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The wealth of Experimental Data on Neutrino Masses and Mixing have

motivated the study of possible relevant mechanisms. These attempts

are more appealing if they are developed within the existing

frameworks of Unification and Supersymmetry.

Among existing proposals the most appealing is the so-called

Seesaw Mechanism
giving an elegant answer to the smallness of the neutrino mass.
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The seesaw-GUT scenario does not lead by default to an understanding

of the neutrino mass, and extra ingredients are required provided by

the specific model. The simplest choice, SU(5), is not appealing since

the right-handed neutrino is a gauge singlet and the scale M is arbitrary
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In contrast, in SO(10), the right-handed neutrino is unified in the 16 but

its Majorana mass cannot easily arise in a minimal context. Effectively,

we have

Y Ψ16 Ψ16H10 + Ψ16 ·
〈16H × 16H〉

M
·Ψ16



In the model based on the SU(5)× U(1) group, the so-called flipped
SU(5) GUT the right-handed neutrino is part of the (10, 1) rep., thus,

realizing a GUT-coupling that gives rise to the right-handed neutrino

mass. The matter (F , f c, `c) and Higgs (H, Hc, h, hc) chiral superfield

content of the model is

F(10, 1) = (Q, Dc, N c) , f
c(5,−3) = (L, Uc) , Lc(1, 5),

H(10, 1) = (QH , Dc
H , N c

H ) , H(10, −1) =
(
QH , D

c

H , N
c

H

)
,

h(5, −2) = (H1, DH) , h
c(5, 2) =

(
H2, DH

)
.

The renormalizable superpotential

W = Y
(d)
ij FiFj h + Y

(u)
ij Fi f

c
j h

c + Y
(`)
ij f

c
i Lc

j h
c

+λHH h + λ′HH h
c + µ h h
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is the most general under R-parity and the discrete Z2 symmetry that

changes the sign ofH → −H, while all other fields remain

unchanged.



F and D-flatness are satisfied with non-zero vevs ofH = (QH , Dc
H , N c

H )

andH =
(
QH , D

c

H , N
c

H

)
in the direction

〈Nc
H〉 = 〈Nc

H〉 ≡ MX

that affects the breaking

SU(5)× U(1) → SU(3)× SU(2)× U(1) .

The fields QH , QH and a combination of N c
H , N

c

H will be removed by

the Higgs mechanism while the triplets Dc, Dc
, DH , DH will obtain

large masses λMX , λ
′MX through the couplings λHH h and λ′HH hc .

Thus, the triplets are split from the (massless) doublets. So far, the

right-handed neutrino participates in the term Y
(u)
ij Fi f c

j hc leading to

the neutrino Dirac mass

Y
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c
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ij Qi u

c
j H2 + . . . .



With the given set of fields a renormalizable right-handed neutrino mass

term cannot arise, although the D = 4 operator

F · HH
M
· F = N

c

(
N

c

H

)2

M
N

c + . . . .

is allowed by the symmetries of the superpotential. Such a term can

arise if we introduce a set of superheavy singlets whose exchange

generates the above term. Denoting these fields by Si , we may assign

to them the R-parity (or matter parity) of matter superfields. Thus, the

most general renormalizable superpotential that can be added toW is

Y
(s)
ij SiFjH +

1

2
M

(s)
ij SiSj .

Note that the necessity of the singlet sector is anticipated by the

following additional argument : The large mixing encountered in

neutrinos suggests that its origin is different from the corresponding

Cabbibo mixing of quarks. Thus, a sector of the theory outside the GUT

is required with a larger characteristic mass-scale, presumably of the

order of the string or Planck scale.



Neutrino masses arise from the terms
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where
v2√

2
= 〈H2〉. Thus, neutrinos participate in the 9× 9 mass-matrix

0
v2√

2
Y (u) 0

v2√
2
Y (u) 0 Y (s)MX

0 Y (s)MX M(s)

 ,

in a (ν, Nc, S) basis.



In the limit that the electroweak scale is neglected, the relevant part of

the matrix is the 6× 6 matrix 0 Y (s)MX

Y (s)MX M(s)

 .

The natural mass scale for the singlets should be M(s) >> MX . Then, an

effective

singlet-seesaw mechanism
operates leading to the right-handed neutrino mass

MR ≈ M2
X Y(s)⊥M(s)−1

Y(s) .

If we take MX ∼ 1016 GeV and M(S) ∼ 1018 GeV , for a choice of the

dimensionless singlet coupling Y (s) ∼ O(0.1) − O(1) , we obtain the

scale of MR to be MR ∼ 1012 − 1014 GeV . If we take the singlet mass

scale to coincide with the string scale, we obtain

MR ∼ 1013 − 1015 GeV .



