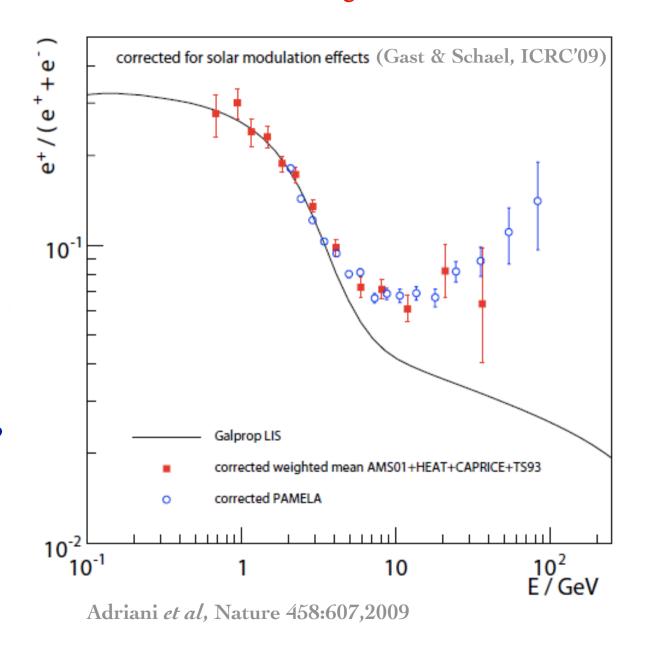
Antimatter in cosmic rays: Dark matter or a nearby badronic accelerator?

Seventh ToK Workshop on Particle Physics & Cosmology, University of Warsaw, 4 February 2010

The **PAMELA** anomaly

PAMELA has measured the positron fraction:

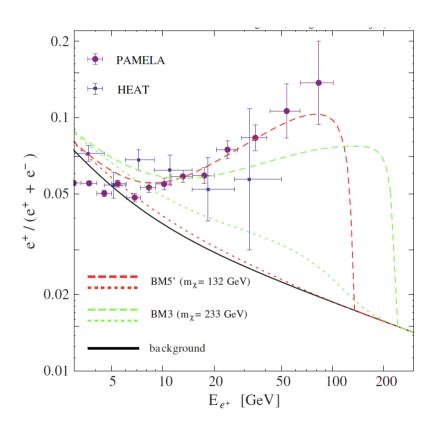

$$\frac{\phi_{e^+}}{\phi_{e^+} + \phi_{e^-}}$$

Anomaly ⇒ excess above 'astrophysical background'

Source of anomaly:

- DM decay/annihilation?
- Pulsars?
- Nearby SNRs?

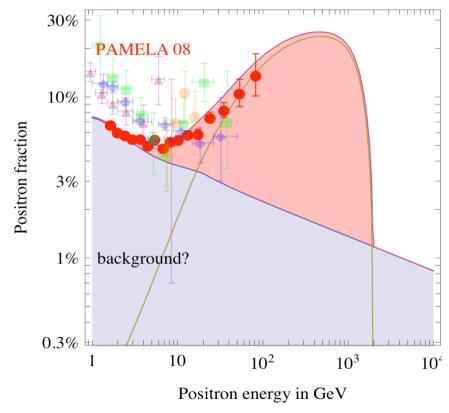
... over 300 citations



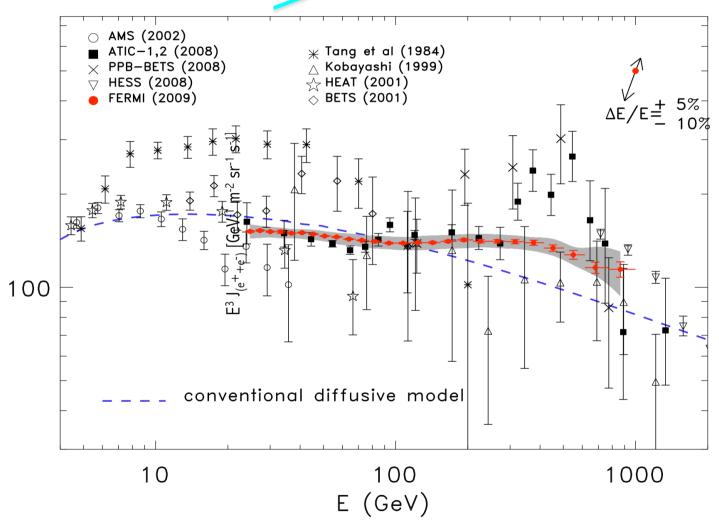
Dark matter has been widely invoked as the source of the excess e^+

DM annihilation

Rate $\propto n_{\mathrm{DM}}^2$

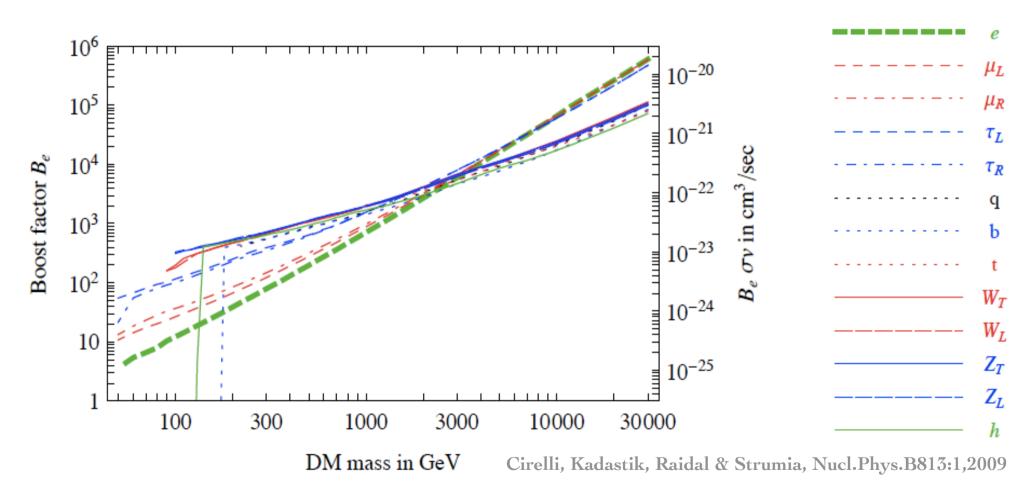

(e.g. few hundred GeV mass neutralino LSP or Kaluza-Klein particle)

