Hidden Higgs

Adam Falkowski

Rutgers University

7th ToK Workshop, 3 February 2010

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

- 2 How to hide the Higgs
- Hiding the Higgs decaying to lepton jets

Based on AA, Ruderman, Volansky, Zupan [1002.xxxx]

AA I	(Rutgers	University)

I ∃ ≥

What do we know about Higgs?

- The Higgs boson is predicted by many theories of electroweak symmetry breaking
- Higgs is the *simplest* mean to unitarize the scattering amplitude of longitudinally polarized W and Z bosons
- A light Higgs boson is strongly suggested by electroweak precision observables

- Hints that there exists a light scalar field with the coupling ~ m_V V_μ V_μ h to the W and Z gauge bosons
- But there is no experimental input as to Higgs width or its coupling to SM fermions!

Tension for the SM Higgs

- Experimental: tension between the LEP limit $m_h > 114.4 \text{ GeV}$ and the electroweak fit $m_h = 80^{+30}_{-23}$ (Gfitter)
 - Leptonic observables and W mass alone prefer a very light Higgs, of order 60 GeV!
 - \blacktriangleright Only the $Z \rightarrow bb$ forward-backward asymmetry pushes the Higgs mass toward larger values

- Mixed: If tau data instead of electron data used for Δα_{had} in the electroweak fit, the best fit Higgs mass further decreases Passera,Marciano,Sirlin [1001.4528]
- Theoretical: In many extensions of the SM, in particular in the MSSM or simplest little Higgs theories, $m_{Higgs} \approx m_Z$ preferred by naturalness, while $m_{Higgs} \geq 115$ GeV leads to the *little hierarchy problem*

There is some tension within the minimal Higgs paradigm, which prompts searching for alternatives

So maybe Higgs IS lighter than 115 GeV?

- One possibility: suppressed coupling to Z boson, so that it was not produced at LEP. But then electroweak fit is not improved even if Higgs is light
- More exciting possibility: Higgs was copiously produced at LEP, but it escaped our attention.

Recall the Standard Model Higgs

• LEP constrained $m_{Higgs} > 114.4$ GeV by looking for $H \rightarrow b\bar{b}$ decay

- SM Higgs couples to mass
- For a light Higgs, the couplings to the relevant SM states are tiny, e.g. $y_b \sim m_b/v_{EW} \sim 0.02$
- Branching ratios for various Higgs decays can easily be altered by new physics when Higgs below WW threshold

Summary of Higgs limits beyond the SM

Assuming SM production cross section, and $BR(H \rightarrow xx) = 1$

Decay Channel	Limit
h ightarrow E	114 GeV
$h ightarrow au\overline{ au}$	115 GeV
$h \rightarrow jj$	113 GeV
$h \rightarrow WW^*$ or ZZ^*	110 GeV
h ightarrow $AA ightarrow$ $4b,4 au$	110 GeV
h ightarrow AA ightarrow 4c, 4g	86 GeV
$h \rightarrow anything$	82 GeV

see Chang, Dermisek, Gunion, Weiner [0801.4554] for review

- Invisible and two-body decay channels very well constrained
- Constraints on four- and more body decay channels typically not much better than the model independent OPAL constraint, with the exception of the 4b and 4τ channels
- Typically, the multiparticle channels are weakly constrained not because of fundamental reasons but because nobody bothered to look

Hidden Higgs in NMSSM

Best known example of Hidden Higgs: NMSSM near R-symmetric or PQ-symmetric limit

- NMSSM: $W = \lambda SH_uH_d + \kappa S^3$, $V_{soft} = A_\lambda \lambda SH_uH_d + A_\kappa \kappa S^3 + m_S^2|S|^2$
- Two CP-odd Higgses A_{1,2}: one in S, one in H_{u,d}, that mix due to EW breaking. The A₁ mass for large tan β is m²_{A1} ~ κA_κμ/λ. It is light if e.g. A_κ ~ GeV
- A₁ has sizable coupling to Higgs via potential, so cascade decay h → AA → 4f may easily dominate

