An Introduction to Dark Matter

A Particle Theorist's Perspective

Leszek Roszkowski

Univ. of Sheffield, England

and

Soltan Institute for Nuclear Studies, Warsaw, Poland

shining Universe

shining Universe

shining Universe

dark Universe

shining Universe

dark Universe

- evidence for DM
- DM candidates and particle physics models

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS
 - SUSY neutralino most popular candidate

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS
 - SUSY neutralino most popular candidate
- indirect detection
 - PAMELA
 - Fermi/GLAST
 - (LHC)

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS
 - SUSY neutralino most popular candidate
- indirect detection
 - PAMELA
 - Fermi/GLAST
 - (LHC)
- EWIMPs/superWIMPs and the LHC

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS
 - SUSY neutralino most popular candidate
- indirect detection
 - PAMELA
 - Fermi/GLAST
 - (LHC)
- EWIMPs/superWIMPs and the LHC
- summary

among the oldest puzzles in cosmology

Swicky ('33): Coma cluster

among the oldest puzzles in cosmology

visible mass not enough to bound it

among the oldest puzzles in cosmology

flat rotation curves

 $G\frac{M}{r}$

Zwicky ('33): Coma cluster

 $\frac{mv^2}{r} = \frac{GMm}{r^2}$

spiral galaxies rotational velocity

 \Rightarrow

v =

among the oldest puzzles in cosmology

Milky Way (Klypin, et al.)

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies

among the oldest puzzles in cosmology

hot gas, $\sim 10^8~{ m K}$

among the oldest puzzles in cosmology

images of distant objects

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- gravitational lensing

Zwicky ('33): Coma cluster
spiral galaxies
clusters of galaxies
gravitational lensing

among the oldest puzzles in cosmology

arc images of distant quasars

Tool 150.6 150.4 150.2 150.0 149.8 149.6

among the oldest puzzles in cosmology

3dim DM distribution, (Massey, et al, '07)

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
 - gravitational lensing

among the oldest puzzles in cosmology

Bullet cluster, 2006

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- gravitational lensing
- colliding clusters: Bullet cluster

among the oldest puzzles in cosmology

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- gravitational lensing
- colliding clusters: Bullet cluster

inferred DM distribution

among the oldest puzzles in cosmology

DM separated from baryons

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- gravitational lensing
- colliding clusters: Bullet cluster

- Zwicky ('33): Coma cluster
- spiral galaxies
- clusters of galaxies
- gravitational lensing
- colliding clusters: Bullet cluster
- CMB: precision measurements

among the oldest puzzles in cosmology

Cosmology After WMAP...

Post WMAP-5yr (April 08) ...+ACBAR+CBI+SN+LSS+... $\Omega_i = \rho_i / \rho_{crit}$

Hubble $H_0 = 100 h$ km/s/Mpc

Cosmology After WMAP...

Post WMAP-5yr (April 08)

(April 08) ...+ACBAR+CBI+SN+LSS+...

 $\Omega_i =
ho_i /
ho_{crit}$

Hubble $H_0 = 100 \, h \, {
m km/s/Mpc}$

assume simplest ΛCDM model

- matter $\Omega_{
 m m}h^2=0.1378\pm 0.0043$
- \checkmark baryons $\Omega_{
 m b}h^2=0.02263\pm0.00060$

- $\ \, \boldsymbol{\Omega}_{\Lambda}=0.715\pm0.20\ldots$

LSS (2dF, SDSS, Lyman- α)

Cosmology After WMAP...

Post WMAP-5yr (April 08)

...+ACBAR+CBI+SN+LSS+...

 $\Omega_i =
ho_i /
ho_{crit}$

Hubble $H_0 = 100 \, h \, {
m km/s/Mpc}$

assume simplest ΛCDM model

- matter $\Omega_{
 m m}h^2=0.1378\pm 0.0043$
- ${}$ baryons $\Omega_{
 m b}h^2=0.02263\pm0.00060$

- $h = 0.696 \pm 0.017$
- $\ \, \boldsymbol{\Omega}_{\Lambda}=0.715\pm0.20\ldots$

CMB (WMAP, ACBAR, CBI,...)

