Dark Matter

A Particle Theorist's Perspective

Lecture 2

Leszek Roszkowski

Univ. of Sheffield, England

and

Soltan Institute for Nuclear Studies, Warsaw, Poland

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS
- Lecture 2:
 - SUSY neutralino most popular candidate
 - direct detection
 - indirect detection (PAMELA, Fermi/GLAST, the LHC)
 - EWIMPs/superWIMPs and the LHC

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS
- Lecture 2:
 - SUSY neutralino most popular candidate
 - direct detection
 - indirect detection (PAMELA, Fermi/GLAST, the LHC)
 - EWIMPs/superWIMPs and the LHC

- evidence for DM
- DM candidates and particle physics models
- strategies for DM detection: direct, indirect, LHC
- prospects for direct detection
 - new results from CDMS
- Lecture 2:
 - SUSY neutralino most popular candidate
 - direct detection
 - indirect detection (PAMELA, Fermi/GLAST, the LHC)
 - EWIMPs/superWIMPs and the LHC
 - axion
 - summary

The Big Picture

<u>well-motivated</u> particle candidates such that $\Omega \sim 0.1$

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- axino \widetilde{a}
- $oldsymbol{s}$ gravitino $\widetilde{oldsymbol{G}}$
- ????

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

indirect detection (ID):

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo
from within a few kpc

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo

from within a few kpc

 gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo

from within a few kpc

gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

 other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc

more speculative

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
 - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only ν 's escape

antimatter (e^+ , \bar{p} , \bar{D}) from WIMP pair-annihilation in the MW halo

from within a few kpc

gamma rays from WIMP pair-annihilation in the Galactic center

depending on DM distribution in the GC

 other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc

more speculative

... or to space

... or to space

... or to space

impressive experimental effort

neutralino $\chi =$ lightest mass eigenstate of neutral gauginos \widetilde{B} (bino), \widetilde{W}_3^0 (wino) and neutral higgsinos \widetilde{H}_t^0 , \widetilde{H}_b^0 Majorana fermion ($\chi^c = \chi$)

most popular candidate

neutralino $\chi =$ lightest mass eigenstate of neutral gauginos \widetilde{B} (bino), \widetilde{W}_3^0 (wino) and neutral higgsinos \widetilde{H}_t^0 , \widetilde{H}_b^0 Majorana fermion ($\chi^c = \chi$)

most popular candidate

- part of a well-defined and well-motivated framework of SUSY
- calculable
- If relic density: $\Omega_{\chi}h^2 \sim 0.1$ from freeze-out (...more like $10^{-4} 10^3$)
- stable with some discrete symmetry (e.g., *R*-parity or baryon parity)
- testable with today's experiments (DD, ID, LHC)
- \checkmark ...no obviously superior competitor (both to SUSY and to χ) exists

neutralino $\chi =$ lightest mass eigenstate of neutral gauginos \widetilde{B} (bino), \widetilde{W}_3^0 (wino) and neutral higgsinos \widetilde{H}_t^0 , \widetilde{H}_b^0 Majorana fermion ($\chi^c = \chi$)

most popular candidate

- part of a well-defined and well-motivated framework of SUSY
- calculable
- If relic density: $\Omega_{\chi}h^2 \sim 0.1$ from freeze-out (...more like $10^{-4} 10^3$)
- stable with some discrete symmetry (e.g., *R*-parity or baryon parity)
- testable with today's experiments (DD, ID, LHC)
- ...no obviously superior competitor (both to SUSY and to χ) exists

Don't forget:

- multitude of SUSY-based models: general MSSM, CMSSM, split SUSY, MNMSSM, SO(10) GUTs, string inspired models, etc, etc
- neutralino properties often differ widely from model to model

neutralino $\chi =$ lightest mass eigenstate of neutral gauginos \widetilde{B} (bino), \widetilde{W}_3^0 (wino) and neutral higgsinos \widetilde{H}_t^0 , \widetilde{H}_b^0 Majorana fermion ($\chi^c = \chi$)

most popular candidate

- part of a well-defined and well-motivated framework of SUSY
- calculable
- In the second secon
- stable with some discrete symmetry (e.g., *R*-parity or baryon parity)
- testable with today's experiments (DD, ID, LHC)
- ...no obviously superior competitor (both to SUSY and to χ) exists

Don't forget:

- multitude of SUSY-based models: general MSSM, CMSSM, split SUSY, MNMSSM, SO(10) GUTs, string inspired models, etc, etc
- neutralino properties often differ widely from model to model

neutralino = stable, weakly interacting, massive \Rightarrow WIMP

General MSSM: Expectations for $\sigma_p^{\rm SI}$

 $\mu > 0$

Kim, Nihei, LR & Ruiz de Austri (02)

 σ_p^{SI} - WIMP-proton SI elastic scatt. c.s. (elastic c.s. for $\chi p \rightarrow \chi p$ at zero momentum transfer)

General MSSM: Expectations for $\sigma_p^{\rm SI}$

 $\mu > 0$

Kim, Nihei, LR & Ruiz de Austri (02)

 σ_p^{SI} – WIMP–proton SI elastic scatt. c.s.

(elastic c.s. for $\chi p
ightarrow \chi p$ at zero momentum transfer)

 \Rightarrow MSSM: vast ranges! Lacks real predictive power!

Add grand unification...

... "benchmark framework" for the LHC

Kane, Kolda, LR, Wells (1993) (...e.g., mSUGRA)

... "benchmark framework" for the LHC

Kane, Kolda, LR, Wells (1993) (...e.g., mSUGRA)

700 600 500 400 $/\mu_0^2 + m_0^2$ Mass (GeV) 300 200 100 B mo 0 -100 -200 2 6 10 12 16 4 8 14 log10Q (GeV)

At $M_{
m GUT}\simeq 2 imes 10^{16}~
m GeV$:

lacksquare gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$

scalars

_

$$m^2_{{\widetilde q}_i}=m^2_{{\widetilde l}_i}=m^2_{{H}_b}=m^2_{{H}_t}=m^2_0$$

• 3-linear soft terms
$$A_b = A_t = A_0$$

... "benchmark framework" for the LHC

Kane, Kolda, LR, Wells (1993) (...e.g., mSUGRA)

700 600 500 400 Mass (GeV) $\mu_0^2 + m_0^2$ 300 200 100 B mo 0 -100 -200 2 6 4 8 10 12 14 16 log10Q (GeV)

At $M_{\rm GUT} \simeq 2 \times 10^{16} \, {\rm GeV}$:

gauginos M₁ = M₂ = m_ğ = m_{1/2}
scalars m²_{q̃i} = m²_{l̃i} = m²_{Hb} = m²_{Ht} = m²₀
3-linear soft terms A_b = A_t = A₀
radiative EWSB μ² = m²_{Hb} - m²_{Ht} tan² β - m²_Z

... "benchmark framework" for the LHC

Kane, Kolda, LR, Wells (1993) (...e.g., mSUGRA)

700 600 500 400 Mass (GeV) $\mu_0^2 + m_0^2$ 300 200 100 Ř m 0 -100 -200 2 6 1 8 10 12 14 16 log10Q (GeV)

At $M_{\rm GUT} \simeq 2 \times 10^{16} \, {\rm GeV}$:

gauginos $M_1 = M_2 = m_{\tilde{a}} = m_{1/2}$ scalars $m_{\widetilde{q}_i}^2 = m_{\widetilde{l}_i}^2 = m_{{H}_b}^2 = m_{{H}_t}^2 = m_0^2$ • 3-linear soft terms $A_b = A_t = A_0$ radiative EWSB $\mu^{2} = \frac{m_{H_{b}}^{2} - m_{H_{t}}^{2} \tan^{2}\beta}{\tan^{2}\beta - 1} - \frac{m_{Z}^{2}}{2}$ 4+1 independent parameters: $m_{1/2}, m_0, A_0, \tan\beta, \, \mathrm{sgn}(\mu)$