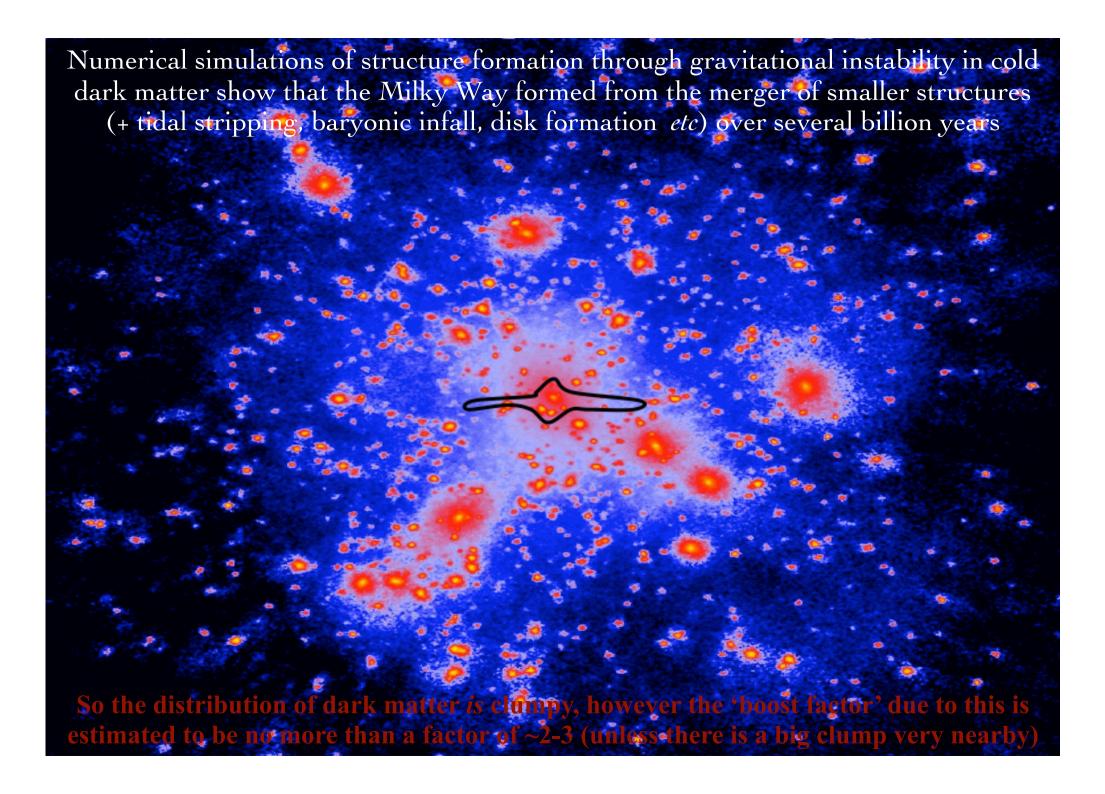
Bergström, Bringmann & Edjsö, PR D78:127850,2008


DM decay

Rate $\propto n_{\rm DM}/\tau_{\rm DM}$ (lifetime ~10⁹ x age of universe e.g. dim-6 operator suppressed by $M_{\rm GUT}$ for a TeV mass techni-baryon)

Nardi, Sannino & Strumia, JCAP 0901:043,2009


Fermi The ATIC excess


Dark matter has also been invoked to explain the excess e^{\pm} over expectations seen by *Fermi* (although it does *not* confirm the peak seen earlier by *ATIC-2*)

But DM annihilation rate requires huge 'boost factor' to match flux

→ would imply in general *negligible* relic abundance unless strong velocity dependence (e.g. 'Somerfeld enhancement') of annihilation #-section is invoked (this requires hypothetical light gauge bosons to provide new long range force)

... no such problem for decaying dark matter models (just tune lifetime!)

But the observed antiproton flux is consistent with the background expectation (from standard cosmic ray propagation in the Galaxy)

 $\psi\psi\to W^+W^-$

 $m_{\rm DM} = 150 \, {\rm GeV}$

 10^{4}

This is a serious constraint on all dark matter models of the PAMELA anomaly

are 'leptophilic'

models proposed)

... rather contrived!

PAMELA 0 10^{-4} background? 10 10^{2} $\psi\psi \to \mu^+\mu^-$ Can fit with DM decay $m_{\rm DM} = 1 \, {\rm TeV}$ or annihilation model only if DM particles PAMELA 08 10^{-4} background? (nevertheless many such \overline{p} kinetic energy in GeV

 10^{-3}

PAMELA 08 10% Positron fraction 3% 1% background? 0.3% 10^{2} 10^{3} 10% Positron fraction 3% 1% - background? 0.3% 10 10^{3} 10^{2} 104 Positron energy in GeV

Cirelli et al, Nucl. Phys. B813:1,2009

Inclusive Jet Cross Section in $\overline{p}p$ Collisions at $\sqrt{s} = 1.8$ TeV

The inclusive jet differential cross section has been measured for jet transverse energies, E_T , from 15 to 440 GeV, in the pseudorapidity region $0.1 \le |\eta| \le 0.7$. The results are based on 19.5 pb⁻¹ of data collected by the CDF Collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with $E_T > 200\,$ GeV is significantly higher than current predictions based on $O(\alpha_s^3)$ perturbative QCD calculations. Various possible explanations for the high- E_T excess are discussed.

F. Abe et al, PRL 77:438,1996

... this turned out to be a mis-estimation of the QCD background – *not* new physics!

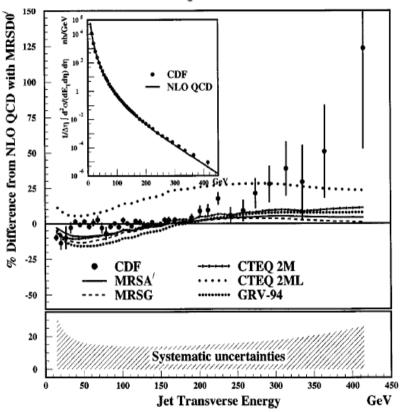
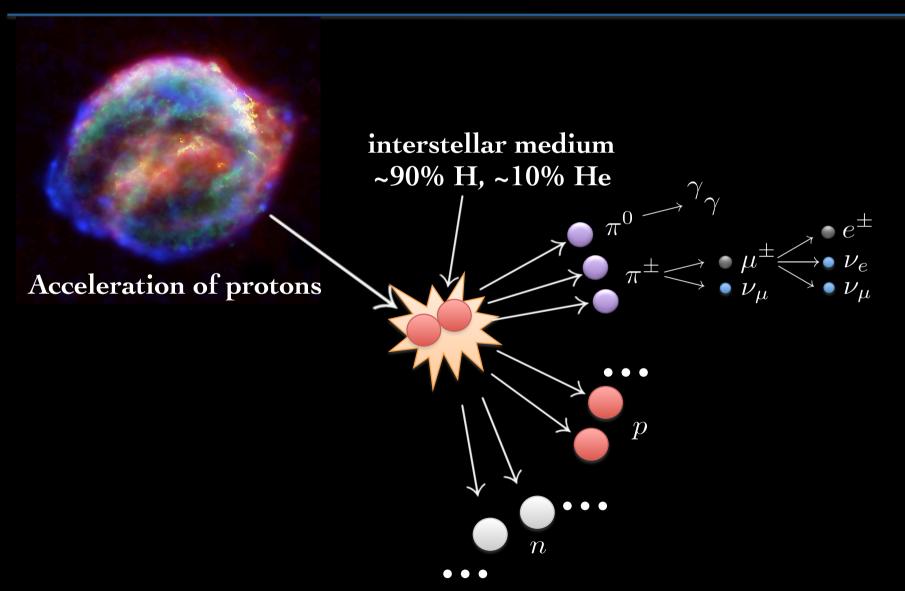


FIG. 1. The percent difference between the CDF inclusive jet cross section (points) and a next-to-leading order (NLO) QCD prediction using MRSD0' PDFs. The CDF data (points) are compared directly to the NLO QCD prediction (line) in the inset. The normalization shown is absolute. The error bars represent uncertainties uncorrelated from point to point. The hatched region at the bottom shows the quadratic sum of the correlated (E_T dependent) systematic uncertainties which are shown individually in Fig. 2. NLO QCD predictions using different PDFs are also compared with the one using MRSD0'.