LSS (2dF, SDSS, Lyman- α)

- concordance model works well
- main components: dark energy and dark matter

factor of 4-10 improvement expected from Planck

Cosmic Pie

Is evidence for DM convincing?

Is evidence for DM convincing?
 Yes, through its gravitational effects.

- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?

- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?
 Suggested by clustering but otherwise an assumption.
- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?
 Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?

- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?
 Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
 Economical assumption (Occam's razor).

- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?
 Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
 Economical assumption (Occam's razor).
- Is DM cold?

- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?
 Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
 Economical assumption (Occam's razor).
- Is DM cold?

CDM: claimed problems not unsurmountable.

- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?
 Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
 Economical assumption (Occam's razor).
- Is DM cold?

CDM: claimed problems not unsurmountable.

Has DM been detected yet?

- Is evidence for DM convincing?
 Yes, through its gravitational effects.
- Is DM made up of particles?
 Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
 Economical assumption (Occam's razor).
- Is DM cold?

CDM: claimed problems not unsurmountable.

Has DM been detected yet?
 Some anomalies and hints – DM origin of 'signal' not convincing.

⇒ most matter non-baryonic(DM problem)

numerical simulations of LSS

⇒ most matter non-baryonic (DM problem)

 \Rightarrow DM is cold (CDM) or possibly (?) warmish

⇒ most matter non-baryonic(DM problem)

 \Rightarrow DM is cold (CDM) or possibly (?) warmish

⇒ no electric nor (preferably) color interactions

- limits on exotic elements (anomalous nuclei)
- DM is **DARK**

⇒ most matter non-baryonic(DM problem)

 \Rightarrow DM is cold (CDM) or possibly (?) warmish

⇒ no electric nor (preferably) color interactions

- limits on exotic elements (anomalous nuclei)
- DM is **DARK**

plausible choice \Rightarrow WIMP

(weakly interacting massive particle)

⇒ most matter non-baryonic (DM problem)

⇒ DM is cold (CDM) or possibly (?) warmish

⇒ no electric nor (preferably) color interactions

- limits on exotic elements (anomalous nuclei)
- DM is **DARK**

plausible choice \Rightarrow WIMP

(weakly interacting massive particle)

...How weak can weak be?

- WIMPs decouple from thermal equilibrium
- \checkmark freeze–out when $\Gamma \lesssim H$

freeze–out when $\Gamma \leq H$

WIMP relic abundance

 $\sigma_{\rm ann}$ – c.s. for WIMP pair–annihilation in the early Universe v – their relative velocity, $\langle \ldots \rangle$ – thermal average

freeze–out when $\Gamma \leq H$

WIMP relic abundance

 $\sigma_{\rm ann}$ – c.s. for WIMP pair–annihilation in the early Universe v – their relative velocity, $\langle \ldots \rangle$ – thermal average

 $\sigma_{
m ann} \sim \sigma_{
m weak} \sim 10^{-38}\,{
m cm}^2 = 10^{-2}\,{
m pb} \ \Rightarrow \ \Omega h^2 \sim 1$

freeze–out when $\Gamma \leq H$

WIMP relic abundance

 $\sigma_{\rm ann}$ – c.s. for WIMP pair–annihilation in the early Universe v – their relative velocity, $\langle \ldots \rangle$ – thermal average

 $\sigma_{
m ann} \sim \sigma_{
m weak} \sim 10^{-38}\,{
m cm}^2 = 10^{-2}\,{
m pb} \ \Rightarrow \ \Omega h^2 \sim 1$

A hint? Possibly, but...

L.R. (2000), hep-ph/0404052

well–motivated particle candidates s.t. $\Omega_{\rm DM} \sim 1$

L.R. (2000), hep-ph/0404052

• neutrino ν – hot DM

 $\mathcal{O}(0.01\,\mathrm{eV}) \lesssim m_
u \lesssim \mathrm{few}\,\mathrm{eV}, ~~\sigma \sim \sigma_{weak}$

(LEP) $\mathcal{O}(100\,{
m GeV}) \lesssim m_\chi \lesssim \mathcal{O}(1\,{
m TeV}), \ 10^{-5}\,{
m pb} \gtrsim \sigma \gtrsim 10^{-12}\,{
m pb},$ or less

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP

("LW bound") $\mathcal{O}(1\,{
m GeV}) \lesssim m \lesssim \mathcal{O}(300\,{
m TeV})$ (unitarity), $10^{-5}\,{
m pb} \gtrsim \sigma \gtrsim$????