... "benchmark framework" for the LHC

Kane, Kolda, LR, Wells (1993) (...e.g., mSUGRA)

700 600 500 400 Mass (GeV) $\mu_0^2 + m_0^2$ 300 200 100 Ř 0 -100 -200 2 6 1 8 10 12 14 16 log10Q (GeV)

At $M_{\rm GUT} \simeq 2 \times 10^{16} \, {
m GeV}$:

gauginos $M_1 = M_2 = m_{\widetilde{g}} = m_{1/2}$ scalars $m_{\widetilde{q}_i}^2 = m_{\widetilde{l}_i}^2 = m_{H_b}^2 = m_{H_t}^2 = m_0^2$ 3-linear soft terms $A_b = A_t = A_0$ radiative EWSB

$$\mu^{2} = \frac{m_{H_{b}}^{2} - m_{H_{t}}^{2} \tan^{2}\beta}{\tan^{2}\beta - 1} - \frac{m_{Z}^{2}}{2}$$

4+1 independent parameters:
$$m_{1/2}, m_0, A_0, \tan\beta, \operatorname{sgn}(\mu)$$

 well developed machinery to compute masses and couplings

... "benchmark framework" for the LHC

Kane, Kolda, LR, Wells (1993) (...e.g., mSUGRA)

700 600 500 400 Mass (GeV) $\mu_0^2 + m_0^2$ 300 200 100 0 -100 -200 2 1 6 8 10 12 14 16 log10Q (GeV)

At $M_{\rm GUT} \simeq 2 \times 10^{16} \, {\rm GeV}$:

D gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$

scalars

$$m_{\widetilde{q}_i}^2 = m_{\widetilde{l}_i}^2 = m_{{H}_b}^2 = m_{{H}_t}^2 = m_0^2$$

• 3–linear soft terms
$$A_b = A_t = A_0$$

radiative EWSB $\mu^2 = \frac{m_{H_b}^2 - m_{H_t}^2 \tan^2 \beta}{\tan^2 \beta - 1} - \frac{m_Z^2}{2}$

- well developed machinery to compute masses and couplings
- neutralino χ mostly bino

... "benchmark framework" for the LHC

Kane, Kolda, LR, Wells (1993) (...e.g., mSUGRA)

700 600 500 400 Mass (GeV) $\mu_{a}^{2} + m_{e}^{2}$ 300 200 100 0 -100 -200 2 1 6 8 10 12 14 16 log10Q (GeV)

some useful mass relations:

- bino: $m_\chi \simeq 0.4 m_{1/2}$
- ${oldsymbol{ heta}}$ gluino \widetilde{g} : $m_{\widetilde{g}}\simeq 2.7m_{1/2}$

supersymmetric tau (stau) $\widetilde{ au}_1$:

At $M_{
m GUT} \simeq 2 imes 10^{16} \,
m GeV$:

gauginos $M_1 = M_2 = m_{\widetilde{g}} = m_{1/2}$

scalars

$$m_{\widetilde{q}_i}^2 = m_{\widetilde{l}_i}^2 = m_{{H}_b}^2 = m_{{H}_t}^2 = m_0^2$$

• 3–linear soft terms
$$A_b = A_t = A_0$$

radiative EWSB $\mu^{2} = \frac{m_{H_{b}}^{2} - m_{H_{t}}^{2} \tan^{2}\beta}{\tan^{2}\beta - 1} - \frac{m_{Z}^{2}}{2}$

• 4+1 independent parameters:

$$m_{1/2}, m_0, A_0, \tan\beta, \operatorname{sgn}(\mu)$$

- well developed machinery to compute masses and couplings
- neutralino χ mostly bino

$$m_{{\widetilde au}_1}\simeq \sqrt{0.15m_{1/2}^2+m_0^2}$$

Bayesian Analysis of the CMSSM

Apply to the CMSSM:

new development, led by 2 groups
Apply to the CMSSM:

new development, led by 2 groups

 $m = (\theta, \psi) - \text{model's all relevant parameters}$

Apply to the CMSSM:

new development, led by 2 groups

- CMSSM parameters $\theta = m_{1/2}, m_0, A_0, \tan \beta$

• relevant SM param's $\psi = M_t, m_b(m_b)^{\overline{MS}}, lpha_s^{\overline{MS}}, lpha_{
m em}(M_Z)^{\overline{MS}}$

Apply to the CMSSM:

new development, led by 2 groups

- CMSSM parameters $heta=m_{1/2},\,m_0,\,A_0,\, aneta$

• relevant SM param's $\psi = M_t, m_b(m_b)^{\overline{MS}}, \alpha_s^{\overline{MS}}, \alpha_{
m em}(M_Z)^{\overline{MS}}$

• $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables): $\xi(m)$

Apply to the CMSSM:

new development, led by 2 groups

- CMSSM parameters $\theta = m_{1/2}, m_0, A_0, \tan \beta$

• relevant SM param's $\psi = M_t, m_b(m_b)^{\overline{MS}}, \alpha_s^{\overline{MS}}, \alpha_{
m em}(M_Z)^{\overline{MS}}$

- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables): $\xi(m)$
- **9 d**: data $(\Omega_{\rm CDM}h^2, b \rightarrow s\gamma, m_h, \text{etc})$

Apply to the CMSSM:

new development, led by 2 groups

- $m = (\theta, \psi)$ model's all relevant parameters
- CMSSM parameters $| \theta = m_{1/2}, m_0, A_0, \tan eta$

relevant SM param's $|\psi = M_t, m_b(m_b)^{\overline{MS}}, lpha_s^{\overline{MS}}, lpha_{
m em}(M_Z)^{\overline{MS}}$

• $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables): $|\xi(m)|$

9 d: data
$$(\Omega_{\rm CDM}h^2, b \rightarrow s\gamma, m_h, \text{etc})$$

$$p(heta,\psi|d) = rac{p(d|m{\xi})\pi(heta,\psi)}{p(d)}$$

 $\pi(heta,\psi)$: prior pdf

- Probability density likelihood prior θ $posterior = \frac{likelihood \times prior}{normalization factor}$
- p(d): evidence (normalization factor)

posterior

Apply to the CMSSM:

new development, led by 2 groups

- $m = (\theta, \psi) \text{model's all relevant parameters}$
- CMSSM parameters $\theta = m_{1/2}, m_0, A_0, \tan \beta$

• relevant SM param's $\psi = M_t, m_b(m_b)^{\overline{MS}}, \alpha_s^{\overline{MS}}, \alpha_{\rm em}(M_Z)^{\overline{MS}}$

- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables): $\xi(m)$
- **9 d**: data $(\Omega_{\rm CDM}h^2, b \rightarrow s\gamma, m_h, \text{etc})$

$$p(heta,\psi|d) = rac{p(d|m{\xi})\pi(heta,\psi)}{p(d)}$$

- $p(d|\xi) = \mathcal{L}$: likelihood
- $\pi(\theta,\psi)$: prior pdf
 - p(d): evidence (normalization factor)
- usually marginalize over SM (nuisance) parameters $\psi \Rightarrow \left| p(\theta | d) \right|$

Warsaw. Feb '10 – p.10

fix $\tan \beta$, A_0 + all SM param's

residual errors in SM parameters \Rightarrow strong impact on favoured SUSY ranges

effect of varying A_0 , aneta also substantial

- $\psi = (M_t, m_b(m_b)^{\overline{MS}}, \alpha_{em}(M_Z)^{\overline{MS}}, \alpha_s^{\overline{MS}})$: SM (nuisance) parameters

- $\psi = (M_t, m_b(m_b)^{\overline{MS}}, \alpha_{em}(M_Z)^{\overline{MS}}, \alpha_s^{\overline{MS}})$: SM (nuisance) parameters
- priors assume flat distributions and ranges as:

- $\psi = (M_t, m_b(m_b)^{\overline{MS}}, \alpha_{em}(M_Z)^{\overline{MS}}, \alpha_s^{\overline{MS}})$: SM (nuisance) parameters
- priors assume flat distributions and ranges as:

- vary all 8 (CMSSM+SM) parameters simultaneously, apply MCMC
- include all relevant theoretical and experimental errors

(assume Gaussian distributions)

(assume Gaussian distributions)

SM (nuisance) parameter	Mean Error	
	μ	$oldsymbol{\sigma}$ (expt)
M_t	172.6 GeV	1.4 GeV
$(m_b)^{\overline{MS}}$	4.20 GeV	0.07 GeV
$lpha_s$	0.1176	0.0020
$1/lpha_{\mathrm{em}}(M_Z)$	127.955	0.030

(assume Gaussian distributions)

SM (nuisance) parameter	Mean Error	
	$oldsymbol{\mu}$	$oldsymbol{\sigma}$ (expt)
M_t	172.6 GeV	1.4 GeV
$(m_b)^{\overline{MS}}$	4.20 GeV	0.07 GeV
$lpha_s$	0.1176	0.0020
$1/lpha_{\mathrm{em}}(M_Z)$	127.955	0.030

new $\mathrm{BR}(\bar{\mathrm{B}} \rightarrow \mathrm{X_s}\gamma) \times 10^4$: SM: 3.15 \pm 0.23 (Misiak & Steinhauser, Sept 06) used here

(assume Gaussian distributions)

SM (nuisance) parameter	Mean Error	
	$oldsymbol{\mu}$	$oldsymbol{\sigma}$ (expt)
M_t	172.6 GeV	1.4 GeV
$(m_b)^{\overline{MS}}$	4.20 GeV	0.07 GeV
$lpha_s$	0.1176	0.0020
$1/lpha_{\mathrm{em}}(M_Z)$	127.955	0.030

new BR $(\bar{B} \rightarrow X_s \gamma) \times 10^4$: SM: 3.15 \pm 0.23 (Misiak & Steinhauser, Sept 06) used here

Derived observable	Mean	Errors	
	μ	$oldsymbol{\sigma}$ (expt)	$oldsymbol{ au}$ (th)
M_W	$80.398{ m GeV}$	$25{ m MeV}$	$15{ m MeV}$
$\sin^2 heta_{ m eff}$	0.23153	$16 imes 10^{-5}$	$15 imes 10^{-5}$
$\delta a_{\mu}^{ m SUSY} imes 10^{10}$	29.5	8.8	1
${ m BR}(ar{ m B} ightarrow { m X_s} \gamma) imes 10^4$	3.55	0.26	0.21
$\Delta {M_B}_s$	17.33	0.12	4.8
$\Omega_\chi h^2$	0.1099	0.0062	$0.1\Omega_\chi h^2$

take w/o error: $M_Z = 91.1876(21)~{
m GeV}, G_F = 1.16637(1) imes 10^{-5}~{
m GeV}^{-2}$

Experimental Limits

Derived observable	upper/lower	Constraints	
	limit	$\xi_{ m lim}$	$oldsymbol{ au}$ (theor.)
$BR(B_s \rightarrow \mu^+ \mu^-)$	UL	$1.5 imes10^{-7}$	14%
m_h	LL	$114.4{ m GeV}(91.0{ m GeV})$	$3{ m GeV}$
$\zeta_h^2 \equiv g_{ZZh}^2/g_{ZZH_{ m SM}}^2$	UL	$f(m_h)$	3%
m_{χ}	LL	$50{ m GeV}$	5%
$m_{\chi_1^{\pm}}$	LL	$103.5\mathrm{GeV}(92.4\mathrm{GeV})$	5%
$m_{ ilde{e}_R}$	LL	$100{ m GeV}(73{ m GeV})$	5%
$m_{ ilde{\mu}_R}$	LL	$95{ m GeV}~(73{ m GeV})$	5%
$m_{ ilde{ au}_1}$	LL	$87{ m GeV}~(73{ m GeV})$	5%
$m_{ ilde{ u}}$	LL	$94{ m GeV}(43{ m GeV})$	5%
$m_{ ilde{t}_1}$	LL	$95{ m GeV}(65{ m GeV})$	5%
$m_{ ilde{b}_1}$	LL	$95{ m GeV}(59{ m GeV})$	5%
$m_{ ilde{q}}$	LL	$318{ m GeV}$	5%
$m_{\widetilde{g}}$	LL	$233{ m GeV}$	5%
$(\sigma_p^{ m SI})$	UL	WIMP mass dependent	$\sim 100\%$)

Note: DM direct detection σ_p^{SI} not applied due to astroph'l uncertainties (eg, local DM density)

Take a single observable $\xi(m)$ that has been measured

Take a single observable $\xi(m)$ that has been measured

9 c – central value, σ – standard exptal error

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

■ assuming Gaussian distribution $(d \rightarrow (c, \sigma))$:

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = \frac{[\xi(m) - c]^2}{\sigma^2}$$

assuming Gaussian distribution ($d \rightarrow (c, \sigma)$):

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

 \checkmark when include theoretical error estimate τ (assumed Gaussian):

$$\sigma \to s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

assuming Gaussian distribution ($d \rightarrow (c, \sigma)$):

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

 \checkmark when include theoretical error estimate τ (assumed Gaussian):

$$\sigma
ightarrow s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_i rac{\chi_i^2}{2}
ight]$$

arXiv:0705.2012

0.4

MCMC scan **Bayesian analysis** relative probability density fn flat priors 68% total prob. – inner contours 95% total prob. – outer contours 2-dim pdf $p(m_0, m_{1/2}|d)$ favored: $m_0 \gg m_{1/2}$ (FP region)

arXiv:0705.2012

similar study by Allanach+Lester(+Weber) see also, Ellis et al (EHOW, χ^2 approach, no MCMC, they fix SM parameters!)

arXiv:0705.2012

0.4

0.6

0.8

unlike others (except for A+L), we vary also SM parameters

Bayesian analysis, relative probability density fn (pdf), flat priors, $\mu > 0$

computed with SoftSusy v2.08

Bayesian analysis, relative probability density fn (pdf), flat priors, $\mu > 0$

computed with SoftSusy v2.08

posterior pdf relative pdf $p(m_h | d)$

Bayesian analysis, relative probability density fn (pdf), flat priors, $\mu > 0$

computed with SoftSusy v2.08

 $115.2 \,{
m GeV} < m_h < 120.4 \,{
m GeV} ~(68\%)$

 $112.3\,{
m GeV} < m_h < 121.9\,{
m GeV} ~(95\%)$

sharp drop-off on rhs from no solutions at large $m_{1/2}$ and/or cutoff at $m_0 < 4\,{
m TeV}$

computed with SoftSusy v2.08

Bayesian analysis, relative probability density fn (pdf), flat priors, $\mu > 0$

sharp drop-off on rhs from no solutions at large $m_{1/2}$ and/or cutoff at $m_0 < 4\,{
m TeV}$

if $m_0 < 8 \, {
m TeV}$ then $m_h \, \lesssim 125.6 \, {
m GeV}$ (95% CL)

L. Roszkowski, Warsaw, Feb '10 - p.17

computed with SoftSusy v2.08

SUSY: Prospects for direct detection

global Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM)

SUSY: Prospects for direct detection

global Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM)

Constrained MSSM (mSUGRA)

internal (external): 68% (95%) region

SUSY: Prospects for direct detection

global Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM)

Constrained MSSM (mSUGRA)

internal (external): 68% (95%) region

XENON-10 and CDMS-II: $\sigma_p^{
m SI} \lesssim 10^{-7} \, {
m pb}:$

also Zeplin-III

 \Rightarrow already explore 68% region

(large $m_0 \gg m_{1/2} \Rightarrow$ heavy squarks) largely beyond LHC reach

SUSY: Prospects for direct detection

global Bayesian analysis, MCMC scan of 8 params (4 SUSY+4 SM)