Non-standard Higgs decays in NMSSM

- Much as Higgs, pseudoscalar A₁ couples more strongly to heavier SM particles
- For *m*_{A1} > 2*m*_b the dominant decay of *A*₁ is into 2 b quarks Dobrescu,Landsberg,Matchev [hep-ph/0008192] Dermisek,Gunion [hep-ph/0502105]. Constrained by LEP [hep-ex/0602042]

 For 2m_τ < m_{A1} < 2m_b dominant decay into 2 tau leptons Dermisek,Gunion [hep-ph/0611142]. Constrained by Cranmer et al [20 years of ALEPH]

For event lighter A₁, it decays to a pair of gluons; because the 2 gluons are very collimated this case is probably covered by H → 2j analysis

Other Hidden Higgs models

- The window for Hidden Higgs within the NMSSM seems to be closing
- Nevertheless, a neat example of a complicated but finally fruitful theory-experiment interaction
- Other realizations of Hidden Higgs are still alive
 - $4 H \rightarrow 6j$ in R-parity violating MSSM Carpenter, Kaplan, Rhee [hep-ph/0607204]
 - $f H \rightarrow 4j$ (Buried Higgs) in SUSY Little Higgs Bellazzini, Csaki, AA, Weiler [0906.3026]
 - ↔ *H* → lepton jets in MSSM+light hidden sector AA,Ruderman,Volansky,Zupan [0902.xxxx]

イロト イヨト イヨト イヨト

Higgs to 6 jets

- Higgs can cascade decay into 6 quarks within the R-parity violating MSSM
- First, Higgs decays into the lightest MSSM neutralino. A large branching fraction requires
 - $m_{N1} < m_{Hiaas}/2 \sim 50 \,\text{GeV}$ (not excluded by experiment if N_1 is mostly bino)
 - N₁ has some (at least 20 percent) higgsino component
- The lightest neutralino can decay into 3 quarks via an off-shell squark, N₁ → qq̃ → qqq, if the R-parity violating operator U^cD^cD^c is present in the superpotential
- No bounds on the Higgs mass, except the model independent bound of 82 GeV

Buried Higgs

- Higgs can cascade decay into four light colored objects within little SUSY (supersymmetric little Higgs models)
- The MSSM extended to include SU(3) global symmetry spontaneously broken to SU(2) at the scale f ≥ v_{EW}
- Instead of Higgs doublets H_{u,d}, Higgs triplets H_{u,d}
- 5 Goldstone bosons from $SU(3) \rightarrow SU(2)$ breaking, 3 of which get eaten by W and Z after EW breaking

Two physical pGB scalars h and η embedded in the triplets as

$$\mathcal{H}_{u} \approx f \sin \beta \begin{pmatrix} 0 \\ \sin((\tilde{v} + \mathbf{h})/f) \\ e^{i\eta/f} \cos((\tilde{v} + \mathbf{h})/f) \end{pmatrix} \qquad \mathcal{H}_{d}^{T} \approx f \cos \beta \begin{pmatrix} 0 \\ \sin((\tilde{v} + \mathbf{h})/f) \\ e^{-i\eta/f} \cos((\tilde{v} + \mathbf{h})/f) \end{pmatrix}$$

- The pGB scalar h identified with the SM Higgs boson
- The pGB pseudoscalar η is a new singlet

イロト イヨト イヨト イヨト

Buried Higgs

- \Rightarrow Singlet pseudoscalar η is naturally light, thanks to global symmetry protection,
- f lives in the 3rd component of the triplet and does not couple to W or Z.
- 4 has derivative couplings to the Higgs, $\sim f^{-1}h(\partial_{\mu}\eta)^{2}$
- couples to SM fermions via their mixing with heavy partner fermions
- Higgs decays dominantly to a pair of PGB pseudoscalars η as long as the scale f is not too large, $f \lesssim 400 \,\text{GeV}$
- Couplings of η to SM fermions depend on fermion representations under global SU(3), masses of heavy fermionic partners of SM fermions, etc.
- Several phenomenologically distinct realizations of Hidden Higgs
 - Gluophilic Higgs, $h \rightarrow 4j$ when $\eta \rightarrow gg$ dominates
 - Charming Higgs, $h \rightarrow 4c$ when $\eta \rightarrow cc$ dominates
- In most cases, the standard discovery mode $h
 ightarrow \gamma \gamma$ is strongly suppressed