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a

 $m_a \sim {\cal O}(10^{-5}\,{
m eV}), ~~\sigma \sim (m_W/f_a)^2\,\sigma_{weak} \sim 10^{-16}-10^{-22}\,{
m pb}$

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- \blacksquare axino \widetilde{a}

 $\mathcal{O}(1\,\mathrm{keV}) \lesssim m_{\widetilde{a}} \lesssim \mathcal{O}(1\,\mathrm{TeV}), ~~\sigma \sim (m_W/f_a)^2 \,\sigma_{weak} \sim 10^{-16} - 10^{-22}\,\mathrm{pb}$

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- \checkmark axino \widetilde{a}
- ullet gravitino \widetilde{G}

 ${\cal O}(1)\,{
m keV} \lesssim m_{\widetilde{G}} \lesssim {\cal O}(1)\,{
m TeV},\; (M_{
m SUSY}), \;\;\; \sigma \sim (m_W/M_{
m P})^2\,\sigma_{weak} \sim 10^{-36}\,{
m pb}$

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- $oldsymbol{s}$ axino $\widetilde{oldsymbol{a}}$
- ${}_{m{9}}$ gravitino \widetilde{G}

9 ????

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- $oldsymbol{s}$ axino $\widetilde{oldsymbol{a}}$
- ${}_{m{9}}$ gravitino \widetilde{G}

) ????

...sterile (RH) neutrino or sneutrino?, lightest Kałuża-Klein (KK) particle?, etc, etc

neutrino ν – hot DM

neutralino χ

"generic" WIMP

axion a

axino \widetilde{a}

• gravitino \tilde{G}

vastly different ranges of mass and σ , all give $\Omega \sim 1$

reason: different production mechanisms after the BB

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- $oldsymbol{s}$ axino \widetilde{a}
- ${}_{m{9}}$ gravitino \widetilde{G}

????

solution of DM: must go beyond SM!

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- $oldsymbol{s}$ axino $\widetilde{oldsymbol{a}}$
- ${}_{m{9}}$ gravitino \widetilde{G}

) ????

WIMP DM testable at present/near future \widetilde{a} , \widetilde{G} EWIMPs not directly testable, but hints from LHC (?)

No shortage of ideas...

...but few good ones, ...and even fewer longer-lasting

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

Iightest neutralino χ of supersymmetry

 $m_\chi \sim M_{
m SUSY}~(\sim 0.1-1\,{
m TeV})$, interactions sub-weak ($\lesssim 10^{-4}\sigma_{weak})$

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

 $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\mathrm{SUSY}} \ (\sim 0.1 - 1 \, \mathrm{TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$

Iightest Kałuża-Klein (KK) state from warped/universal extra dimensions

 $m_{
m KK} \sim 0.4 - 1\,{
m TeV}$, interactions \lesssim those of χ , testable

a sub-class of WIMPs (eg. Dirac ν , etc)

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

 $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\mathrm{SUSY}} \ (\sim 0.1 - 1 \, \mathrm{TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$

Iightest Kałuża-Klein (KK) state from warped/universal extra dimensions

 $m_{
m KK} \sim 0.4 - 1 \, {
m TeV}$, interactions \lesssim those of χ , testable

a sub-class of WIMPs (eg. Dirac ν , etc)

massive (almost) sterile sneutrino $\tilde{\nu}_R$ Dirac-type, $m_{\tilde{\nu}_R} \sim M_{\rm SUSY}$ (~ 0.1 - 1 TeV), interactions \ll those of χ , non-thermal relic, not easily testable

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

 $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\mathrm{SUSY}} \ (\sim 0.1 - 1 \, \mathrm{TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$