Constrained MSSM (mSUGRA)

internal (external): 68% (95%) region

XENON-10 and CDMS-II: $\sigma_p^{\rm SI} \lesssim 10^{-7} \, {\rm pb}:$

also Zeplin-III

ause target recoil - detect it

target

 \Rightarrow already explore 68% region

(large $m_0 \gg m_{1/2} \Rightarrow$ heavy squarks) largely beyond LHC reach

Massivo

Constrained MSSM (mSUGRA), ...huge volume of studies

Constrained MSSM (mSUGRA), ...huge volume of studies

e.g., Baer, et al. (2004)

Constrained MSSM (mSUGRA), ...huge volume of studies

e.g., Baer, et al. (2004)

cosmologically favored (for fixed slices of CMSSM parameters):

- **A** funnel (AF)
- focus point (FP)
- $ilde{ au}$ coannihilation (SC)

Constrained MSSM (mSUGRA), ...huge volume of studies

e.g., Baer, et al. (2004)

- DD: probe all FP and lower m_{γ} part of AF and CA
- LHC: probe lower m_{χ} part of AF and CA, poorer in FP
- ID strongly dependent on halo model

of

Constrained MSSM (mSUGRA), ...huge volume of studies

e.g., Baer, et al. (2004)

- DD: probe all FP and lower m_{γ} part of AF and CA
- LHC: probe lower m_{χ} part of AF and CA, poorer in FP
- ID strongly dependent on halo model

of

Bayesian analysis, flat priors

Bayesian analysis, flat priors

Constrained MSSM (mSUGRA)

Bayesian analysis, flat priors

Constrained Next-to-MSSM (CNMSSM)

Constrained MSSM (mSUGRA)

Higgs: H_u , H_d and singlet S; λS^3

singlino DM very rare

Bayesian analysis, flat priors

Constrained Next-to-MSSM (CNMSSM)

Higgs: H_u , H_d and singlet S; λS^3

singlino DM very rare

 \Rightarrow fairly similar pattern

many collider signatures also (likely to be) similar

 \Rightarrow LHC, DM expt: it may be hard to discriminate among models

Bayesian analysis, flat priors

Constrained Next-to-MSSM (CNMSSM)

Higgs: H_u , H_d and singlet S; λS^3

singlino DM very rare

 \Rightarrow fairly similar pattern

many collider signatures also (likely to be) similar

 \Rightarrow LHC, DM expt: it may be hard to discriminate among models

CMSSM:

CMSSM: flat in $m_0, m_{1/2}$

flat in $\log(m_0)$, $\log(m_{1/2})$

- still strong prior dependence (data not yet constraining enough)
- both priors: most regions above some 10^{-10} pb \Rightarrow good news for DM expt
- \blacksquare LHC reach: $m_\chi \lesssim 400-500~{
 m GeV} \Rightarrow$ additional vital info

CMSSM:

CMSSM:

log prior

CMSSM:

log prior

CMSSM:

log prior

reasonable agreement

- Iook for traces of WIMP annihilation in the MW halo (γ 's, e^+ 's, \bar{p} , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity in connection with:

- Iook for traces of WIMP annihilation in the MW halo (γ 's, e^+ 's, \bar{p} , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity in connection with:

Fermi (GLAST)

- Iook for traces of WIMP annihilation in the MW halo (γ 's, e^+ 's, \bar{p} , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity in connection with:

- Fermi (GLAST)
- PAMELA

- Iook for traces of WIMP annihilation in the MW halo (γ 's, e^+ 's, \bar{p} , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity in connection with:

- Fermi (GLAST)
- PAMELA
- H.E.S.S, ATCs, ...

Fermi

in orbit since 2008

Fermi

in orbit since 2008

- If ull sky map in γ -ray spectrum, $\sim 20\,{
 m MeV}$ to $\sim 300\,{
 m GeV}$
- superior energy and angular resolution
- improve accuracy/energy range of EGRET by an order of magnitute
- preliminary mid-latitude LAT data on diffuse γ -radiation presented in Spring 09
- Ist year LAT data released in August 09, more to come

Solution WIMP pair-annihilation $\rightarrow WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation } (+ \gamma \gamma, \gamma Z \text{ lines})$

- WIMP pair-annihilation \rightarrow WW, ZZ, $\bar{q}q$, ... \rightarrow diffuse γ radiation (+ $\gamma\gamma$, γZ lines)
- diffuse γ radiation from direction ψ from the GC:

I.o.s - line of sight

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi) = \sum_i rac{\sigma_i v}{8\pi m_{\chi}^2} rac{dN_{\gamma}^i}{dE_{\gamma}} \int_{ ext{l.o.s.}} dl
ho_{\chi}^2(r(l,\psi))$$

- WIMP pair-annihilation $\rightarrow WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation } (+ \gamma\gamma, \gamma Z \text{ lines})$
- diffuse γ radiation from direction ψ from the GC:

I.o.s - line of sight

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi) = \sum_i rac{\sigma_i v}{8\pi m_{\chi}^2} rac{dN_{\gamma}^i}{dE_{\gamma}} \int_{
m l.o.s.} dl
ho_{\chi}^2(r(l,\psi))$$

separate particle physics and astrophysics inputs; define:

$$J(\psi) = \frac{1}{8.5 \,\mathrm{kpc}} \left(\frac{1}{0.3 \,\mathrm{GeV/\,cm^3}}\right)^2 \int_{\mathrm{l.o.s.}} dl \, \rho_\chi^2(r(l,\psi))$$

$$\left< J(\psi) \right>_{\Delta\Omega} = rac{1}{\Delta\Omega} \int_{\Delta\Omega} J(\psi) d\Omega$$

 $\Delta \Omega \mbox{ - finite point spread function (resolution) of GR detector, } \\ \mbox{ or some wider angle }$

- WIMP pair-annihilation $\rightarrow WW, ZZ, \bar{q}q, \ldots \rightarrow \text{diffuse } \gamma \text{ radiation } (+ \gamma\gamma, \gamma Z \text{ lines})$
- diffuse γ radiation from direction ψ from the GC:

I.o.s - line of sight

$$rac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi) = \sum_i rac{\sigma_i v}{8\pi m_{\chi}^2} rac{dN_{\gamma}^i}{dE_{\gamma}} \int_{
m l.o.s.} dl
ho_{\chi}^2(r(l,\psi))$$

separate particle physics and astrophysics inputs; define:

$$J(\psi) = \frac{1}{8.5 \,\mathrm{kpc}} \left(\frac{1}{0.3 \,\mathrm{GeV/\,cm^3}}\right)^2 \int_{\mathrm{l.o.s.}} dl \, \rho_\chi^2(r(l,\psi))$$

$$H_{\text{redius (kpc)}}^{10^4}$$

$$\left< J(\psi) \right>_{\Delta\Omega} = rac{1}{\Delta\Omega} \int_{\Delta\Omega} J(\psi) d\Omega$$

 $\Delta \Omega$ - finite point spread function (resolution) of GR detector, or some wider angle

some representative halo profiles

Diffuse GRs from the GC

use Fermi/GLAST parameters

Bayesian posterior probability maps

Diffuse GRs from the GC

use Fermi/GLAST parameters

Bayesian posterior probability maps

CMSSM, flat priors

Diffuse GRs from the GC

use Fermi/GLAST parameters

CMSSM, flat priors

Bayesian posterior probability maps

NUHM, flat priors

Diffuse GRs from the GC

use Fermi/GLAST parameters

CMSSM, flat priors

Roszkowski, Ruiz, Trotta, Tsai & Varley (2009) Roszkowski, Ruiz, Silk & Trotta (2008 Φ_{γ} from GC from GC Φ Klypin -6 Moore adiab. comp. -6CMSSM, $\mu > 0$ NUHM, $\mu > 0$ Log[Φ_{γ} (cm⁻²s⁻¹)] flat prior $Log[\Phi_{\gamma}(cm^{-2}s^{-1})]$ -8 NFW adiab. comp. Moore Fermi/GLAST reach (1yr) GLAST reach (1yr) -10 -10○ NFW NFW -12 -12 isotherma/ iso. cored -14 $\Delta \Omega = 10^{-5} \text{ sr}$ -14 $\Delta \Omega = 10^{-5} \text{ sr}$ $E_{thr} = 10 \text{ GeV}$ $E_{thr} = 10 \text{ GeV}$ -16-16 0.5 1.5 0.2 0.4 0.6 0.8 1 2 m_{χ} (TeV) m_{γ} (TeV)