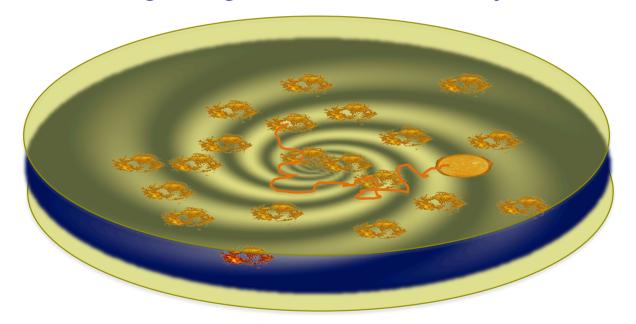
What particle physicists have learnt through experience (UA1 monojets, NuTeV anomaly, CDF high $E_{\rm T}$ excess, ...)

Yesterday's discovery is today's calibration


Richard Feynman

... and tomorrow's background!

Val Telegdi


... is also now a major issue for astroparticle physics *viz* how well do we know the 'astrophysical background' for signals of (apparently) new particle physics?

The 'background' is the production of secondary *e*[±] during propagation (calculated using GALPROP)

The standard model for Galactic cosmic ray origin

- □ SNR shock waves accelerate relativistic particles by Fermi mechanism
 - \Rightarrow power law spectrum (synchrotron radio/X-ray + γ -ray emission)
 - ☐ Diffusion through magnetic fields in Galaxy (disk + halo)

- lacksquare Secondary production during propagation: \bar{p}, e^+, N'
- \Box e^{\pm} lose energy through synchrotron and inverse Compton scattering Measurables: Energy spectra of individual species + diffuse radiation

Why supernova remnants?

... direct evidence for acceleration of electrons to > 40 TeV from observation of synchrotron X-ray emission

Energetics

• Residence time of CRs in Galaxy

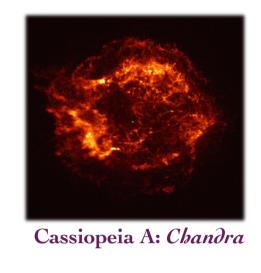
Galactic SN rate

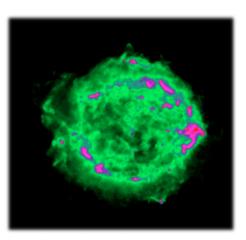
⇒ Required output/SN (remnant)

$$0.3 \, \mathrm{eV} \, \mathrm{cm}^{-3}$$

$$\pi (15 \,\mathrm{kpc})^2 \, 3 \,\mathrm{kpc} \simeq 5.7 \times 10^{67} \,\mathrm{cm}^3$$

$$1.7 \times 10^{58} \,\mathrm{GeV} \simeq 2.8 \times 10^{55} \,\mathrm{erg}$$


$$20\,\mathrm{Myr}$$


$$1.4 \times 10^{48} \,\mathrm{erg}\,\mathrm{yr}^{-1}$$

$$0.03\,{\rm yr}^{-1}$$

$$4.6 \times 10^{49} \, \mathrm{erg}$$

This is only a few % of the benchmark kinetic energy of 10⁵¹ erg produced in a SN explosion


Cassiopeia A: VLA

Diffusion of Galactic cosmic rays

Transport equation:

$$\frac{\mathrm{d}n(\vec{r},t)}{\mathrm{d}t} = \underbrace{\nabla(D\nabla n(\vec{r},t))}_{\text{diffusion}} - \underbrace{\frac{\partial}{\partial E}(b(E)n(r,t))}_{\text{energy losses}} + \underbrace{q(\vec{r},t)}_{\text{injection}}$$

Boundary conditions:

Green's function: describes flux from one discrete, burst-like source ... integrate over spatial distribution and time-variation of injection

GALPROP (Moskalenko & Strong 1998) can solve the 3D time-dependent transport equation but yields ~the same answer for the *equilibrium* fluxes as the 'leaky box' model in which cosmic rays are assumed to have small energy dependent escape probability

⇒ exponential distribution of path lengths between cosmic ray source and Earth

The 'leaky box' model

Transport equation:

$$\frac{\mathrm{d}n(\vec{r},t)}{\mathrm{d}t} = \underbrace{\nabla(D\nabla n(\vec{r},t))}_{\downarrow} - \underbrace{\frac{\partial}{\partial E}(b(E)n(r,t))}_{\downarrow} + \underbrace{q(\vec{r},t)}_{\downarrow}$$
 diffusion energy losses injection

Averaging over extended cosmic ray halo ⇒steady state solution

$$0 = -\frac{n}{\tau_{\rm esc}} - \frac{n}{\tau_{\rm cool}} + q$$

Escape through diffusion: $\tau_{\rm esc} \sim E^{-\delta}$, $\delta \sim 0.3$ -0.6 (from secondary/primary ratios)

Energy loss through synchrotron radiation/IC scattering: $\tau_{\text{cool}} \sim E^{-1}$

Secondary-to-Primary Ratios

Transport equation:

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = -\frac{N_i}{\tau_i} - \Gamma_i N_i + \sum_i \Gamma_{j \to i} N_j + Q_i$$

Primary spectrum:

$$N_1 = \frac{Q_1 \tau_1}{1 + \lambda_1^{\rm esc} / \lambda_1^{\rm tot}}$$

Secondary spectrum:

$$N_2 = \left(\frac{1}{\lambda_2^{\text{esc}}} + \frac{1}{\lambda_2}\right)^{-1} \frac{N_1}{\lambda_{1\to 2}}$$

$$\frac{N_2}{N_1} = \left(\underbrace{\frac{\lambda_{1\to 2}}{\lambda_2^{\rm esc}}}_{\propto E^{\delta}} + \frac{\lambda_{1\to 2}}{\lambda_2}\right)^{-1}$$

Secondary-to-primary ratio:
$$\log \frac{N_2}{N_1}$$
 $\propto E^{-\delta}$ $\frac{N_2}{N_1} = \left(\frac{\lambda_{1 \to 2}}{\lambda_2^{\rm esc}} + \frac{\lambda_{1 \to 2}}{\lambda_2}\right)^{-1}$ $\log E$

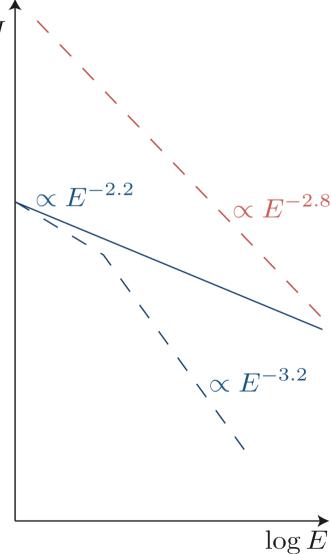
Energy spectra

Primary e -

Production: $q \propto E^{-2.2}$

 $\log J$

--- Propagation: $\min[\tau_{\rm esc}, \tau_{\rm cool}] \propto E^{-0.6}, E^{-1}$


Observed: $n \propto E^{-2.8}, E^{-3.2}$

Primary protons/nuclei

Production: presumably same as e^{-}

--- Propagation:

Observed: $n \propto E^{-2.8}$

Energy spectra

Primary e -

— Production: $q \propto E^{-2.2}$

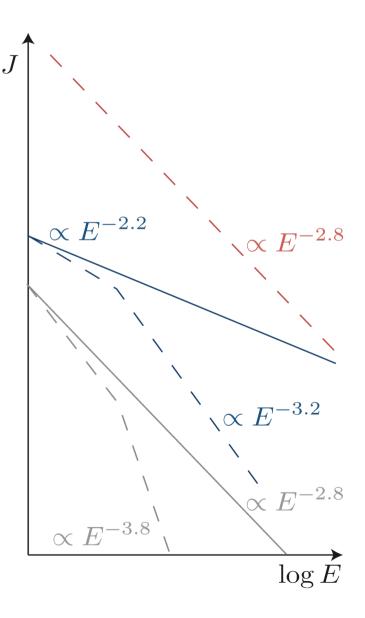
--- Propagation:min[$\tau_{\rm esc}, \tau_{\rm cool}$] $\propto E^{-0.6}, E^{-1}$

Observed: $n \propto E^{-2.8}, E^{-3.2}$

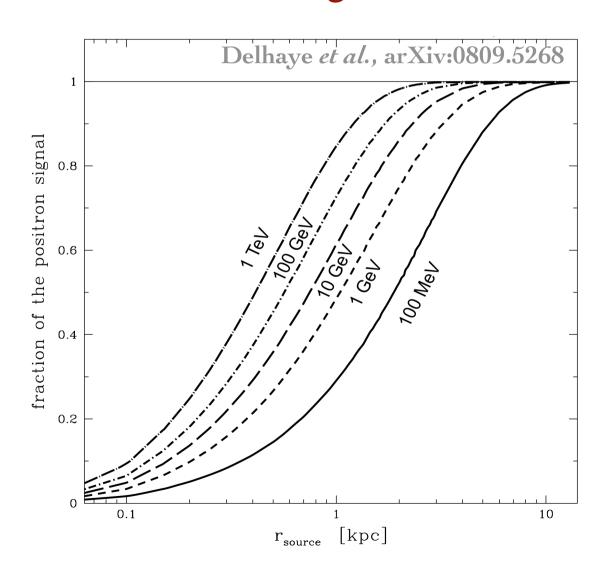
Primary protons/nuclei

Production: presumably same as e^{-}

--- Propagation:


Observed: $n \propto E^{-2.8}$

Secondary

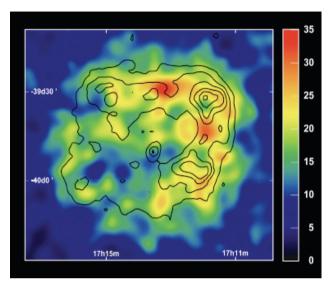

production: $q \propto E^{-2.8}$

propagation: $\min[\tau_{\rm esc}, \tau_{\rm cool}] \propto E^{-0.6}, E^{-1}$

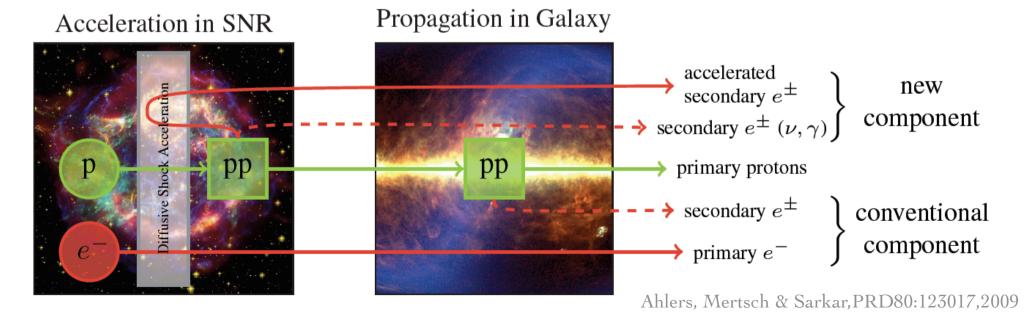
observed: $n \propto E^{-3.4}, E^{-3.8}$

However e^{\pm} lose energy readily during propagation, so only *nearby* sources dominate at high energies ... the usual background calculation is then *irrelevant*

$$au \simeq 5 \cdot 10^5 \text{yr} \left(\frac{1 \text{ TeV}}{E} \right)$$


A nearby cosmic ray accelerator?

Rise in e^+ fraction could be due to secondaries being produced $\partial uring$ acceleration ... which are then accelerated along with the primaries


(Blasi, PRL 103:051104,2009, Fujita et al, PRD80:063003,2009)

... generic feature of a *stochastic* acceleration process, if $\tau_{acc} > \tau_{1\rightarrow 2}$ (Cowsik 1979, Eichler 1979)

This component *naturally* has a harder spectrum and fits *PAMELA* data (with just 1 free parameter)

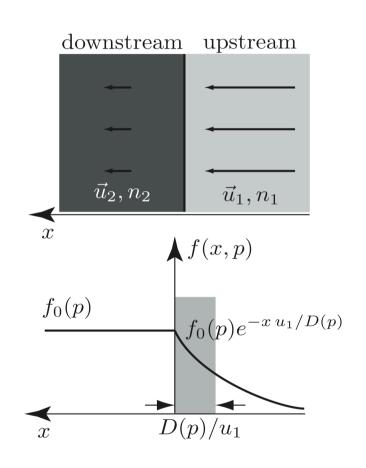
RXJ1713.7-3946, HESS

Diffusive (1st-order Fermi) shock acceleration

Acceleration determined by compression ratio:

$$r = \frac{u_1}{u_2} = \frac{n_2}{n_1} \; , \quad \gamma = \frac{3r}{r-1}$$

Solve transport equation, $u\frac{\partial f}{\partial x} = D\frac{\partial^2 f}{\partial x^2} + \frac{1}{3}\frac{\mathrm{d}u}{\mathrm{d}x}p\frac{\partial f}{\partial p}$


$$f \xrightarrow{x \to -\infty} f_{\text{inj}}(p), \quad \left| \lim_{x \to \infty} f \right| \ll \infty$$

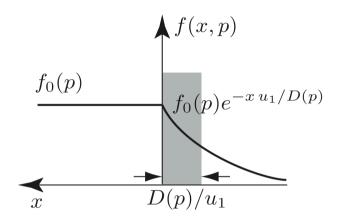
Solution for x < 0:

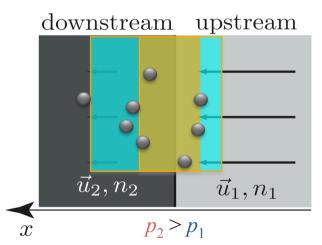
$$f = f_{\text{inj}}(p) + (f^{0}(p) - f_{\text{inj}}(p))e^{-x u_{1}/D(p)}$$

where

$$f^{0}(p) = \gamma \int_{0}^{p} \frac{\mathrm{d}p'}{p'} \left(\frac{p'}{p}\right)^{\gamma} f_{\mathrm{inj}}(p') + Cp^{-\gamma}$$

As long as $f_{\rm inj}(p)$ is softer than $p^{-\gamma}$ at high energies: $f(x,p) \sim p^{-\gamma}$


DSA with secondary production


• Secondaries are produced with primary spectrum:

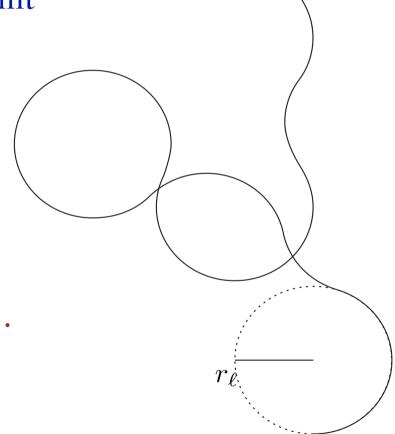
$$q_{e^{\pm}} \propto f_{\rm CR} \propto p^{-\gamma}, \quad \gamma = \frac{3r}{r-1} \quad r = \frac{u_1}{u_2} = \frac{n_2}{n_1}$$

- . Only particles with $|x| \lesssim D(p)/u$ are accelerated
- Bohm diffusion: $D(p) \propto p$
- Fraction of accelerated secondaries is $\propto p$
- Steady state spectrum

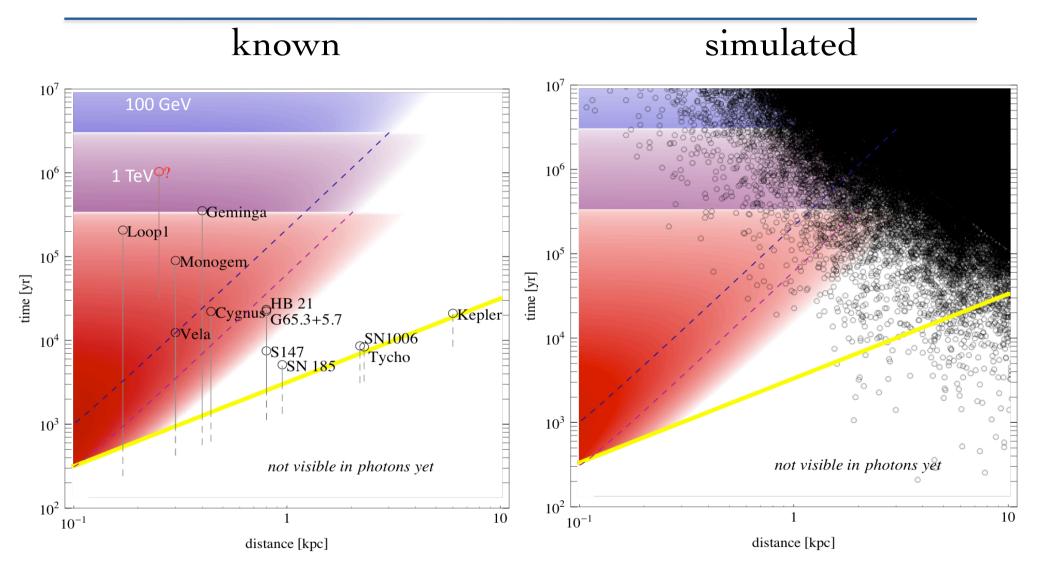
$$n_{e^{\pm}} \propto q_{e^{\pm}} \left(1 + \frac{p}{p_0} \right) \propto p^{-\gamma} + p^{-\gamma+1}$$

→ rising positron fraction at source!

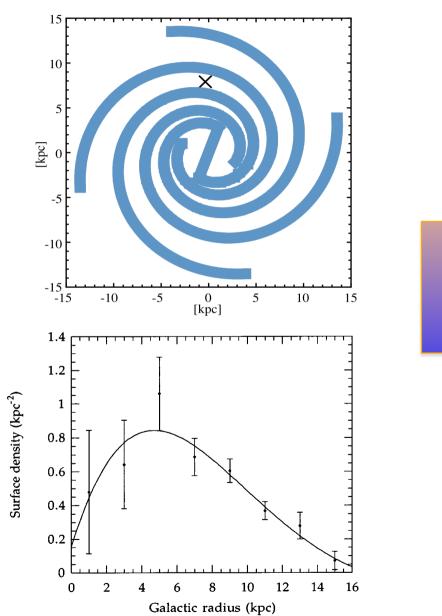
Diffusion near accelerating shock front

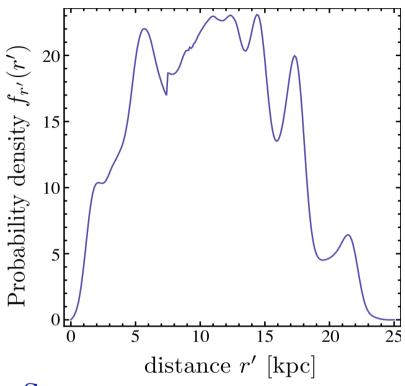

- Diffusion rate near shock front not known a priori (complex plasma physics)
- But Bohm diffusion rate sets lower limit

$$D^{\rm Bohm} = r_{\ell} \frac{c}{3} \propto \frac{E}{Z}$$

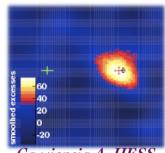

• So parametrise by fudge factor \mathcal{F}^{-1}

$$D = D^{\mathrm{Bohm}} \mathcal{F}^{-1}$$


- \mathcal{F}^{-1} determined by fitting to one measured secondary/primary ratio ... can then *predict* any other ratio
- More sophisticated modelling needs better understanding of shock structure, feedback of cosmic rays ...


Moreover it is not just the (optically) observed SNRs which contribute ... there must be *many* other hidden SNR

Statistical distribution of sources


Case & Bhattacharya, ApJ 504:761,1998

Strategy:

- Draw source positions from this distribution
- Calculate total $(e^+ + e^-)$ flux
- The best fit to data is likely to be *closest* to real distribution

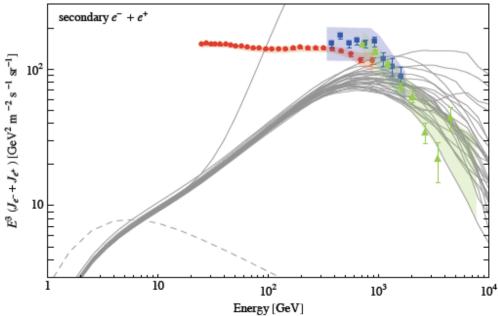
Normalising the source spectra

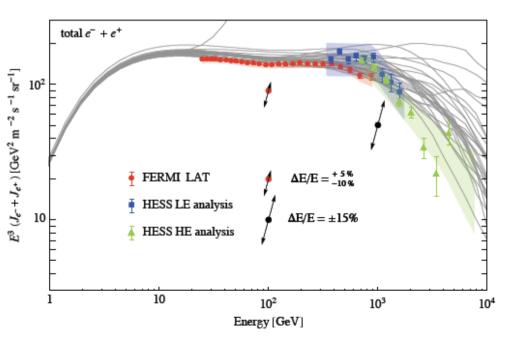
Normalisation of primary e^- : fit absolute e^- flux at low energies

Normalisation of secondary
$$e^{\pm}$$
: $p+p \to \begin{cases} \pi^0 + \dots \to 2\gamma + \dots \\ \pi^{\pm} + \dots \to e^{\pm} + \dots \end{cases}$