Iightest Kałuża-Klein (KK) state from warped/universal extra dimensions

axion

 $m_{
m KK} \sim 0.4 - 1 \, {
m TeV}$, interactions \lesssim those of χ , testable

a sub-class of WIMPs (eg. Dirac ν , etc)

 $\begin{array}{ll} \bullet \quad \text{massive (almost) sterile sneutrino } \tilde{\nu}_R \\ \text{Dirac-type, } m_{\tilde{\nu}_R} \sim M_{\rm SUSY} \ (\sim 0.1 - 1 \, {\rm TeV}), \, \text{interactions} \ll \text{those of } \chi, \end{array}$

non-thermal relic, not easily testable

as attractive as is old..., search in progress

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

 $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\rm SUSY} \ (\sim 0.1 - 1 \, {\rm TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$

Iightest Kałuża-Klein (KK) state from warped/universal extra dimensions

axion

• axino \widetilde{a} , gravitino G

 $m_{
m KK} \sim 0.4 - 1\,{
m TeV}$, interactions \lesssim those of χ , testable

a sub-class of WIMPs (eg. Dirac ν , etc)

 $\begin{array}{ll} \label{eq:massive} \blacksquare \quad \text{massive (almost) sterile sneutrino $ \tilde{\nu}_R$ \\ \hline \\ \mbox{Dirac-type, $ m_{\tilde{\nu}_R} \sim M_{\rm SUSY}$ ($ \sim 0.1 - 1$ TeV), interactions $ \ll$ those of $ \chi$,} \end{array}$

non-thermal relic, not easily testable

as attractive as is old..., search in progress

extremely-weakly interacting relics

warm ($\sim keV$) or cold, not directly testable (but hints from LHC) add your own...
Some WIMP candidates for Cold DM

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

 $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\rm SUSY} \ (\sim 0.1 - 1 \, {\rm TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$

Iightest Kałuża-Klein (KK) state from warped/universal extra dimensions

axion

axino \widetilde{a} , gravitino G

 $m_{
m KK} \sim 0.4 - 1 \, {
m TeV}$, interactions \lesssim those of χ , testable

a sub-class of WIMPs (eg. Dirac ν , etc)

 $\begin{array}{ll} \label{eq:starses} \blacksquare & \text{massive (almost) sterile sneutrino $ \tilde{\nu}_R$ \\ & \text{Dirac-type, } m_{\tilde{\nu}_R} \sim M_{\rm SUSY} \ (\sim 0.1 - 1 \, {\rm TeV}), \ \text{interactions} \ll \text{those of χ,} \end{array}$

non-thermal relic, not easily testable

as attractive as is old..., search in progress

extremely-weakly interacting relics

warm ($\sim \text{keV}$) or cold, not directly testable (but hints from LHC) **add your own...**

several other interesting candidates: well-tempered neutralino, multiple (UPT) DM, little Higgs DM, mirror DM, shadow DM, sequestered DM, secluded DM, flaxino DM, Higgs portal DM, inflation and DM, modulus DM, etc etc. – no nonsense but not superior either

It is fairly easy to invent a DM relic

It is fairly easy to invent a DM relic

it is much (!) harder to invent a (lasting) model of 'new physics'

WIMP Detection

Where to find the WIMP?

Where to find the WIMP?

Since the birth of time, mankind has searched everywhere for an answer to that age old question...

Where to find the WIMP?

Since the birth of time, mankind has searched everywhere for an answer to that age old question...

...go underground!

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

indirect detection (ID):

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo
from within a few kpc

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo

from within a few kpc

gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo

from within a few kpc

gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

 other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc

more speculative

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo

from within a few kpc

gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

 other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc

more speculative

... or to space

... or to space

... or to space

impressive experimental effort

Zeplin Detector

can this thing detect most mass in the Universe???

... or at least milk a cow???