WIMP signal at Fermi/GLAST: outcome depends on halo cuspiness at GC

a conclusion of several different studies

NUHM, flat priors

Bayesian posterior probability maps

ratio of fluxes is independent of particle physics input

$$R_{d\Phi_{\gamma}/dE_{\gamma}}^{\rm GC} = \frac{\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi)}{\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi=0)} = \frac{\langle J(\psi)\rangle_{\Delta\Omega}}{\langle J(\psi=0)\rangle_{\Delta\Omega}} = \frac{\int_{\rm l.o.s.} dl' \rho_{\chi}^2(r(l',\psi))}{\int_{\rm l.o.s.} dl' \rho_{\chi}^2(r(l',\psi=0))}$$

ratio of fluxes is independent of particle physics input

$$R_{d\Phi_{\gamma}/dE_{\gamma}}^{\rm GC} = \frac{\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi)}{\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi=0)} = \frac{\langle J(\psi)\rangle_{\Delta\Omega}}{\langle J(\psi=0)\rangle_{\Delta\Omega}} = \frac{\int_{\rm l.o.s.} dl' \rho_{\chi}^2(r(l',\psi))}{\int_{\rm l.o.s.} dl' \rho_{\chi}^2(r(l',\psi=0))}$$

arXiv:0909.1529

ratio of fluxes is independent of particle physics input

 ψ (degree)

 $R_{d\Phi_{\gamma}/dE_{\gamma}}^{\rm GC} = \frac{\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi)}{\frac{d\Phi_{\gamma}}{dE}(E_{\gamma},\psi=0)} = \frac{\langle J(\psi)\rangle_{\Delta\Omega}}{\langle J(\psi=0)\rangle_{\Delta\Omega}} = \frac{\int_{\rm l.o.s.} dl' \,\rho_{\chi}^2(r(l',\psi))}{\int_{\rm l.o.s.} dl' \,\rho_{\chi}^2(r(l',\psi=0))}$ arXiv:0909.1529 Signal of DM if: Roszkowski & Tsai (2009) 10⁰ data follows one of the curves -rays from MW Einasto 10 NFW Klypin et al measured ratio remains the same in 10 $<(0=\hbar)^{10}$ 10^{-10} 10^{-10} 10^{-10} the Galactic plane and the plane solid: $\Delta \Omega = 10^{-4}$ sr dash: $\Lambda \Omega = 10^{-5}$ sr normal to the Galactic plane astro sources (bgnd): bigger contribution from the MW disk 10 DM can possibly dominate within 10^{-6} $2-3^{\circ}$ of the GC 10 0 15 30 45 60 75 90 105120135150165180 data \Rightarrow can get handle on DM halo

density slope in the GC

L. Roszkowski, Warsaw, Feb '10 - p.27

ratio of fluxes is independent of particle physics input

 $R_{d\Phi_{\gamma}/dE_{\gamma}}^{\rm GC} = \frac{\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\psi)}{\frac{d\Phi_{\gamma}}{dE}(E_{\gamma},\psi=0)} = \frac{\langle J(\psi)\rangle_{\Delta\Omega}}{\langle J(\psi=0)\rangle_{\Delta\Omega}} = \frac{\int_{\rm l.o.s.} dl' \,\rho_{\chi}^2(r(l',\psi))}{\int_{\rm l.o.s.} dl' \,\rho_{\chi}^2(r(l',\psi=0))}$ Signal of DM if: arXiv:0909.1529 Roszkowski & Tsai (2009) 10⁰ data follows one of the curves -rays from MW Einasto 10 NFW Klypin et al measured ratio remains the same in <(0=h)r > / <(h)r >the Galactic plane and the plane solid: $\Delta \Omega = 10^{-4}$ sr dash: $\Lambda \Omega = 10^{-5}$ normal to the Galactic plane astro sources (bgnd): bigger contribution from the MW disk 10 DM can possibly dominate within 10^{-6} $2-3^{\circ}$ of the GC 10 0 15 30 45 60 75 90 105120135150165180 data \Rightarrow can get handle on DM halo ψ (degree) density slope in the GC

⇒ would provide an unambiguous signal of DM origin

reason: only DM distribution around GC is (likely to be) spherical and $\propto
ho_{\chi}^2$

enhance signal by integrating over energy and solid angle

enhance signal by integrating over energy and solid angle

enhance signal by integrating over energy and solid angle

total flux

$$\Phi_\gamma(\Delta\Omega) = \int_{E_{
m th}}^{m_\chi} dE_\gamma rac{d\Phi_\gamma}{dE_\gamma}(E_\gamma,\Delta\Omega)$$

Signal of DM if:

- data follows one of the curves
- data ⇒ can get handle on DM halo density slope in GC

enhance signal by integrating over energy and solid angle

⇒ would provide an unambiguous signal of DM origin

diffuse γ -rays from $10^{\circ} \le |b| \le 20^{\circ}$ and $0 \le l < 360^{\circ}$, $0.1 \text{ GeV} \le E_{\gamma} \le 10 \text{ GeV}$ Porter, ICRC, 0907.0294

diffuse γ -rays from $10^{\circ} \le |b| \le 20^{\circ}$ and $0 \le l < 360^{\circ}$, $0.1 \text{ GeV} \le E_{\gamma} \le 10 \text{ GeV}$ Porter, ICRC, 0907.0294

0907.0294

LAT data: spectrum softer than claimed by EGRET

diffuse γ -rays from $10^{\circ} \le |b| \le 20^{\circ}$ and $0 \le l < 360^{\circ}$, $0.1 \text{ GeV} \le E_{\gamma} \le 10 \text{ GeV}$ Porter, ICRC, 0907.0294

0907.0294

- LAT data: spectrum softer than claimed by EGRET
- LAT data and GALPROP agree rather well

diffuse γ -rays from $10^{\circ} \le |b| \le 20^{\circ}$ and $0 \le l < 360^{\circ}$, $0.1 \text{ GeV} \le E_{\gamma} \le 10 \text{ GeV}$ Porter, ICRC, 0907.0294

0907.0294

- LAT data: spectrum softer than claimed by EGRET
- LAT data and GALPROP agree rather well

 \Rightarrow little room for DM contribution

Fermi LAT mid-latitude diffuse γ -radiation \Rightarrow little room for DM contribution

Fermi LAT mid-latitude diffuse γ -radiation \Rightarrow little room for DM contribution

 χ : neutralino of minimal SUSY

Fermi LAT mid-latitude diffuse γ -radiation \Rightarrow little room for DM contribution

 χ : neutralino of minimal SUSY

scan over MSSM parameters, average over mid-latitude area

Fermi LAT mid-latitude diffuse γ -radiation \Rightarrow little room for DM contribution

scan over MSSM parameters, average over

mid-latitude area

 \Rightarrow upper limit on DM halo slope

Fermi LAT mid-latitude diffuse γ -radiation \Rightarrow little room for DM contribution

 \Rightarrow upper limit on DM halo slope

still weak. Can be improved with GC data?

e^+ data from PAMELA & DM

PAMELA satelite (since 2007)

 $e^+/(e^++e^-)$ ratio, $ar{p}$ flux, ...

O. Adriani et al., arXiv:0810.4995

9 no excess in $ar{p}$ flux

P puzzling: growth at large e^+ energy

O. Adriani et al., arXiv:0810.4995

9 no excess in $ar{m{p}}$ flux

puzzling: growth at large e^+ energy

 e^+ : difficult measurement

p contamination of $3 imes 10^{-5}$ sufficient?

