutrino 2010 - Athens - June 14-19

#### SENSITIVITY AND CANDIDATES



Reasonable  $F_N \rightarrow GOLDEN LIST OF CANDIDATES$ 



## $Ov\beta\beta$ signal in the Moskow-Heidelberg experiment?

First announcement in 2002, new publication in 2004, based on the data collected between 1990 and 2003

Klapdor-Kleingrothaus Phys. Lett. B586 (2004) 198



Fig. 31. The single site sum spectrum of the four detectors 2,3,4,5 for the period November 1995 to May 2003 (51.389 kg y), and its fit (see section 3), in the range 2000 - 2060 keV.

Maximum at 2039 keV

T<sub>1/2</sub> = 0.6-8.4×10<sup>25</sup>lat

$$\rightarrow$$
 m<sub>v</sub> = 0.17-0.63 eV

This result must be verified by another experiment, e.g. GERDA should achieve the required sensitivity in a few years

#### Marik Barnabé Heider

MPIK Heidelberg



#### Neutrino Ettore Majorana Observatory

# 20 14 1978 IS IN **B** (25 4

3

16-Jun-2010

#### The NEMO-3 detector

Modane Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of ββ isotopes 7kg of <sup>100</sup>Mo, 1kg of <sup>82</sup>Se + smaller quantities of <sup>130</sup>Te, <sup>116</sup>Cd, <sup>48</sup>Ca, <sup>96</sup>Zr, <sup>150</sup>Nd

#### Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H<sub>2</sub>O

#### <u>Calorimeter</u>:

1940 plastic scintillators

coupled to low radioactivity PMTs



Maura Pavan – Università di Milano Bicocca and sez. INFN - Neutrino 2010 - Athens - June 14-19

#### **CUORICINO:** detector