MW is immersed in a halo of WIMPs

MW is immersed in a halo of WIMPs

- \checkmark local density: $ho_\chi \simeq 0.3\,{
 m GeV/cm^3}$
- velocity $v \sim 270 \, \text{km/sec}$, Maxwellian

MW is immersed in a halo of WIMPs

- local density: $ho_{\chi} \simeq 0.3 \, {
 m GeV/cm^3}$
- velocity $v \sim 270 \, \text{km/sec}$, Maxwellian

$$\Phi = n_{\chi} v = 10^{10} rac{ extsf{WIMPs}}{ extsf{m}^2 extsf{sec}} \left(rac{
ho_{\chi}}{0.3 \, extsf{GeV/cm}^3}
ight) \left(rac{100 \, extsf{GeV}}{m_{\chi}}
ight) \left(rac{v}{270 \, extsf{km/sec}}
ight)$$

MW is immersed in a halo of WIMPs

- \checkmark local density: $ho_\chi \simeq 0.3\,{
 m GeV/cm^3}$
- velocity $v \sim 270 \, \text{km/sec}$, Maxwellian

$$\Phi = n_{\chi} v = 10^{10} \frac{\text{WIMPs}}{\text{m}^2 \text{sec}} \left(\frac{\rho_{\chi}}{0.3 \,\text{GeV/cm}^3} \right) \left(\frac{100 \,\text{GeV}}{m_{\chi}} \right) \left(\frac{v}{270 \,\text{km/sec}} \right)$$

energy deposit ~ $m_{\chi}v^2/2 \sim 10 - 100 \,\mathrm{keV}$ tiny!!!

MW is immersed in a halo of WIMPs

- \blacksquare local density: $ho_\chi \simeq 0.3\,{
 m GeV/cm^3}$
- velocity $v \sim 270 \, \text{km/sec}$, Maxwellian

🥒 flux

$$\Phi = n_{\chi} v = 10^{10} \frac{\text{WIMPs}}{\text{m}^2 \text{sec}} \left(\frac{\rho_{\chi}}{0.3 \,\text{GeV/cm}^3} \right) \left(\frac{100 \,\text{GeV}}{m_{\chi}} \right) \left(\frac{v}{270 \,\text{km/sec}} \right)$$

- ${}$ energy deposit $\sim m_\chi v^2/2 \sim 10-100\,{
 m keV}$ tiny!!!
- detection cross section $\frac{d\sigma}{dq} = G_F^2 \frac{C}{\pi v^2} F^2(q)$ F(q) nuclear form factor

MW is immersed in a halo of WIMPs

- local density: $ho_{\chi} \simeq 0.3 \, {
 m GeV/cm^3}$
- velocity $v \sim 270 \, \text{km/sec}$, Maxwellian

🥒 flux

$$\Phi = n_{\chi} v = 10^{10} \frac{\text{WIMPs}}{\text{m}^2 \text{sec}} \left(\frac{\rho_{\chi}}{0.3 \,\text{GeV/cm}^3} \right) \left(\frac{100 \,\text{GeV}}{m_{\chi}} \right) \left(\frac{v}{270 \,\text{km/sec}} \right)$$

- detection cross section $\frac{d \sigma}{d q} = G_F^2 \frac{C}{\pi v^2} F^2(q)$ F(q)-nuclear form factor Non-relat. Majorana WIMP: effectively two types of interactions:

MW is immersed in a halo of WIMPs

- local density: $ho_{\chi} \simeq 0.3 \, {
 m GeV/cm^3}$
- velocity $v \sim 270 \, \text{km/sec}$, Maxwellian

🥒 flux

$$\Phi = n_{\chi} v = 10^{10} \frac{\text{WIMPs}}{\text{m}^2 \text{sec}} \left(\frac{\rho_{\chi}}{0.3 \,\text{GeV/cm}^3} \right) \left(\frac{100 \,\text{GeV}}{m_{\chi}} \right) \left(\frac{v}{270 \,\text{km/sec}} \right)$$

energy deposit $\sim m_{\chi} v^2/2 \sim 10 - 100 \, \mathrm{keV}$ tiny!!!

