Cosmological Vacuum Selection and Metastable Supersymmetry Breaking

Based on the **arXiv:1001.4106** with *Prof. Zygmunt Lalak*

Ioannis Dalianis

IFT-University of Warsaw

Ioannis Dalianis, Warszawa 4/02/2010

• Gauge Mediation models are considered compelling candidates for the UV completion of the MSSM. So we consider:

Hidden Sector + Messengers + Visible Sector

• According to *Nelson and Seiberg* the theory should possess an R-symmetry in order to obtain supersymmetry breaking:

+ U(1)_R symmetry

- The gauge mediated susy breaking vacuum is likely to be metastable -usually because of the messenger structure. According to *Intriligator*, *Shih and Seiberg Rsymmetry* arguments also support metastability (in the IR) in model building. In *ISS* model it was shown that metastable susy minima are indeed generic: + metastability
- Considering a theory of low scale susy breaking it is natural to expect corrections to the Kahler potential originating from the UV theory:

+ general Kahler potential

Therefore, the theory considered is the following:

$$W = \mu^2 S + (\lambda_{ij} S + m_{ij}) q_i \bar{q}_j \equiv \mu^2 S + \mathcal{M}_{ij} q_i \bar{q}_j$$
$$K = |S|^2 \mp \frac{|S|^4}{\Lambda_1^2} - \frac{|S|^6}{\Lambda_2^4} + \sum_i \left(|q_i|^2 + |\bar{q}_i|^2 \right)$$

Where $S = \langle S \rangle + \theta^2 F$

According to *Cheung*, *Fitzpatrick and Shih* we can make the classification 1. det $m \neq 0$ and det $\lambda = 0$ Type I

2. det m = 0 and det $\lambda \neq 0$ Type II

The fact that the leading order gaugino masses are proportional to

$$m_{1/2} \propto \partial_S \ln \det \mathcal{M}$$

If matrix m is full rank then *R*-symmetry renders the matrix M to be *S*-independent.

• This makes the *type II* models of special phenomenological interest.

<u>We consider type II models that seem to be thermally disfavored and examine</u> <u>their possible evolution in the early universe.</u>

• The simplest case is

$$\begin{split} W &= \mu^2 S - \lambda S q \bar{q} + c \\ K &= |S|^2 \mp \frac{|S|^4}{\Lambda_1^2} - \frac{|S|^6}{\Lambda_2^4} + |q|^2 + |\bar{q}|^2 \end{split}$$

- The susy breaking metastable vacuum is created by gravity and/or quantum corrections.
- Firstly, we examine the *thermal evolution* of this model:

$$\bar{V}_1^T(\phi_c) = \frac{T^4}{2\pi^2} \int_0^\infty dy y^2 \left\{ \sum_i \ln\left[1 - \exp\left(-\sqrt{y^2 + (M_S^2)_i/T^2}\right)\right] + \dots \right\}$$

We find a 2nd order phase transition to susy vacua at $T_{cr} \cong 2 \frac{\mu}{\sqrt{\lambda}}$

but also
$$T_S^2 \sim \frac{c\mu}{\sqrt{\lambda^3}}$$
 when the susy breaking vacuum becomes (meta)stable.

$K = S ^2 \mp \frac{ S ^4}{\Lambda_1^2} - \frac{ S ^6}{\Lambda_2^4}$	Metastable Vacuum $\langle S \rangle$		Λ_2	λ
1. (-), $\Lambda_2 = \Lambda_1 \equiv \Lambda$	${ m S}\sim\Lambda^2$	$\Lambda > 10^{-14/3}$	-	$\lambda < \Lambda$
2. (+), $\Lambda_1^{3/2} < \Lambda_2$	$S \sim \pm \frac{\Lambda_2^2}{\Lambda_1}$	$\Lambda_1 > \Lambda_2$	$\Lambda_2 > 10^{-7} \left(\frac{\Lambda_1^{3/2}}{\Lambda_2}\right)$	$\lambda < \left(rac{\Lambda_2}{\Lambda_1} ight)^2$
3. (+), $\Lambda_1^{3/2} > \Lambda_2$	$\mathrm{S} \sim \Lambda_2^{4/3}$	$\Lambda_1 > \Lambda_2$	$\Lambda_2 > 10^{-7}$	$\lambda < \Lambda_2^{2/3}$

Table 1: Zero temperature vacuum stability constraints

$$\mu^2 = \left(\frac{\alpha}{4\pi}\right)^{-1} m_{\text{gaugino}} \left\langle S \right\rangle \simeq 10^{-14} \Lambda^2$$

Initial Conditions?

• Gravitational particle production during an inflationary phase for 'light' scalar fields

$$Q_I = S_0 \sim H_I$$

• There may be a coupling to the inflaton in the superpotential:

$$W = W_I \left(1 - \xi Q_I S + \dots \right)$$

or to the Kahler potential: $\delta K = -q^{\dagger}qI^{\dagger}I$

It is natural to expect that the fields are displaced from the zero temperature minmum.