Higgs to lepton jets

4 AA,Ruderman,Volansky,Zupan [1002.xxxx] proposal: Higgs decays into lepton jets and missing energy, in the MSSM + light hidden sector

Could this have been missed at LEP???

Hypercharge Portal

- Astrophysical observations, especially the PAMELA cosmic ray positron excess, hint at existence of a light, GeV scale hidden sector
- One possibility is that it contains a hidden massive photon z_μ that mixes kinetically with the SM hypercharge,

 $\epsilon z_{\mu\nu} B_{\mu\nu} \qquad \epsilon \leq 10^{-3}$

 As a result, the hidden photon can decay into a pair of charged kinematically available SM states: electrons, muons, pions,...

・ロト ・同ト ・ヨト ・ヨト

Bino Portals

Going into hidden sector via MSSM bino

 $-i\epsilon \tilde{b}^{\dagger} \bar{\sigma}_{\mu} \partial_{\mu} \tilde{B} - i\epsilon \tilde{B}^{\dagger} \bar{\sigma}_{\mu} \partial_{\mu} \tilde{b}$

Induces dark bino shift b̃ → b̃ + ϵB̃, that leads visible bino mili-coupling to hidden sector

$$\epsilon\sqrt{2}g_d\tilde{B}\left(h_u^\dagger\tilde{h}_u-h_d^\dagger\tilde{h}_d
ight)$$

- Effects of bino mass mixing resulting from the shift are down by another m_z/m_z and can be neglected
- The lightest SM superpartner is no longer stable but decays into hidden sector!

Lepton Jets

When a hidden sector state is produced, it cascade decays through hidden sector interactions.

Lepton Jets

When a hidden sector state is produced, it cascade decays through hidden sector interactions.

The last step can be prompt, and the decay products are all very boosted and collimated.

$$c au \sim 10^{-5} \left(rac{10^{-3}}{\epsilon}
ight)^2 \qquad \qquad heta \sim rac{m_{\gamma_a}}{p_T}$$

・ロト ・四ト ・ヨト ・ヨト

- E

Higgs to lepton jets

- It is difficult to arrange Higgs decaying directly into hidden sector without fine tuning
- But it's easy to arrange Higgs decaying first into superpartners or new singlets,
- We studied three scenarios,
 - Neutralino channel, $H \rightarrow \tilde{N}_1 \tilde{N}_1 \rightarrow ...$
 - Sneutrino channel, $H \rightarrow \tilde{\nu}\tilde{\nu} \rightarrow ...$
 - Singlet channel, $H \rightarrow \chi \bar{\chi} \rightarrow ...$

・ロト ・同ト ・ヨト ・ヨト

Neutralino Channel

• In the MSSM the lightest Higgs boson can decay into neutralinos when $m_N < m_h/2$

$$g_{h11}h\tilde{N}_{1}\tilde{N}_{1} + \text{h.c.} \qquad g_{h11} = \frac{1}{2} \left(gc_{W} - g'c_{B}\right) \left(s_{\gamma}c_{U} - c_{\gamma}c_{D}\right)$$
$$H_{u}^{0} = \left(s_{\beta}v + s_{\gamma}h + \dots\right)/\sqrt{2}, H_{d}^{0} = \left(c_{\beta}v + c_{\gamma}h + \dots\right)/\sqrt{2}$$
$$\Gamma(h \to \tilde{N}_{1}\tilde{N}_{1}) \approx \frac{g_{h11}^{2}m_{h}}{4\pi}$$