- detection cross section $\frac{d \sigma}{d q} = G_F^2 \frac{C}{\pi v^2} F^2(q) \quad F(q) \text{nuclear form factor}$ Non-relat. Majorana WIMP: effectively two types of interactions:
 - spin independent (SI, or scalar), $C^{SI} = [Zf_p + (A Z)f_n]^2$

target: nucleus X_Z^A , $f_n \simeq f_p \leftarrow$ input from PP $\frac{d \sigma^{SI}}{d q} \propto A^2 \iff coherent enhancement$ $q \rightarrow 0: \sigma_p^{SI}$

MW is immersed in a halo of WIMPs

- \blacksquare local density: $ho_\chi \simeq 0.3\,{
 m GeV/cm^3}$
- velocity $v \sim 270 \, \text{km/sec}$, Maxwellian

🥒 flux

 $d\sigma$

$$\Phi = n_{\chi} v = 10^{10} \frac{\text{WIMPs}}{\text{m}^2 \text{sec}} \left(\frac{\rho_{\chi}}{0.3 \,\text{GeV/cm}^3} \right) \left(\frac{100 \,\text{GeV}}{m_{\chi}} \right) \left(\frac{v}{270 \,\text{km/sec}} \right)$$

energy deposit $\sim m_\chi v^2/2 \sim 10 - 100 \, \mathrm{keV}$ tiny!!!

- detection cross section $\frac{d \sigma}{d q} = G_F^2 \frac{C}{\pi v^2} F^2(q) \quad F(q) \text{nuclear form factor}$ Non-relat. Majorana WIMP: effectively two types of interactions:
 - spin independent (SI, or scalar), $C^{SI} = [Zf_p + (A Z)f_n]^2$

 $\frac{d \, \sigma^{\rm SI}}{d \, q} \propto A^2 \iff \text{coherent enhancement} \quad \begin{array}{c} f_n \simeq f_p \leftarrow \text{input from PP} \\ \hline q \rightarrow 0: \quad \sigma_p^{\rm SI} \end{array}$

• spin dependent (SD, or axial), $C^{\text{SD}} = \frac{8}{\pi} \frac{(J+1)}{J} \left[a_p \langle S_p \rangle + a_n \langle S_n \rangle \right]^2$

$$\left| rac{\sigma_{
m SD}}{\sigma_{
m q}} \propto J
ight| \left| \left| rac{q
ightarrow 0: \ \sigma_{p}^{
m SD}, \sigma_{n}^{
m SD}
ight|
ight|$$

J – total spin of target nucleus L. Roszkowski, Warsaw, Feb '10 – p.20

New results from CDMS

CDMS, 0912.3592v1 (18 Dec '09)

New results from CDMS

CDMS, 0912.3592v1 (18 Dec '09)

CDMS-II final run, 612 kg·days of data

currently best limit (slightly better than in Feb '08)

elastic spin-independent (scalar) c.s. 90% CL limits

$$(10^{-40} \mathrm{cm}^2 = 10^{-4} \mathrm{pb})$$

CDMS – Possible DM signal?

CDMS, 0912.3592v1 (18 Dec '09)

612 kg·days of data

CDMS – Possible DM signal?

CDMS, 0912.3592v1 (18 Dec '09)

612 kg·days of data

CDMS, 0912.3592v1 (18 Dec '09)

612 kg·days of data

two events survive all cuts

CDMS, 0912.3592v1 (18 Dec '09)

612 kg·days of data

- two events survive all cuts
- expected bgnd: 0.9 ± 0.2 evts
- **b** bgnd: the probability to see ≥ 2 evts is 23%

CDMS, 0912.3592v1 (18 Dec '09)

612 kg·days of data

- two events survive all cuts
- expected bgnd: 0.9 ± 0.2 evts

too little for a signal,

• bgnd: the probability to see ≥ 2 evts is 23% too much for bgnd????...

CDMS, 0912.3592v1 (18 Dec '09)

612 kg·days of data

- two events survive all cuts
- expected bgnd: 0.9 ± 0.2 evts

too little for a signal,

• bgnd: the probability to see ≥ 2 evts is 23% too much for bgnd????...