In the limit that the three approximate mass-eigenstates with masses

O(M(s)) decouple, the neutrino mass matrix, in the ν, Nc ′ basis of

left-handed neutrinos and ‘‘light " right-handed neutrino approximate

mass-eigenstates, is  0
v2√

2
Y (u)

v2√
2
Y (u) MR


and we have the operation of the standard seesaw mechanism
leading to three light neutrinos of mass

M(ν) ≈ v2
2

2
Y(u) M−1

R Y(u) ≈

v2
2

2M2
X

Y(u) Y(s)−1
M(s) ( Y(s)−1

)⊥ Y(u)

leading to m2
t /MR ∼ 10−1 eV .



Apart from family structure, the scale of the neutrino masses is

[M(ν)] ∼

[
(m(u))2

MR

]
=⇒ [M(ν)]33 ∼

m2
t

[MR ]
∼ 10

−1
eV .

In the light neutrino mass formula we may factor out the mass scale

mν =
v2

2 [M(s)]

M2
X

and replace M(ν) = mν M̂(ν) with the dimensionless matrix

M̂(ν) = Y(u) Y(s)−1
M̂(s)

(
Y(s)−1

)⊥
Y(u)

where M̂(s) is dimensionless.



It should be noted that the right-handed neutrino mass scale was

generated naturally through a seesaw mechanism in terms of the

unification scale, related to the unification of gauge couplings and the

singlet sector mass scale.

Independently of the natural determination of neutrino scales, the

neutrino mass formula

M
(ν) ≈ v2

2 [M(s)]

2M2
X

Y
(u)

(
Y

(s)
(

M
(s)
)−1

Y
(s)

)−1

Y
(u) .

combines two sources of family structure:

One of them, represented by the up-quark Yukawa coupling matrix, will

impart to the neutrino masses the hierarchical structure existing in the

quark sector.

The other, represented by Y (s) and M(s) endows neutrinos with an extra

component of mixing.



The existing experimental data

∆m
2
32 = |m2

3 −m
2
2| ≈ 2.5 × 10

−3
eV

2,

∆m
2
21 = |m2

2 −m
2
1| ≈ 7.3 × 10

−5
eV

2

can be expressed in terms of λ = 0.22 as

∆m32

∆m21

=

√
7.3

2.5
× 10

−1 ≈ 0.171 ≈ 3.53λ2 .

This ratio can be interpreted in various ways.The most straightforward

interpretation is in terms of a hierarchical pattern.

For example

m3 ≈ 5 × 10
−2

eV , m2 ≈ 8.5 × 10
−3

eV , (m1 << m2, m3)



The hierarchical structure of the up-quark Yukawa matrix, expressed in

terms of the Cabbibo parameter λ ≈ 0.22, will be inherited to the

neutrino mass matrix. The structure of the latter will depend on the

dependence of the singlet sector parameters on λ.

Can we employ Ansätze for the couplings and mass of the singlet
sector that lead to hierarchical neutrino masses?

We start by employing an Ansatz for Y (u), although the precise choice

is not crucial.



Ansatz-I

Y
(u) =


0 e1λ

6 0

e1λ
6 0 e2λ

2

0 e2λ
2 e3


and

Y
(s) =


c1λ

5 0 0

0 c2λ
2 0

0 0 c3

 .

Y (s) has been chosen diagonal for simplicity.

The singlet mass-matrix
(
M̂(s)

)
ij

= M̂ij will be chosen to be an entirely

generic symmetric matrix.



This Ansatz leads to the neutrino mass hierarchy

λ8 : λ2 : 1

namely

M3 ≈ M
(0)
3 + λ2

M
(1)
3 + λ3

M
(2)
3 + . . .

M2 ≈ λ2
M

(0)
2 + λ3

M
(1)
2 + λ4

M
(2)
2 + . . . , .

M
(1) ≈ λ8

M
(0)
1 + λ9

M
(1)
1 + . . . , .

The corresponding eigenvectors determine the associated neutrino

mass-diagonalization matrix is

U(ν) =



1 bλ3 (c − ab)λ4

−bλ3 1− λ2

2
a2 −λa − λ2a

−cλ4 λa + λ2a 1− λ2

2
a2


.



The charged lepton and neutrino mass-terms are

M
(`)
ij `i `

c
j + M

(ν)
ij νiνj .

These matrices can be diagonalized as

M
(`)
∆ = U(`)⊥

M
(`)V(`c), M

(ν)
∆ = U(ν)⊥

M
(ν)U(ν) ,

in terms of the unitary matrices U(`), V(`c), U(ν) that connect the

current and the mass-eigenstates (primed fields)

` = U(`)`′, `c = V(`c)`c ′, ν = U(ν)ν ′ .