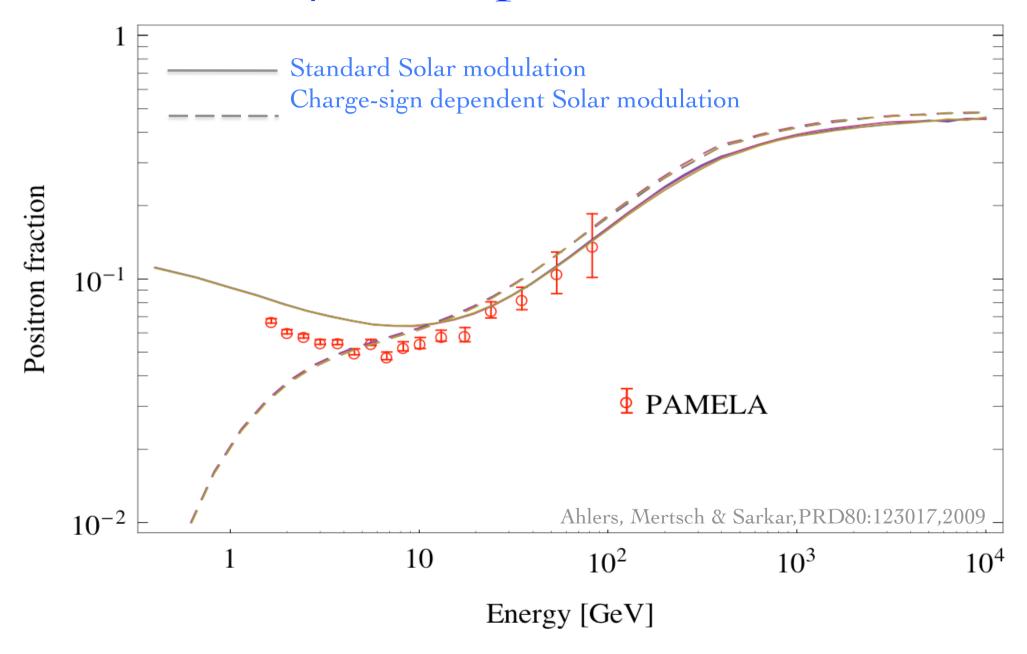
Source	Other name(s)	Γ	$J_{\gamma}^{0} \div 10^{-12}$	E_{\max}	d	$Q_{\gamma}^{0} \div 10^{33}$
			$[(\mathrm{cm}^2\mathrm{s}\mathrm{TeV})^{-1}]$	$[{ m TeV}]$	[kpc]	$[(s TeV)^{-1}]$
HESS J0852-463	RX J0852.0-4622 (Vela Junior)	2.1 ± 0.1	21 ± 2	> 10	0.2	0.10
HESS J1442-624	RCW 86, SN 185 (?)	2.54 ± 0.12	3.72 ± 0.50	$\gtrsim 20$	1	0.46
HESS J1713-381	CTB 37B, G348.7+0.3	2.65 ± 0.19	0.65 ± 0.11	$\gtrsim 15$	7	3.812
HESS J1713-397	RX J1713.7-3946, G347.3-0.5	2.04 ± 0.04	21.3 ± 0.5	17.9 ± 3.3	1	2.55
HESS J1714-385	CTB 37A	2.30 ± 0.13	0.87 ± 0.1	$\gtrsim 12$	11.3	13.3
HESS J1731-347	G 353.6-07	2.26 ± 0.10	6.1 ± 0.8	$\gtrsim 80$	3.2	7.48
HESS J1801 -233^a	W 28, GRO J1801-2320	2.66 ± 0.27	0.75 ± 0.11	$\gtrsim 4$	2	0.359
HESS J1804 -216^{b}	W 30, G8.7-0.1	2.72 ± 0.06	5.74	$\gtrsim 10$	6	24.73
HESS J1834-087	W 41, G23.3-0.3	2.45 ± 0.16	2.63		5	7.87
MAGIC J0616+225	IC 443	3.1 ± 0.3	0.58	$\gtrsim 3 \gtrsim 1$	1.5	0.156
Cassiopeia A		2.4 ± 0.2	1.0 ± 0.1	$\gtrsim 40$	3.4	1.38
J0632 + 057	Monoceros	2.53 ± 0.26	0.91 ± 0.17	N/A	1.6	0.279
Mean		~ 2.5		$\gtrsim 20$		~ 5.2
Mean, excluding sources with $\Gamma > 2.8$		~ 2.4		$\gtrsim 20$		~ 5.7
Mean, excluding sources with $\Gamma > 2.6$		~ 2.3		$\gtrsim 20$		~ 4.2

Parameters of the Monte Carlo


Diffusion Model					
$\frac{D_0}{\delta}$	$ \begin{array}{c c} 10^{28} \text{cm}^2 \text{s}^{-1} \\ 0.6 \end{array} $	} from GCR nuclear secondary-to-primary ratios			
L	$3 \mathrm{~kpc}$				
$_b$	$10^{-16} \mathrm{GeV^{-1}s^{-1}}$	CMB, IBL and \vec{B} energy densities			
Source Distribution					
$\overline{t_{ m max}}$	$1 \times 10^8 \mathrm{yr}$	from $E_{\rm min} \simeq 3.3 {\rm GeV}$			
$ au_{ m SNR}$	$10^4\mathrm{yr}$	from observations			
N	3×10^{6}	from number of observed SNRs			
Source Model					
$R_{e^-}^0$	$1.8 \times 10^{50} \mathrm{GeV}^{-1}$	fit to e^- flux at $10 \mathrm{GeV}$			
Γ	2.4	average γ -ray spectral index			
$E_{\rm max}$	$20\mathrm{TeV}$	typical γ -ray maximum energy			
E_{cut}	$20\mathrm{TeV}$	DSA theory			
R^0_+	$7.4 \times 10^{48} \mathrm{GeV}^{-1}$	γ -rays			
K_{B}	15	free parameter (for fixed Γ)			

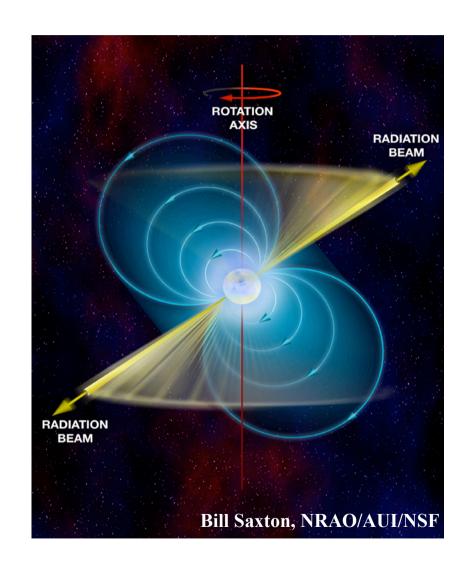

primary e⁻ primary e⁻ 10 2 2 30 1 10 10 10² Energy [GeV]

Fitting the $e^+ + e^-$ flux

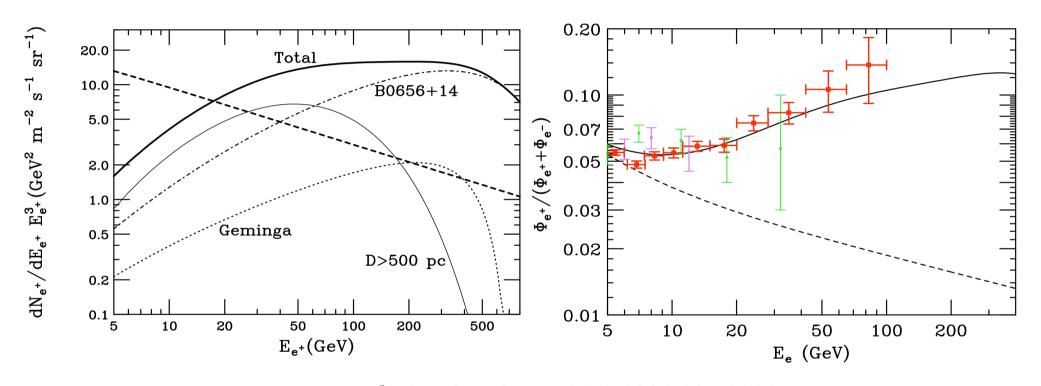

The propagated primary e^- spectrum is much too steep to match the Fermi LAT data ... but the *accelerated* secondary e^++e^- component has a harder spectrum so fits the 'bump'!