 \Rightarrow statistically not significant... but intriguing...

already many papers out

Assume spin independent interactions:

already many papers out

Assume spin independent interactions:

al. et Strumia, 0912.5038

(78% CL)

already many papers out

Assume spin independent interactions:

al. et Strumia, 0912.5038

Kopp, Schwetz and Zupan, 0912.4264

(78% CL)

 (1σ)

already many papers out

Assume spin independent interactions:

al. et Strumia, 0912.5038

Kopp, Schwetz and Zupan, 0912.4264

(78% CL)

 (1σ)

Rough implications:

• $m_{\mathrm{WIMP}} \sim 10 - 100 \,\mathrm{GeV}$

already many papers out

Assume spin independent interactions:

al. et Strumia, 0912.5038

Kopp, Schwetz and Zupan, 0912.4264

(78% CL)

 (1σ)

Rough implications:

• $m_{\mathrm{WIMP}} \sim 10 - 100 \,\mathrm{GeV}$

•
$$\sigma_p^{
m SI} \sim 10^{-5} - 10^{-8}\,{
m pb}$$

Remember: only 2 events!

Kopp, Schwetz and Zupan, 0912.4264

at 1σ: closed allowed region

at 90%: already an upper limit

FIG. 3: Allowed regions for CDMS 2009 data (1σ , 90% and 3σ CL), DAMA (90% and 3σ CL), and constraints from other experiments (90% CL) for elastic SI scattering (left), SD scattering off protons (right), and SD scattering off neutrons (left).

Kopp, Schwetz and Zupan, 0912.4264

- at 1*\sigma*: closed allowed region
- at 90%: already an upper limit

FIG. 3: Allowed regions for CDMS 2009 data (1σ , 90% and 3σ CL), DAMA (90% and 3σ CL), and constraints from other experiments (90% CL) for elastic SI scattering (left), SD scattering off protons (right), and SD scattering off neutrons (left).

Kopp, Schwetz and Zupan, 0912.4264

- at 1*\sigma*: closed allowed region
- at 90%: already an upper limit

FIG. 3: Allowed regions for CDMS 2009 data (1 σ , 90% and 3 σ CL), DAMA (90% and 3 σ CL), and constraints from other experiments (90% CL) for elastic SI scattering (left), SD scattering off protons (right), and SD scattering off neutrons (left).

elastic SI:

• the CDMS 1σ allowed region largely excluded by XENON

Kopp, Schwetz and Zupan, 0912.4264

- at 1*\sigma*: closed allowed region
- at 90%: already an upper limit

FIG. 3: Allowed regions for CDMS 2009 data (1 σ , 90% and 3 σ CL), DAMA (90% and 3 σ CL), and constraints from other experiments (90% CL) for elastic SI scattering (left), SD scattering off protons (right), and SD scattering off neutrons (left).

elastic SI:

- the CDMS 1σ allowed region largely excluded by XENON
- DAMA/LIBRA region firmly excluded (with or w/o channelling) same for iDM

L. Roszkowski, Warsaw, Feb '10 - p.24

Kopp, Schwetz and Zupan, 0912.4264

- at 1*\sigma*: closed allowed region
- at 90%: already an upper limit

FIG. 3: Allowed regions for CDMS 2009 data (1 σ , 90% and 3 σ CL), DAMA (90% and 3 σ CL), and constraints from other experiments (90% CL) for elastic SI scattering (left), SD scattering off protons (right), and SD scattering off neutrons (left).

elastic SI:

- the CDMS 1σ allowed region largely excluded by XENON
- DAMA/LIBRA region firmly excluded (with or w/o channelling)

same for iDM

- elastic SD: similar conclusions as with SI
- **DAMA/LIBRA** region with channelling: marginally (3σ) compatible

Kopp, Schwetz and Zupan, 0912.4264

- at 1*\sigma*: closed allowed region
- at 90%: already an upper limit

FIG. 3: Allowed regions for CDMS 2009 data (1 σ , 90% and 3 σ CL), DAMA (90% and 3 σ CL), and constraints from other experiments (90% CL) for elastic SI scattering (left), SD scattering off protons (right), and SD scattering off neutrons (left).

elastic SI:

- the CDMS 1σ allowed region largely excluded by XENON
- DAMA/LIBRA region firmly excluded (with or w/o channelling)

same for iDM

- elastic SD: similar conclusions as with SI
- DAMA/LIBRA region with channelling: marginally (3σ) compatible \Rightarrow CDMS events: unlikely to be due to DM signal