Schubnell, Feb. 09

e^+ data from PAMELA & DM

no excess in $ar{p}$ flux

P puzzling: growth at large e^+ energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

Geminga pulsar

Yuksel+Kistler+Stanev, 0810.2784

no excess in $ar{p}$ flux

puzzling: growth at large e^+ energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

e^+ data from PAMELA & DM

no excess in $ar{p}$ flux

puzzling: growth at large e^+ energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

 \Rightarrow

case for DM origin of PAMELA $e^+ \ {\rm excess}$ is weak

no excess in $ar{p}$ flux

puzzling: growth at large e^+ energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

case for DM origin of PAMELA e^+ excess is weak

...pulsar explanation seems sufficient

Bayesian posterior probability maps

BF=1

Bayesian posterior probability maps

BF=1

CMSSM, flat priors, NFW

Bayesian posterior probability maps

BF=1

Bayesian posterior probability maps

BF=1

simple unified SUSY models are inconsistent with PAMELA's e^+ result

...even for unrealistically large boost factors

(flux scales linearly with boost factor)

The great tragedy of Science – the slying of a beautiful hypothesis by an ugly fact

T.H. Huxley

The great tragedy of Science – the slying of a beautiful hypothesis by an ugly fact

T.H. Huxley

One should never believe any experiment until it has been confirmed by theory

A. Eddington

L. Roszkowski, Warsaw, Feb '10 - p.33

Dark matter and the LHC

Dark matter and the LHC

Assume SUSY as a popular and well-motivated framework...

Dark matter and the LHC

A few years from now:

DM detected in DD/ID expts, SUSY found at the LHC
A few years from now:

DM detected in DD/ID expts, SUSY found at the LHC

champagne, Stockholm, SUSY model reconstruction, WIMP astronomy, the ILC...

A few years from now:

DM detected in DD/ID expts, SUSY found at the LHC

Determining m_χ and $\Omega_\chi h^2$ at LHC

Determining m_{χ} and $\Omega_{\chi} h^2$ at LHC

mass m_{χ} : up to some $400 - 500 \, \text{GeV}$ (from missing mass and missing energy)

Determining m_{χ} and $\Omega_{\chi} h^2$ at LHC

- mass m_{χ} : up to some $400 500 \, {
 m GeV}$ (from missing mass and missing energy)
- relic abundance $\Omega_{\chi}h^2$ (assuming stable neutralino): need to measure m_{χ} , Higgs, gluino and lightest squark masses, several *BR*s and tan β (depending on SUSY framework):

Nojiri, Polesello, Tovey '04: SPA point: 5-10% error achievable

Figure 7: Distributions of the predicted relic density $\Omega_{\chi}h^2$ incorporating the experimental errors. The distributions are shown for an assumed error on the $\tau\tau$ edge respectively of 5 GeV (left) and 0.5 GeV (right).

Add info about DM abundance

assume Planck-like error: reduce WMAP error on $\Omega_\chi h^2$ by $\sim 5~(\lesssim 0.0016)$

Add info about DM abundance

assume Planck-like error: reduce WMAP error on $\Omega_\chi h^2$ by $\sim 5~(\lesssim 0.0016)$

Add info about DM abundance

assume Planck-like error: reduce WMAP error on $\Omega_{\chi}h^2$ by $\sim 5~(\leq 0.0016)$

similar result for flat prior and profile likelihood

- determination of $m_{1/2}, m_0$ spot on!
- $\tan \beta$ resolved reasonably well
- determination of A_0 remains poor
- still cannot resolve sign of A_0

ATLAS SU3 point

ATLAS SU3 point

ATLAS SU3 point

- use only ATLAS data
- similar result for log prior and profile likelihood
- red diamond: SU3 point
- green cross in circle: best-fit value
- big dot: posterior mean

ATLAS SU3 point

$$\Rightarrow \ \Omega_\chi h^2 = 0.253 \pm 0.034$$

relative accuracy of $\sim 10\%$

Assume SUSY as a popular and well-motivated framework...

DM detected in DD/ID expts, SUSY found at the LHC

DM detected in DD/ID expts, SUSY found at the LHC

DM detected in DD/ID expts, SUSY found at the LHC

DM detected in DD/ID expts, SUSY found at the LHC

mass reconstruction, an estimate of the neutralino abundance $\Omega_{\chi} h^2$, ...

DM detected in DD/ID expts, but no SUSY at the LHC

or at least not enough (or no) info on WIMP mass, couplings

DM detected in DD/ID expts, SUSY found at the LHC

mass reconstruction, an estimate of the neutralino abundance $\Omega_{\chi} h^2$, ...

DM detected in DD/ID expts, but no SUSY at the LHC

or at least not enough (or no) info on WIMP mass, couplings

⇒ The nature of DM WIMP would remain a mystery

DM detected in DD/ID expts, SUSY found at the LHC

mass reconstruction, an estimate of the neutralino abundance $\Omega_{\chi} h^2$, ...

DM detected in DD/ID expts, but no SUSY at the LHC

or at least not enough (or no) info on WIMP mass, couplings

 \Rightarrow The nature of DM WIMP would remain a mystery

a stable state (χ or charged $\widetilde{\tau}_1$) found at the LHC...

DM detected in DD/ID expts, SUSY found at the LHC

mass reconstruction, an estimate of the neutralino abundance $\Omega_{\chi} h^2$, ...

DM detected in DD/ID expts, but no SUSY at the LHC

or at least not enough (or no) info on WIMP mass, couplings

⇒ The nature of DM WIMP would remain a mystery

a stable state (χ or charged $\widetilde{\tau}_1$) found at the LHC...

even reconstructed density (neutralino or even stau!) can give $\Omega h^2 \sim 0.1$

DM detected in DD/ID expts, SUSY found at the LHC

mass reconstruction, an estimate of the neutralino abundance $\Omega_{\chi} h^2$, ...

DM detected in DD/ID expts, but no SUSY at the LHC

or at least not enough (or no) info on WIMP mass, couplings

⇒ The nature of DM WIMP would remain a mystery

a stable state (χ or charged $\widetilde{\tau}_1$) found at the LHC...

... but no signal in DM DD/ID searches

 \Rightarrow a particle lighter than χ (and for sure $\tilde{\tau}_1$) is the DM?

especially if DM axion excluded, or axion found but cosmologically not important

DM detected in DD/ID expts, SUSY found at the LHC

mass reconstruction, an estimate of the neutralino abundance $\Omega_{\chi} h^2$, ...

DM detected in DD/ID expts, but no SUSY at the LHC

or at least not enough (or no) info on WIMP mass, couplings

⇒ The nature of DM WIMP would remain a mystery

a stable state (χ or charged $\widetilde{ au}_1$) found at the LHC...

... but no signal in DM DD/ID searches

 \Rightarrow a particle lighter than χ (and for sure $\tilde{\tau}_1$) is the DM?

especially if DM axion excluded, or axion found but cosmologically not important

LHC may (indirectly) point to E-WIMPs as DM

favored regions of PS often very different from neutralino LSP

DM detected in DD/ID expts, SUSY found at the LHC

mass reconstruction, an estimate of the neutralino abundance $\Omega_{\chi} h^2$, ...

DM detected in DD/ID expts, but no SUSY at the LHC

or at least not enough (or no) info on WIMP mass, couplings

⇒ The nature of DM WIMP would remain a mystery

• a stable state (χ or charged $\widetilde{ au}_1$) found at the LHC...

... but no signal in DM DD/ID searches

 \Rightarrow a particle lighter than χ (and for sure $\tilde{\tau}_1$) is the DM?

especially if DM axion excluded, or axion found but cosmologically not important

LHC may (indirectly) point to E-WIMPs as DM favored regions of PS often very different from neutralino LSP

The LHC will be crucial in clarifying the nature of DM.