- A large branching fraction only when neutralino is *mixture* of bino/wino and higgsino
- A light neutralino has to be mostly bino to evade detection at LEP
- Branching fraction into neutralinos is above 75% when $c_{U,D} \gtrsim 1/5$
- That implies $BR(Z \rightarrow \tilde{N}_1 \tilde{N}_1) \sim 10^{-3} 10^{-4}$, so that $m_{N1} < m_Z/2$ NOT excluded by Z width

Sneutrino Channel

• In the MSSM the lightest Higgs boson can decay into left-handed sneutrinos when $m_{\tilde{\nu}} < m_{h}/2$

$$-rac{m_Z^2}{v}\cos(eta+\gamma)h ilde{
u}^{\dagger} ilde{
u}$$

$$\Gamma(h o ilde{
u} ilde{
u}) pprox rac{m_Z^4}{16 \pi m_h v^2} \cos^2(eta + \gamma)$$

- $\bullet\,$ Branching fraction is large, typically $\sim 100\%$
- However, $BR(Z \to \tilde{\nu}\tilde{\nu}) \sim 10^{-2}$ when kinematically allowed, so Z width constrains $m_{\tilde{\nu}} > m_Z/2$

(日)

How could this have been missed at LEP?

- LEP experiments each collected $\sim~400 {\rm pb^{-1}}$ at $\sqrt{s}=195-209~{\rm GeV}.$
- At these energies, a 100 GeV Higgs has σ_{hZ} ~ 0.2 0.3pb corresponding to ~ O(100) events per experiment.
- Backgrounds much larger, so not obvious it would have been seen without dedicated analysis
- Many multilepton searches restricted to *isolated* leptons not sensitive to our signal

Constraints

A list of most constraining searches

- LEP1 monojet and acoplanar dijet searches Phys. Lett. B 334, 244 (1994), Phys. Lett. B 313, 299 (1993)
- OPAL invisible Higgs search arXiv:0707.0373 [hep-ex]
- ALEPH Higgs to WW* search arXiv:hep-ex/0605079
- ALEPH Higgs to 4 tau search, K. Cranmer, talk at 20 years of ALEPH data, CERN, Nov. 3 2009
- D0 NMSSM Hidden Higgs search arXiv:0905.3381 [hep-ex]

Typical SUSY searches (e.g. trilepton searches) are less constraining because they require isolated leptons

- We have found benchmark point that are consistent with all LEP and Tevatron searches published so far
- Experiment favors a scenario with two-lepton-jet topology and a large number (5 - 20) of tracks per jet

イロン イヨン イヨン イヨン

Uncovering Hidden Higgs

For $m_{Higgs} \sim$ 100 GeV,

- Roughly 100 Higgs events per experiment at LEP2
- Roughly 10000 Higgs events per experiment at Tevatron
- Often also hidden SUSY events at LEP1, LEP2, Tevatron

Uncovering Hidden Higgs

For $m_{Higgs} \sim$ 100 GeV,

- Roughly 100 Higgs events per experiment at LEP2
- Roughly 10000 Higgs events per experiment at Tevatron
- Often also hidden SUSY events at LEP1, LEP2, Tevatron

Just look carefully, and you'll see

Summary

- LEP and Tevatron experiments may have missed a light Higgs if it has non-standard decays
- The gaps can be easily filled by dedicated analysis
- © Ongoing ALEPH, L3 and Tevatron analyses
- LHC strategies to discover Higgs decaying into light jets or lepton jets in preparation
- A light Higgs could solve the SUSY little hierarchy problem, and improve electroweak fits
- Even if Higgs is heavier than 115 GeV, it is conceivable that non-standard Higgs decay show up at the LHC, as the leading or subleading channel. So better be prepared
- Even if Higgs is completely standard, this kind of scenarios allow the experimentalists to patch up gaps in their sensitivity
- New interesting theoretical idea still being born

A D A A B A A B A A B A