Thermalization?

- We expect messengers to be in thermal equilibrium until temperatures $T_q \sim m_q/20$
- Hence there is a *thermal induced mass* on the spurion: $\lambda^2 |S|^2 \langle |q|^2 \rangle_T \sim \lambda^2 |S|^2 T^2$

•The spurion is out of equilibrium: $\Gamma_{int} = \langle \sigma vn \rangle_T \sim \frac{\lambda^4 \alpha^2}{16\pi^2} T_{\text{Loannis DalfaMs, Warszawa 4/02/2010}} \text{ cannot `catch' the Hubble rate.}$

When the Susy breaking Metastable Vacuum can be realized?

- 1) $\Lambda^2 \leq S_{initial} < \Lambda$
- 2) The spurion must not be driven to the origin by thermal corrections.
- It is believed that the only way out is to allow a reheating temperature lower than the mass of messengers: $T_{rh} < m_q \approx \lambda \langle S \rangle$
- However this requirement cannot justify localization of messengers to the origin.
- A way out is to require $m_q < T_{rh} < T_S$

Thus, the susy breaking vacuum has formed and the messengers are thermalized.

• Also, if $\lambda < T_S$ then the reheating temperature can be arbitrary large. This comes from the observation that the spurion rolls down only when $H \sim m_S(T)$ This can be seen from the e.o.m.:

$$\ddot{S} + 3\sqrt{g_*} T^2(t)\dot{S} + \lambda^2 T^2(t)S \approx 0$$

• We require: $\frac{m_{3/2}}{m_{\rm gaugino}} = \frac{4\pi}{\alpha\sqrt{3}} \frac{\langle S \rangle}{M_{Pl}} < \mathcal{O}(10\%)$

 Table 2: Combined constraints coming from zero temperature vacuum stability, cosmological considerations and gauge domination over gravity.

(Λ, λ)	m_q	T_S	T_{rh}
$(10^{-2}, 10^{-7})$	10^{-9}	$10^{-8.25}$	$10^{-9} < T_{rh} < 10^{-8.25}$
$(10^{-2}, 10^{-8})$	10^{-10}	$10^{-7.5}$	$10^{-10} < T_{rh}$
$(10^{-2}, 10^{-9})$	10^{-11}	$10^{-6.75}$	$10^{-11} < T_{rh}$
$(10^{-2}, 10^{-10})$	10^{-12}	10^{-6}	$10^{-12} < T_{rh}$
$(10^{-3}, 10^{-7})$	10^{-10}	$10^{-9.75}$	$10^{-10} < T_{rh} < 10^{-9.75}$
$(10^{-3}, 10^{-8})$	10^{-11}	10^{-9}	$10^{-11} < T_{rh} < 10^{-9}$

Table 3: The (conservative) range of values of the reheating temperature that could result in theselection of the susy breaking vacuum by the system of fields.

Ioannis Dalianis, Warszawa 4/02/2010

Breaking R-symmetry

- It is unlikely that any fundamental theory exhibits continuous symmetries. The *R-symmetry* of the O'R models should be approximate. The continuous *R-symmetry* might be a consequence of a discrete *R-symmetry*.
- We include explicit *mass term M for messengers*:

$$W = \mu^2 S - \lambda S q \bar{q} \pm M q \bar{q} + c$$

• In the global susy the theory has a global minimum at

$$S = \mp \frac{M}{\lambda}, \ q\bar{q} = \frac{\mu^2}{\lambda}$$

- And a susy breaking minimum $S=q=ar{q}=0$
- But *including gravity* the metastable minimum is shifted to $S \approx c \Lambda^2/(2\mu^2)$
- Moreover the thermal evolution of the models is similar: The susy breaking vacuum seems to be disfavored.

Ioannis Dalianis, Warszawa 4/02/2010

Including the MSSM sector

- The next step is to consider the other sectors: Low energy Visible Sector and other fields (moduli,...) of the non-susy breaking Hidden Sector.
- Including the MSSM the superpotential reads

W= W(Hidden sector + messenger sector) + MSSM(GUT)superpotential.

• The MSSM fields *enhance the thermal induced mass on the messenger fields*. This fact reduces the critical temperature of the second order phase transition.

$$T_{cr} = \frac{\mu}{\sqrt{\lambda}} \quad \rightarrow \quad T_{cr} = \frac{\mu}{\sqrt{\lambda}} \frac{\lambda}{\tilde{\lambda}}$$

•It is possible then the system of the fields to evolve to the susy breaking vacuum even in the case that the fields are localized in the origin. This would result in a natural solution to the problem of the selection of the phenomenological favorable vacuum.

Conclusions

•The phenomenologically favorable models of O'R type metastable susy breaking vacua were generally considered cosmologically disfavored. It was believed that the only way out was to consider a non thermal evolution of the fields with unjustified assumptions about the initial VEVs of messenger fields.

• We presented that for a specific range of parameters the susy breaking vacua can be cosmological favorable even in the case of a thermalized susy breaking/mediation sector.