The Big Picture

<u>well-motivated</u> particle candidates such that $\Omega \sim 0.1$

- WIMP (neutralino, weakly int'ing states, ...): discoverable now
- EWIMP/superWIMP (axino, gravitino, super-weakly int'ing states, ...): hopeless in direct detection, but hints possible at LHC

E-WIMPs: \widetilde{G} and \widetilde{a}

(extremely weakly interacting massive particles)

E-WIMPs: \widetilde{G} and \widetilde{a}

(extremely weakly interacting massive particles)

historically first:

 \widetilde{G} : Pagels+Primack, Weinberg ('82)

 \widetilde{a} : Tamvakis+Wyler ('82, pheno only)

 $\widetilde{\gamma}$: Goldberg ('83)

 χ : Ellis, *et al* (EHNOS) ('84)

E-WIMPs: \widetilde{G} and \widetilde{a}

neutral, Majorana, chiral fermions

(extremely weakly interacting massive particles)

historically first:

 \widetilde{G} : Pagels+Primack, Weinberg ('82)

 \widetilde{a} : Tamvakis+Wyler ('82, pheno only)

 $\widetilde{\boldsymbol{\gamma}}$: Goldberg ('83)

 χ : Ellis, *et al* (EHNOS) ('84)

L. Roszkowski, Warsaw, Feb '10 – p.41

E–WIMPs: \widetilde{G} and \widetilde{a}

(extremely weakly interacting massive particles)

historically first:

 \widetilde{G} : Pagels+Primack, Weinberg ('82)

 \widetilde{a} : Tamvakis+Wyler ('82, pheno only)

 $\widetilde{\boldsymbol{\gamma}}$: Goldberg ('83)

 χ : Ellis, *et al* (EHNOS) ('84)

(assume usual gravity mediated SUSY breaking)

neutral, Majorana, chiral fermions

	axino \widetilde{a}	gravitino \widetilde{G}
spin	1/2	3/2
interaction	$\sim 1/f_a^2$	$\sim 1/M_{ m P}^2$
mass	$ ot\propto M_{ m SUSY}$	$\propto M_{ m SUSY}$

mass model dependent $f_a \sim 10^{9-12} \, \text{GeV} - \text{PQ}$ scale
take it as free parameter $M_{\rm P} = 2.4 \times 10^{18} \, \text{GeV} - \text{reduced Planck mass}$ $M_{\rm SUSY} \sim 100 \, \text{GeV} - 1 \, \text{TeV} - \text{soft SUSY}$ mass scale

E–WIMPs: \widetilde{G} and \widetilde{a}

(extremely weakly interacting massive particles)

historically first:

 \widetilde{G} : Pagels+Primack, Weinberg ('82)

 \widetilde{a} : Tamvakis+Wyler ('82, pheno only)

 $\widetilde{\boldsymbol{\gamma}}$: Goldberg ('83)

 χ : Ellis, *et al* (EHNOS) ('84)

(assume usual gravity mediated SUSY breaking)

neutral, Majorana, chiral fermions

	axino \widetilde{a}	gravitino \widetilde{G}
spin	1/2	3/2
interaction	$\sim 1/f_a^2$	$\sim 1/M_{ m P}^2$
mass	$ \not\propto M_{ m SUSY} $	$\propto M_{ m SUSY}$

mass model dependent take it as free parameter

 $f_a \sim 10^{9-12}\,{
m GeV}$ – PQ scale

 $M_{
m P}=2.4 imes 10^{18}\,{
m GeV}$ – reduced Planck mass

 $M_{
m SUSY} \sim 100 \, {
m GeV} - 1 \, {
m TeV}$ – soft SUSY mass scale

R-parity can but does not have to be conserved

cf. recent work by Buchmuller et al; Ibarra; Bomark, et al, , ...

consider:

consider:

- \square $\widetilde{a} = LSP$
- $\chi = \text{NLSP}$ (LOSP)

consider:

- \square $\widetilde{a} = LSP$
- $\chi = \text{NLSP}$ (LOSP)
 - χ first freezes out

consider:

- $\ \, \bullet \ \, \widetilde{a} = \mathsf{LSP}$
- $\chi = \text{NLSP}$ (LOSP)
 - χ first freezes out

Producing Relic Axinos

 \Rightarrow can have $\Omega_{\widetilde{a}} \simeq 1$ while " $\Omega_{\chi} \gg 1$ "

(NTP: non-thermal production)

Producing Relic Axinos

 $\widetilde{\boldsymbol{a}}$ is too feebly interacting for any DM searches

but LHC measurements may point to \tilde{a} LSP and DM

 $\widetilde{\boldsymbol{a}}$ is too feebly interacting for any DM searches

but LHC measurements may point to \widetilde{a} LSP and DM

CMSSM, (standard) χ LSP

 $\widetilde{\boldsymbol{a}}$ is too feebly interacting for any DM searches

but LHC measurements may point to \widetilde{a} LSP and DM

CMSSM, (standard) χ LSP

CMSSM, \widetilde{a} LSP, $m_{\widetilde{a}} \simeq m_{\chi}$

 $\widetilde{\boldsymbol{a}}$ is too feebly interacting for any DM searches

but LHC measurements may point to \widetilde{a} LSP and DM

CMSSM, (standard) χ LSP

both neutralino $oldsymbol{\chi}$ and stau $\widetilde{oldsymbol{ au}}_1$ regions are now allowed

NLSP lifetime $\gg 10^{-7} \sec \Rightarrow$ at LHC either will appear stable

CMSSM, \tilde{a} LSP, $m_{\tilde{a}} \simeq m_{\chi}$

 $\widetilde{\boldsymbol{a}}$ is too feebly interacting for any DM searches

but LHC measurements may point to \widetilde{a} LSP and DM

both neutralino χ and stau $\widetilde{ au}_1$ regions are now allowed

NLSP lifetime $\gg 10^{-7} \sec \Rightarrow$ at LHC either will appear stable

• if χ NLSP: standard "missing energy" signature at LHC, but DM search unsuccessful

 $\widetilde{\boldsymbol{a}}$ is too feebly interacting for any DM searches

but LHC measurements may point to \widetilde{a} LSP and DM

both neutralino χ and stau $\widetilde{ au}_1$ regions are now allowed

NLSP lifetime $\gg 10^{-7} \sec \Rightarrow$ at LHC either will appear stable

- if χ NLSP: standard "missing energy" signature at LHC, but DM search unsuccessful
- if $\tilde{\tau}_1$ -NLSP: charged, apparently stable \Rightarrow striking signature at LHC L. Roszkowski, Warsaw, Feb '10 - p.43

The Gravitino \widetilde{G}

spin-3/2 partner of the graviton

• in gravity-mediated SUSY breaking models

 $m_{\widetilde{G}} = rac{F}{\sqrt{3}M_{
m P}}$

 $F \sim 10^{11} \, {
m GeV} - {
m SUSY}$ breaking scale $M_{
m P} = 2.4 imes 10^{18} \, {
m GeV}$ - reduced Planck mass soft masses $\sim F/M_{
m P}$

natural to expect: $m_{\tilde{G}} \sim \text{GeV} - \text{TeV}$

The Gravitino \widetilde{G}

spin-3/2 partner of the graviton

• in gravity–mediated SUSY breaking models

 $m_{\widetilde{G}} = rac{F}{\sqrt{3}M_{
m P}}$

 $F \sim 10^{11} \, {
m GeV} - {
m SUSY}$ breaking scale $M_{
m P} = 2.4 imes 10^{18} \, {
m GeV}$ - reduced Planck mass soft masses $\sim F/M_{
m P}$

natural to expect: $m_{\tilde{G}} \sim \text{GeV} - \text{TeV}$

• if it is the LSP...

can
$$\widetilde{G}$$
 give $\Omega_{
m CDM} h^2 \sim 0.1?$

 \widetilde{G} : cold (not warm) DM

Example: $m_{\widetilde{G}} = m_0$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri apply all BBN: $D/H + Y_p + {}^7Li/H + {}^3He/D + {}^6Li/{}^7Li$