The neutrino charged current J
(+)
µ ∝ `†i σµνi can be expressed in terms

of the

Pontecorvo-Maki-Nakagawa-Sakata or simply PMNS-mixing matrix

UPMNS ≡ U(`)†U(ν) .



For simplicity, we do not consider CP violation. In that case, the

PMNS−matrix can be parametrized in terms of three mixing angles,

namely the ‘‘solar angle" θ12

the ‘‘atmospheric angle" θ23

and the ‘‘small" angle θ13

as

UPMNS =


c12c13 s12c13 s13

−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13


where cos θij = cij and sin θij = sij .



Assuming a trivial U(`), UPMNS is given by U(ν) and can be put in the form

UPMNS = U(θ23) U(θ13) U(θ12) ,

where the U(θij) unitary matrices describe rotations in the (i, j)-plane of

flavor space.

For Ansatz-I we have

sin θ23 ≈ λ a + λ2
a, sin θ12 ≈ λ3

b , sin θ13 ≈ λ4 (c − ab) .

The coefficients a, a, b, c are expressible in terms of the parametrers

ei , ci and ratios of the matrix elements M̂ij . Note the predicted

hierarchy

θ23 > θ12 >> θ13 .



We may also have the mass hierarchy

1 : λ : λ5

corresponding to

Ansatz-II

Y
(u) =


0 e1λ

6 0

e1λ
6 e2λ

4 0

0 0 e3

 , Y
(s) =


c1λ

6 0

0 c2λ
3

0 0 c3


and

M̂ =


0 M̂12 0

M̂12 M̂22 M̂23

0 M̂23 M̂33

 .

Note the two texture zeros in M̂.



This Ansatz leads to neutrino mass eigenvalues

M3 ≈ M
(0)
3 + λ2

M
(1)
3 + . . . .

M2 ≈ λM
(0)
2 + λ2

M
(1)
2 + . . . .

M1 ≈ λ5
M

(0)
1 + λ6

M
(1)
1 + . . . .

The diagonalizing unitary matrix is

U =



1− a2

2
λ4 aλ2 −a b λ3

−a λ2 1− b2

2
λ2 b λ+ c λ2

2 a b λ3 −b λ− c λ2 1− b2

2
λ2


.



This corresponds to a mixing matrix with mixing angles

sin θ23 ≈ b λ + c λ2, sin θ12 ≈ a λ2, sin θ13 ≈ ab λ3 .

Again the hierarchy

θ23 >> θ12 >> θ13

is true.

Although the mass patterns match the experimental values, as we

anticipated earlier, neither Ansatz gives an entirely satisfactory mixing

pattern. For instance, sin θ12 is predicted to leading order to depend

only on Y (u) entries λ e1

2e2
, something the excludes maximal mixing as

e1, e2 are already fixed by the quark Yukawa couplings.



For infinitesimal values of the mixing angles the mixing matrix obtained

can be written to leading order as

U =


1 θ12 θ13

−θ12 1 θ23

−θ13 −θ23 1


Returning to the neutrino mass formula, we may write

M
(ν) = Yu M

−1

R Yu = V Y
(0)
u

(
M

(0)
R

)−1

Y
(0)
u V†

where Y
(0)
u and M

(0)
R are the matrices employed in the Ansatze I, II, etc.

that have led the given hierarchical eigenvalues, while V carries the

hard component of the mixing. Then, the mixing matrice will be

UPMNS = V U

Assuming that

V = U(η23) U(η12)



UPMNS = U(θ23) U(θ13) U(θ12)

with

θ12 = η12 + θ12

θ13 = sin η12 θ23 + cos η12 θ13

θ23 = η23 + cos η12 θ23 − sin η12 θ13

For the particular case of Ansatz-I, we have

sin θ23 ≈ λ a + λ2
a, sin θ12 ≈ λ3

b , sin θ13 ≈ λ4 (c − a b)

and analogously for Ansatz-II.

No assumption has been made for the values of η23, η12, apart from the

fact that a corresponding angle η13 was assumed vanishing.

Summarizing, we have shown that for particular Ansätze of the singlet

couplings that determine the effective right-handed neutrino mass both

the dominant part of neutrino mixing, aswell as the Cabbibo mixing,

can be introduced, while the neutrino mass eigenvalues follow a

hierarchical pattern parametrized by the Cabbibo parameter.



SUMMARY
REALIZATION OF SEESAW MECHANISM FLIPPED SU(5) + SINGLET SECTOR

⇓

DERIVATION OF NEUTRINO MASS SCALE

ANSATZE FOR SINGLET SECTOR

⇓

HIERARCHICAL NEUTRINO MASSES

1 : λ1,2 : λn

HIERARCHICAL NEUTRINO MIXING

θ23 > θ12 >> θ13