Ahlers, Mertsch & Sarkar, PRD80:123017,2009

The predicted positron fraction



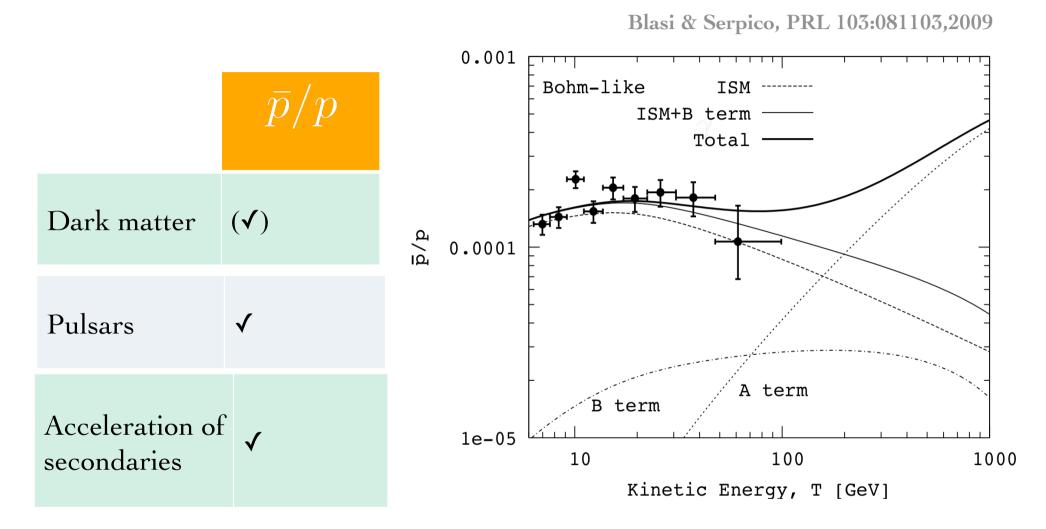
Nearby pulsars as source of e^{\pm}


 Highly magnetized, fast spinning neutron stars

- γ -rays and e^{\pm} produced along the magnetic axis
- Spectrum expected to be harder than background from propagation, viz.

$$N \propto E_e^{\pm - 1.6} e^{-E_e^{\pm}/100 \,\text{GeV}}$$

Combination of Galactic contribution and two nearby pulsars, **Geminga** (157 pc) and **B0656+14** (290 pc), can fit **PAMELA** excess (and perhaps also **Fermi** bump)

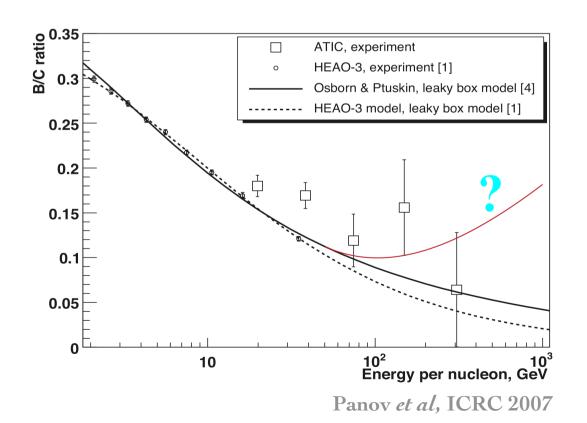


Hooper, Blasi & Serpico, JCAP 0901:025,2009

However ~40% of rotational energy must be released as energetic e^{\pm} – plausible?

Fermi can detect expected anisotropy towards B0656+14 in ~5 years

What about the antiproton-to-proton ratio?


Secondary acceleration model predicts rise beyond 100 GeV ... will be tested soon by AMS-02

Nuclear secondary-to-primary Ratios

	nuclei
Dark matter	X
Pulsars	X
Acceleration of secondaries	✓

If we see this, *both* dark matter and pulsar origin models would be ruled out!

Since nuclei are accelerated in the *same* sources, the ratio of secondaries (e.g. Li, Be, B) to primaries (C, N, O) must also *rise* with energy beyond ~100 GeV

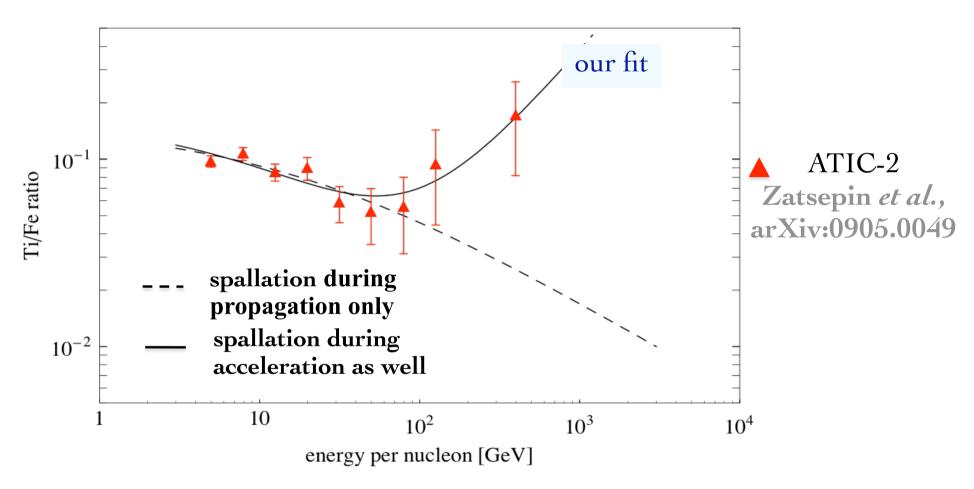
Can solve problem *analytically* (no need for numerical code!) ... but more complicated than for \bar{p}/p since energy losses must now be included

☐ Transport equation

$$u\frac{\partial f_i}{\partial x} = D_i \frac{\partial^2 f_i}{\partial x^2} + \frac{1}{3} \frac{du}{dx} p \frac{\partial f_i}{\partial p} - \Gamma_i f_i + q_i$$