XENON-100: comparable in sensitivity to CDMS

XENON-100: comparable in sensitivity to CDMS

Aprile and Baudis, 0902.4253

- ▶ XENON-100: expected to reach down to $\sigma_p^{SI} \sim a \text{ few} \times 10^{-9} \text{ pb}!$
- If the CDMS events are due to WIMP scatterings, XENON-100 will see them.

spin dependent

XENON-100: comparable in sensitivity to CDMS

Aprile and Baudis, 0902.4253

- ▶ XENON-100: expected to reach down to $\sigma_p^{SI} \sim a \text{ few} \times 10^{-9} \text{ pb}!$
- If the CDMS events are due to WIMP scatterings, XENON-100 will see them.

spin dependent

XENON-100: comparable in sensitivity to CDMS

Aprile and Baudis, 0902.4253

- ▶ XENON-100: expected to reach down to $\sigma_p^{SI} \sim a \text{ few} \times 10^{-9} \text{ pb}!$
- If the CDMS events are due to WIMP scatterings, XENON-100 will see them.

spin dependent

XENON-100: comparable in sensitivity to CDMS

Aprile and Baudis, 0902.4253

- ▶ XENON-100: expected to reach down to $\sigma_p^{SI} \sim a \text{ few} \times 10^{-9} \text{ pb}!$
- If the CDMS events are due to WIMP scatterings, XENON-100 will see them.

CDMS and inelastic SI and SD

DM of $\sim 100\,{
m GeV}$ with a tiny mass split $\delta \sim \,{
m keV} \,\Rightarrow\,$ inelastic DM

suggested to reconcile DAMA with other expts (Tucker-Smith and Weiner, 2001)

- SI: iDM excluded
- SD: tiny regions allowed

CDMS and inelastic SI and SD

DM of $\sim 100\,{
m GeV}$ with a tiny mass split $\delta \sim \,{
m keV} \,\Rightarrow\,$ inelastic DM

suggested to reconcile DAMA with other expts (Tucker-Smith and Weiner, 2001)

- SI: iDM excluded
- SD: tiny regions allowed

CDMS, 0912.3592

CDMS and inelastic SI and SD

DM of $\sim 100\,{
m GeV}$ with a tiny mass split $\delta \sim \,{
m keV} \,\Rightarrow\,$ inelastic DM

suggested to reconcile DAMA with other expts (Tucker-Smith and Weiner, 2001)

- SI: iDM excluded
- SD: tiny regions allowed

CDMS, 0912.3592

Kopp, Schwetz and Zupan, 0912.4264

two tiny regions allowed

but much fine-tuning... L. Roszkowski, Warsaw, Feb '10 – p.26

observational evidence for dark matter is convincing

- observational evidence for dark matter is convincing
- the WIMP provides by far the most plausible explanation for DM

- observational evidence for dark matter is convincing
- the WIMP provides by far the most plausible explanation for DM
- many possible candidates, few well motivated

- observational evidence for dark matter is convincing
- the WIMP provides by far the most plausible explanation for DM
- many possible candidates, few well motivated
- detection: direct, indirect, plus vital info from the LHC

- observational evidence for dark matter is convincing
- the WIMP provides by far the most plausible explanation for DM
- many possible candidates, few well motivated
- detection: direct, indirect, plus vital info from the LHC
- DD: is already probing theory (SUSY,...) predictions

- observational evidence for dark matter is convincing
- the WIMP provides by far the most plausible explanation for DM
- many possible candidates, few well motivated
- detection: direct, indirect, plus vital info from the LHC
- DD: is already probing theory (SUSY,...) predictions
- recent CDMS-II events: unlikely to be DM signal ...Xenon-100 should clarify this soon (also CDMS-II)

- observational evidence for dark matter is convincing
- the WIMP provides by far the most plausible explanation for DM
- many possible candidates, few well motivated
- detection: direct, indirect, plus vital info from the LHC
- DD: is already probing theory (SUSY,...) predictions
- recent CDMS-II events: unlikely to be DM signal ...Xenon-100 should clarify this soon (also CDMS-II)
- more to come, stay tuned