Example: $m_{\widetilde{G}} = m_0$

Cerdeño+K.-Y. Choi+Jedamzik+L.R.+Ruiz de Austri apply all BBN: $D/H + Y_p + {}^7Li/H + {}^3He/D + {}^6Li/{}^7Li$

• only $\widetilde{\tau}_1$ -NLSP region remains allowed

 \Rightarrow at LHC see charged "stable" LOSP $\tilde{\tau}_1$ (instead of "expected" neutral χ)

confirmed Feng, et al (Apr 04)

• low T_R basically excluded (NTP part only), must include TP contribution to $\Omega_{\widetilde{G}}h^2$ $\Rightarrow m_{\widetilde{G}} = \mathcal{O}(100 \,\mathrm{GeV})$: (typically) need high $T_R \sim 10^9 \,\mathrm{GeV}$

both \widetilde{a} and \widetilde{G} are viable DM candidates (cold, warm)

both \widetilde{a} and \widetilde{G} are viable DM candidates (cold, warm)

$LSP\setminusNLSP$	neutralino χ	stau $\widetilde{ au}_1$
\widetilde{a}	\checkmark	\checkmark
\widetilde{G}	Χ*	\checkmark

*: unless $m_{\widetilde{G}} \lesssim 1 \, {
m GeV}$

both \widetilde{a} and \widetilde{G} are viable DM candidates (cold, warm)

$LSP \setminus NLSP$	neutralino χ	stau $\widetilde{ au}_1$
\widetilde{a}	\checkmark	\checkmark
\widetilde{G}	Χ*	\checkmark

*: unless $m_{\widetilde{G}} \lesssim 1\,{
m GeV}$

■ LHC: seemingly stable charged state ($\tilde{\tau}_1$): ⇒ hint for EWIMP DM, either \tilde{a} or \tilde{G}

both \widetilde{a} and \widetilde{G} are viable DM candidates (cold, warm)

$LSP \setminus NLSP$	neutralino χ	stau $\widetilde{ au}_1$
\widetilde{a}	\checkmark	\checkmark
\widetilde{G}	Χ*	\checkmark

*: unless $m_{\widetilde{G}} \lesssim 1 \, {
m GeV}$

- LHC: seemingly stable charged state $(\tilde{\tau}_1)$: \Rightarrow hint for EWIMP DM, either \tilde{a} or \tilde{G}
- LHC: seemingly stable neutral state (χ) but no signal in DD/ID DM searches (also $\Omega_{\chi}h^2 \neq 0.1$): \Rightarrow hint for only \tilde{a} DM

both \widetilde{a} and \widetilde{G} are viable DM candidates (cold, warm)

$LSP \setminus NLSP$	neutralino χ	stau $\widetilde{ au}_1$
\widetilde{a}	\checkmark	\checkmark
\widetilde{G}	Χ*	\checkmark

*: unless $m_{\widetilde{G}} \lesssim 1 \, {
m GeV}$

- LHC: seemingly stable charged state $(\tilde{\tau}_1)$: \Rightarrow hint for EWIMP DM, either \tilde{a} or \tilde{G}
- LHC: seemingly stable neutral state (χ) but no signal in DD/ID DM searches (also $\Omega_{\chi}h^2 \neq 0.1$): \Rightarrow hint for only \tilde{a} DM

\Rightarrow LHC can give strong indications for EWIMP DM possible

The Big Picture

<u>well–motivated</u> particle candidates such that $\Omega \sim 0.1$

- neutrino ν hot DM
- neutralino χ
- "generic" WIMP
- axion a
- axino \widetilde{a}
- $oldsymbol{s}$ gravitino $\widetilde{oldsymbol{G}}$
- ????

Dark matter and the LHC

Assume SUSY as a popular and well-motivated framework...

DM detected in DD/ID expts, SUSY found at the LHC

- DM detected in DD/ID expts, but no SUSY at the LHC
 The nature of DM WIMP would remain a mystery
- a stable state (χ or charged $\tilde{\tau}_1$) found at the LHC...
 ... but no signal in DM DD/ID searches
 - \Rightarrow a particle lighter than χ (and for sure $\tilde{\tau}_1$) is the DM?
- LHC may (indirectly) point to E-WIMPs as DM

The LHC will be crucial in clarifying the nature of DM.

- a pseudo-goldstone boson by–product of PQ solution of strong CP problem
- global U(1) group spontaneously broken at scale $f_a \sim 10^{11} \, {
 m GeV}$

Axions

- a pseudo-goldstone boson by–product of PQ solution of strong CP problem
- global U(1) group spontaneously broken at scale $f_a \sim 10^{11} \, {
 m GeV}$
- **•** two main frameworks:
 - DFSZ axion: add two doublets
 - KSVZ axion: add heavy single quark with mass $m_Q \sim f_a$

Axions

- a pseudo-goldstone boson by–product of PQ solution of strong CP problem
- global U(1) group spontaneously broken at scale $f_a \sim 10^{11} \, {
 m GeV}$
- two main frameworks:
 - DFSZ axion: add two doublets
 - KSVZ axion: add heavy single quark with mass $m_Q \sim f_a$

$${} {oldsymbol{\mathcal{L}}}_{a\gamma} = - rac{1}{4} g_{a\gamma} F_{\mu
u} ilde{F}^{\mu
u} a = g_{a\gamma} \, \mathrm{E} \cdot \mathrm{B} \, a$$

- a pseudo-goldstone boson by–product of PQ solution of strong CP problem
- global U(1) group spontaneously broken at scale $f_a \sim 10^{11} \, {
 m GeV}$
 - two main frameworks:
 - DFSZ axion: add two doublets
 - KSVZ axion: add heavy single quark with mass $m_Q \sim f_a$

$$M_a\simeq 10^{-5}\,{
m eV}\,\Leftrightarrow\,\Omega_a\simeq 10^{-5}\,{
m eV}$$

DM axion search: resonant cavity $a\gamma \rightarrow a\gamma$

(detection scheme)

Axions

- a pseudo-goldstone boson by–product of PQ solution of strong CP problem
- global U(1) group spontaneously broken at scale $f_a \sim 10^{11} \, {
 m GeV}$
 - two main frameworks:
 - DFSZ axion: add two doublets
 - SVZ axion: add heavy single quark with mass $m_Q \sim f_a$

$$lackslash m_a \simeq 10^{-5} \, {
m eV} \, \Leftrightarrow \, \Omega_a \simeq 1$$

- DM axion search: resonant cavity $a\gamma \rightarrow a\gamma$
- solar axion search: $\gamma\gamma
 ightarrow a
 ightarrow \gamma\gamma$

expt sensitive to cosmologically subdominant *a*

current status

Axions

- a pseudo-goldstone boson by–product of PQ solution of strong CP problem
- global U(1) group spontaneously broken at scale $f_a \sim 10^{11} \, {
 m GeV}$
 - two main frameworks:
 - DFSZ axion: add two doublets
 - SVZ axion: add heavy single quark with mass $m_Q \sim f_a$

$$igvee m_a \simeq 10^{-5} \, {
m eV} \, \Leftrightarrow \, \Omega_a \simeq 1$$

- DM axion search: resonant cavity $a\gamma \rightarrow a\gamma$
- solar axion search: $\gamma\gamma
 ightarrow a
 ightarrow \gamma\gamma$

expt sensitive to cosmologically subdominant \boldsymbol{a}

search continues, *a* possibly cosmologically subdominant?

current status

- this year
- or this decade

- this year
- or this decade
- or this century...

DM WIMP will be detected

- this year
- or this decade
- or this century...

FOR SURE!

October 1997 No2102 Weekly £1-85 US\$3-75

DM WIMP will be detected

- this year
- or this decade
- or this century...
 FOR SURE!

NewScientist MIND OF THE ALMIGHTY

Noah's flood explained Plus: How cosmology found God