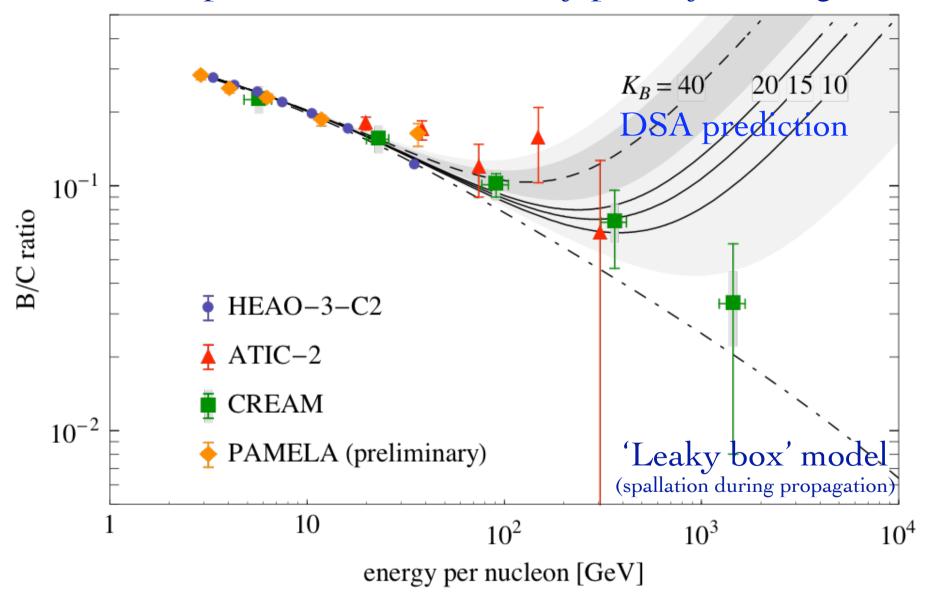
with boundary condition $f_i(x,p) \xrightarrow{x \to -\infty} Y_i \delta(p-p_0)$

□ Solution:

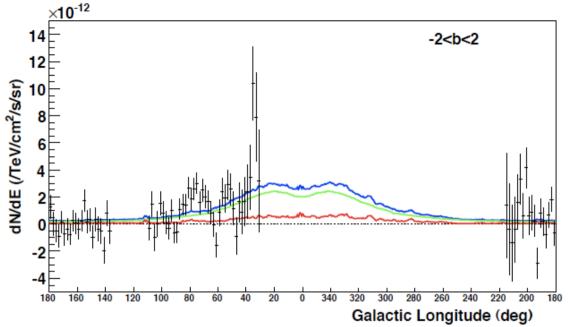

$$f_{i}^{+} = f_{i}^{0} + \frac{q_{i}^{+}(x=0) - \Gamma_{i}^{+} f_{i}^{0}}{u_{+}} x \quad \text{for } x > 0$$

$$f_{i}^{0}(p) = \int_{0}^{p} \frac{dp'}{p'} \left(\frac{p'}{p}\right)^{\gamma} e^{-\gamma(1+r^{2})(D_{i}^{-}(p) - D_{i}^{-}(p'))\Gamma_{i}^{-}/u_{-}^{2}}$$

$$\times \gamma \left[(1+r^{2}) \frac{D_{i}^{-}(p')q_{i}^{-}(x=0)}{u_{-}^{2}} + Y_{i}\delta(p'-p_{0}) \right]$$

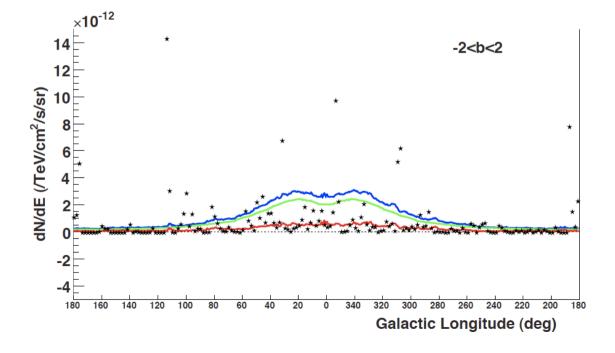

$$\sim "q_{i}^{-}(p) + D_{i}^{-}(p)q_{i}^{-}(p)"$$

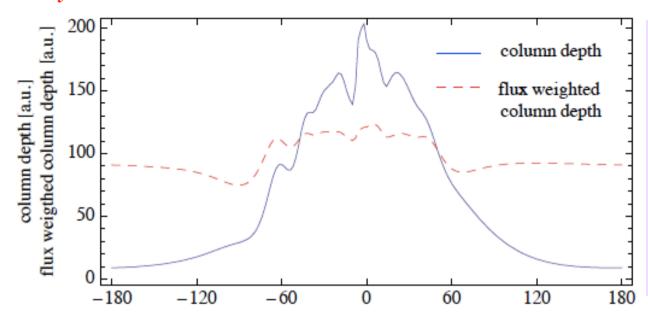
Titanium-to-Iron Ratio


Titanium-to-iron ratio used to fix diffusion coefficient to be $\mathcal{F}^{-1} \simeq 40$ (NB: to fit e^+ excess requires ~20)

We can then predict another secondary/primary ratio e.g. B/C ...

PAMELA is currently measuring B/C with unprecedented accuracy ... a *rise* would establish the nearby hadronic accelerator model

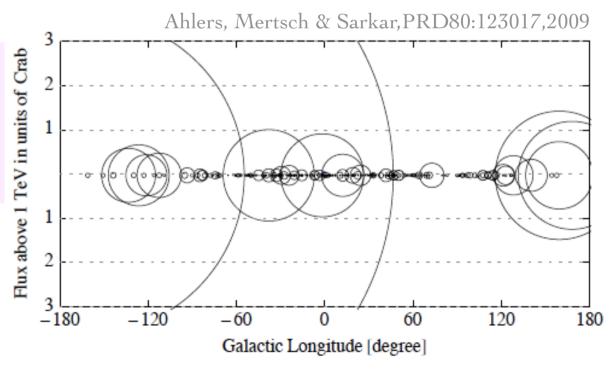

Has MILAGRO seen some of these old SNRs already?


MILAGRO profile of the Milky Way overlaid with GALPROP 'prediction' (red: π⁰ decay, green: IC, blue: total)

Abdo et al, arXiv:0805.0417

Simulated SNR distribution which matches the *PAMELA* and *Fermi* data on electrons ... with flux @ 15 TeV calculated assuming E^{-2.75} spectrum and binned with 20x40 resolution

A definitive cross-check would be to see these old SNRs in neutrinos ...


The column depth and flux weighted column depth of the SNR density in the Galactic plane ... not very different towards Galactic centre/anti-centre i.e. equally useful to survey Northern/Southern sky

Simulated SNR distribution which matches the *PAMELA* and *Fermi* data on electrons. (the circle radius ⇒ brightness at > 1 TeV in units of the Crab)

$$F_{\nu_{\mu}}(> 1 \text{ TeV}) \simeq 3.2 \times 10^{-12}$$

$$\left(\frac{d}{2 \text{ kpc}}\right)^{-2} \text{ cm}^{-2} \text{ s}^{-1}$$

 5σ detection by *IceCube* in 3 yr!

Summary

Astroparticle physics has made enormous *experimental* progress but to definitively answer old questions e.g. the **origin of cosmic rays** or the **nature of dark matter** will require better *theoretical* modelling of the relevant astrophysical 'backgrounds'

The *PAMELA* anomaly may be the signature of a nearby hadronic accelerator rather than dark matter - forthcoming data on antiprotons (*AMS*-02), B/C ratio (*PEBS*, *CALET*) *etc* will provide a resolution

... the source(s) should also be seen directly using γ-rays (*HAWC*, *CTA*) and neutrinos (*IceCube*)